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Abstract 

Consider a set of geometric objects, such as points, line segments, or axes-parallel hyperrectangles in ~8, that 
move with constant but possibly different velocities along linear trajectories. Efficient algorithms are presented 
for several problems defined on such objects, such as determining whether any two objects ever collide and 
computing the minimum interpoint separation or minimum diameter that ever occurs. In particular, two open 
problems from the literature are solved: deciding in o(n2) time if there is a collision in a set of 72 moving 
points in R2, where the points move at constant but possibly different velocities, and the analogous problem for 
detecting a red-blue collision between sets of red and blue moving points. The strategy used involves reducing 
the given problem on moving objects to a different problem on a set of static objects, and then solving the latter 
problem using techniques based on sweeping, orthogonal range searching, simplex composition, and parametric 
search. 

1. Introduction 

Problems involving geometric objects that are in time-dependent motion arise in diverse applications, 
such as, for instance, traffic control, robotics, manufacturing, and animation, to name just a few. In such 
problems, we are given a collection of geometric objects, such as points, line segments, or polyhedra, 
along with a description of their motion, which is usually specified by a low-degree polynomial in 
the time parameter t. The objective is to answer questions concerning (i) properties of the objects 
(e.g., the closest pair) at a given time instant t or in the so-called “steady-state”, i.e., at t = cm; or (ii) 
the combinatorics of the entire motion, i.e., from t = 0 to t = co (e.g., the number of topologically 
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different Euclidean minimum spanning trees (EMSTs) determined by a set of moving points); or (iii) 
the existence of certain properties (e.g., collision) or computing the optimal value of some property 
(e.g., the smallest diameter) over the entire motion. 

The systematic study of such dynamic problems was initiated by Atallah [4]. Examples of problems 
considered by him include computing the time intervals during which a given point appears on the 
convex hull of a set of moving points and determining the steady-state closest/farthest pair, EMST, 
and smallest enclosing circle for moving points. Fu and Lee [7,8] show how to maintain the Voronoi 
diagram and the EMST of moving points in the plane. In [17], Monma and Suri investigate combina- 
torial and algorithmic questions concerning the EMSTs that arise from the motion of one or more of 
the input points. In [I 11, Huttenlocher et al. consider the problem of computing the minimum Haus- 
dorff distance between two rigid planar point-sets under Euclidean motion. In [lo] Golin et al. solve 
a number of query problems on moving points, such as reporting the closest pair and the maximal 
points at a given query time instant t. 

1.1. Summary of results and contributions 

In this paper, we address problems of type (iii) above. Specifically, we consider sets of moving 
objects such as points, line segments, or axes-parallel hyperrectangles in Rd and are interested in 
questions such as: “Do two objects ever collide?” and “What is the smallest interpoint distance or 
smallest diameter ever attained?” Note that since our problems do not involve a query time instant, the 
answer is determined solely by the input, namely the initial positions of the objects, their velocities, 
and their trajectories. Throughout, we assume that the objects all start moving at t = 0, have constant, 
but possibly different velocities, and move along straight-line trajectories. (We say that two objects 
have the same (respectively different) velocities, if their velocity vectors have (respectively do not 
have) the same magnitude. Neither notion refers to the directions of the velocity vectors.) 

Of course, the problems that we consider can be solved easily in quadratic time, by brute-force. The 
challenge is to do significantly better, which makes the solutions interesting and nontrivial. Table 1 
summarizes our results. We note that throughout the paper, the dimension d is assumed to be a constant. 
The constant factors in all time bounds depend on d. Our work is focussed on optimizing the running 
time as a function of n. 

Collision detection problems arise very often in robotics. For an overview of these problems, we 
refer to the book by Fujimura [9] and the references listed there. Ottmann and Wood [ 191 gave efficient 
solutions for collision detection for points moving on the real line. They also raised the open question 
of deciding in o(n*) time whether there is any collision in a set of n moving points in R*, where the 
points move along straight lines at constant but possibly different velocities. A related open problem 
raised by Atallah [4] is to decide in o(mn) time whether there is a red-blue collision between a set of 
m red points and n blue points, all moving in the plane with different constant velocities. We answer 
both these questions affirmatively. We are not aware of any previous work on the closest/farthest pair 
questions that we address. 

Our strategy for solving these dynamic problems is to reduce the problem at hand to a different 
problem on a set of static objects. We then solve the latter problem using techniques such as sweeping, 
orthogonal range searching, halfspace range searching, simplex compositions, and parametric search. 

The rest of this paper is organized as follows. In Sections 2 and 3 we discuss the problem of detecting 
collisions and computing the minimum distance over time in point sets that are moving with the same 



P Gupta et al. / Computational Geometry 6 (1996) 371-391 373 

Table 1 
Summary of results for problems on n moving objects in I@, d 2 2. (As is customary, we 
assume throughout that a! is a constant.) Each object moves with constant velocity from 
t = 0 to t = 00. The velocities are either the same for all objects, or each object has 
a possibly different velocity. The trajectories of the objects may come from c different 
directions, two (or d) orthogonal directions, or may be arbitrary. All bounds are “big-oh” 
and worst-case. (The constant factors depend on the dimension d.) The problems that are 
indicated are collision detection, computing the closest distance, and minimum &-diameter 
over all times t > 0. The line segments have arbitrary directions, but each one moves along 
its supporting line 

objects dimension # directions velocities problem time 

points d C same 3? collision cn log n 

points 2 2 orthogonal same closest distance nlogn 

points 2 2 orthogonal different 3? collision n3/* (log n)4/3 

points 2 arbitrary different 3? collision n5/3(logn)6/5 

points 2 arbitrary different &diameter n log3 n 

boxes d d orthogonal same 3? collision n log2d-3 n 

boxes d d orthogonal different 3? collision n3/2+~ 

segments 2 arbitrary different 3? collision n5/3+E 

velocity or with different velocities, respectively. In Section 4, we consider the collision detection 
problem for moving boxes in Rd. In Section 5, we consider the problem of collision detection for 
moving line segments in the plane, where each segment moves along its supporting line. In Section 6, 
we consider the problem of computing the minimum L2-diameter over time. We conclude in Section 7 
with some remarks and open problems. 

2. Collision detection for points moving with the same velocity 

Let 5’ be a set of n points in lK@, where d 3 2 is a constant. At time t = 0, all points start moving. 
We want to decide if any two points of S ever collide, and if so, we want to compute the first time 
instant at which a collision occurs. In this section, we assume that all points move with the same 
constant velocity w > 0. In Section 2.1, we consider the case where the trajectories are in one of c 
different directions. In Section 2.2, we treat the special case where the points are planar and move in 
two orthogonal directions. In this case, we can even compute the closest distance among the points 
over all times t > 0 efficiently. 

2.1. Points moving in c different directions 

We consider the case where the trajectory of each point is oriented in one of c different directions. 
Note that each trajectory is a ray. 

We start with the planar case, i.e., d = 2. Consider one of the directions. Let C = (2, y) be a 
coordinate system whose y-axis is parallel to this direction and whose z-axis is orthogonal to it. 
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We call the points of S thzit move in the positive y-direction blue points. Consider one of the other 
directions, and let 4, -7r/2 < 4 < 7r/2, be the angle it makes with the positive z-axis. We call the 
points of S that move along this direction in such a way that their z-coordinates increase red points. 
We will solve our collision detection problem for these red and blue points. (Other combinations of 
directions can be handled similarly; there are O(1) such combinations.) 

For any blue point b, let (bz, b3/) be its position at time t = 0. Then, at time t, this point is at position 
(b,, b, + wt). Similarly, the position of any red point T at time t can be written as (T, + vt cos 4, ry + 
vt sin 4). 

Lemma 2.1. Let r and b be red and blue points, respectively, such that r, < b,. Let ‘~4 = (1 - 
sin 4)/ cos 4. Then, r and b collide iff cqb, + b, = qr, + rY. Moreovel; if there is a collision between 
these points, then it takes place at time t = (b, - r,)/(u cos q5). 

Proof. Assume that r and b collide. Then, there is a time t such that b, = rs + vt cos 4 and b, + vt = 
ry + wt sin 4. This implies that cqb, + b, = qr, + rV and t = (b, - rz)/(u cos 4). 

Conversely, assume that qb, + b, = cxdr, + rY. Then it is straightforward to verify that points r 
and b have the same coordinates at time t = (b, - r,)/(z, cos 4). Since r, < b, and cos +4 > 0, the 
value of t is nonnegative. Thus r and b collide. 0 

This lemma leads to the following algorithm. We sort the red and blue points according to their 
z-coordinates. Then we sweep from left to right. During this sweep, we maintain a balanced binary 
search tree T that stores all red points that have been visited already in its leaves. These points are 
sorted according to their (a$rz + ry)-values. Red points for which these values are equal are sorted 
according to their r,-value. 

If the sweep line visits a red point r, then we insert cL4r, + ry into T. If a blue point b is visited, 
then we search in T for the rightmost leaf storing the value qb, + b,. If this leaf does not exist, then 
b does not collide with any red point. Otherwise, if r is the red point that corresponds to the value that 
is stored in this leaf, then r and b collide. Moreover, this point r has maximum r,-coordinate among 
all red points that ever collide with b. Therefore, by Lemma 2.1, the first time at which b collides with 
any red point is tb = (b, - r,)/(zIcos~). 

Having visited all red and blue points, we know that the minimum tb-value computed is the first 
time at which there is a collision between a red and a blue point. If no &Value has been computed, 
no collision will ever take place. 

Theorem 2.1. Consider a set S of n points in the plane, where each point is moving with the same 
constant velocity along a ray that is oriented in one of c different directions. We can determine in 
O(cn log n) time and O(n) space if any two points of S ever collide, and if so, the first time a collision 
takes place. 

Proof. We repeat the given algorithm for all pairs of different directions. It is easy to detect a collision 
between points that move along the same line and in opposite directions. Correctness follows from 
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the discussion above. Let ni be the number of points that move along the ith direction. Then our 
algorithm takes time proportional to 

2 &i + nd 1% n = &C% + n) log n = 2cn log n. 
i=l j=l i=l 

Clearly, the algorithm uses only O(n) space. 0 

We now generalize the result of Theorem 2.1 to the d-dimensional case, where d > 2. Hence, the 
points of S move in I@ and the trajectory of each point is oriented in one of c different directions. 

Consider two different directions. These are determined by two vectors, say r’ and s’, that start in 
the origin. Let S’ be the set of all points of S that move in one of these directions. Let H be the 
two-dimensional plane that contains the vectors r’ and s’. We define a coordinate system, as follows: 
two orthogonal coordinate axes lie in H; the remaining d - 2 coordinate axes are pair-wise orthogonal 
and they are orthogonal to H. We give each point of S’ coordinates in this new coordinate system. 
Note that for each point of S’, its first two coordinates “move” in H, whereas the last d - 2 coordinates 
are fixed. Therefore, we partition the set S’ into subsets such that two points belong to the same subset 
iff their last d - 2 coordinates coincide. Then, in order to detect collisions in S’, it suffices to detect 
collisions in each subset separately. But, there is a collision within one subset A iff there is a collision 
within the projection A2 of A onto the first two axes. That is, it suffices to solve the collision detection 
problem for this subset AZ. This is a planar problem, where the trajectory of each point is oriented in 
one of two different directions. Hence, we can use the algorithm of Theorem 2.1 to solve the problem 
for AZ. 

Using a similar analysis as in the proof of Theorem 2.1, we get the following result. 

Theorem 2.2. Consider a set S of n points in R d, d >, 2, where each point is moving with the same 
constant velocity along a ray that is oriented in one of c difSerent directions. We can determine in 
O(cn logn) time and O(n) space if any two points of S ever collide, and if so, the$rst time a collision 
takes place. 

Remark 2.1. The result of Theorem 2.2 is optimal if c is a constant. To see this, recall the Set 

Disjointness Problem: “Decide if two sets R and B of real numbers are disjoint.” In the algebraic 
computation tree model, this problem has an J2(n log n) lower bound. (See [21].) Clearly, this problem 
is just a special case of the red-blue collision detection problem for points on the real line all moving 
in the same direction with the same velocity. 

Remark 2.2. If all the red points have the same constant velocity 21, and all the blue points have the 
same constant velocity Vb. then the same approach works. (In fact, it suffices to know just the ratio 
Vb/Vr .) This is because the collision condition in Lemma 2.1 becomes: given that T, < b,, points r 
and b collide iff 

b2(ub/u, - sin 4) + b, cos 4 = r, (Wb/V, - sin 4) + ry cos 4. 

So we store the right-handside in T for each red point r encountered and query with the left-handside 
whenever we see a blue point. 
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Remark 2.3. Our approach also works if each point p moves along a line segment, i.e., from t = 0 
to t = TP. This ‘is because the given algorithm finds for each point p the first time instant at which a 
collision involving p occurs. 

2.2. The closest pair over time for points moving in two orthogonal directions 

In this section, we consider the case where each point moves in the plane, in the direction of the 
positive x-axis or y-axis. The points that move in the positive x-direction are called red points, and 
the points that move in the positive y-direction are called blue points. All points move with the same 
constant velocity 2) > 0. 

In the previous section, we saw that in O(n logn) time, we can detect if a collision takes place 
between any pair of points. Here, we show that in the same amount of time, we can even compute 
the minimum separation over time, i.e., the smallest interpoint distance taken over all times t > 0. 

First we consider the red points. It is clear that the distances among these points do not change 
over time. Therefore, the minimum separation over time among the red points is determined by the 
closest pair of red points at t = 0. Similarly for the minimum separation among the blue points. 
However, as we will see below, we do not have to compute the closest red-red and closest blue-blue 
pair separately. 

It remains to consider the minimum red-blue separation. Consider any red point T and any blue 
point b. Their positions at time t are T(t) = (rz + wt, rY) and b(t) = (b,, b, + vt), respectively. The 
square of their Euclidean distance at time t is given by 

.&-b(t) = 2v2t2 + 2747, - b,) - (Q - b,))t + (TX - bzJ2 + (rY - b,)2, 

which is a polynomial in t of degree two. Let t& be the time at which &, is minimum, where 
-KI < tTb < co. We have 

t;b = @Y - 4 - (by - b,) 
2v 

Recall the points move from t = 0 to t = co. It is straightforward to verify that if t7fb > 0 then 

$$ &b(t) = ; ((% + q,) - (b, + b,))2. 
/ 

Otherwise, mint20 &b(t) = (TV - b,)2 + (rzl - b,)2, namely the distance between T and b at t = 0. 
This suggests the following solution. First we compute the minimum red-blue distance at time t = 0. 
Then we compute the minimum red-blue separation over time among all red-blue pairs r, b for which 
t;b > 0. 

Consider computing the minimum red-blue distance at t = 0. Since we will eventually take the 
smallest of the minimum red-red, blue-blue, and red-blue separations at t = 0, we may as well take 
all red and blue points together and compute their overall minimum distance at t = 0, using a standard 
closest pair algorithm [21]. 

The minimum red-blue separation among all red-blue pairs T, b for which tFb > 0 is computed as 
follows. For each red point T, we have to find among all blue points b such that b,-b, < T~-T, the one 
for which i((~,+~~)-(b~+b~)) 2 is minimum. Clearly, we can as well minimize 1 (T, +rzl) - (b, + by) I. 

We sort all points p according to their (py -p,)-values. Ties are broken such that blue points come 
first in the ordering. Then we sweep over the points in this ordering. During the sweep, we maintain 



t! Gupta et al. / Computational Geometry 6 (1996) 371-391 377 

all blue points that have been visited in the leaves of a balanced binary search tree T, in increasing 
order of their (b, + b9)-values. 

If the sweep line visits a blue point b, then we insert b, + b, into T. If a red point T is visited, then 
we search in T for the smallest (respectively largest) value bh + b& (respectively b: + b$ that is at 
least (respectively at most) T, + rY. If 1 (ra: + ry) - (b’, + b&) 1 < 1 (TV + rg) - (b’,’ + b’,‘) 1, then we know 
that 

Otherwise, this minimum is equal to $ ( (rZ + rY) - (bg + b;))2. 
Having visited all points, we compute the smaller of the minimum overall distance at t = 0 and 

the smallest computed value minb mint dm, taken over all points T. This gives the minimum 
separation over time among all points. 

Theorem 2.3. Consider a set S of n points in the plane, where each point is moving with the same 
constant velocity in the positive x-direction or the positive y-direction. In O(n log n) time using O(n) 
space we can compute the closest distance between any two points over all times t 3 0. 

Proof. The correctness of our algorithm follows from the discussion above. To prove the complexity 
bounds, note that we compute the minimum distance among all points at t = 0, sort all points by their 
(py - p,)-values, perform at most n insertions into the tree T, and perform at most n binary searches 
in T. All this can be done in O(nlogn) time using O(n) space. 0 

Remark 2.4. Our algorithm can easily be extended such that for each point p, the closest distance to 
any other point over all times t 3 0, is computed. That is, for each point p, we can compute a 
q* # p and a time ti 3 0 such that 

This also takes O(nlogn) time and O(n) space. (In [21], it is shown how to compute for each 
its nearest neighbor at time t = 0, in O(n log n) time and O(n) space.) 

3. Collision detection for points moving with different velocities 

point 

point 

Let S be a set of n points in the plane that are moving with constant velocities. In contrast to the 
previous section, the velocities may be different for each point. As before, we want to decide if any 
two points of S ever collide. 

3.1. Points moving in two orthogonal directions 

We assume that the points only move in the positive Z- or y-direction. The points that move in the 
positive x-direction are called red points. The other points-they move in the positive y-direction-are 
called blue points. 

It is easy to detect a collision among the red points (or among the blue points) in O(n log n) time: 
sort all red points on the same horizontal line and scan to see if a larger-velocity point precedes a 
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smaller-velocity point. Hence, it remains to consider red-blue collisions. Let r(t) = (rs + ~l,t, rY) be 
the position of the red point r at time t. Similarly, let b(t) = (b,, b, + vbt) be the position of the blue 
point b at time t. 

Lemma 3.1. Let r and b be red and blue points, respectively, such that r, < b,. Then, r and b collide 

iff 

TX + (l/ub)u,rY - (by/Vb)V, = b,. 

Proof. Similar to the proof of Lemma 2.1. 0 

Let us represent each red point r of 5’ by the point r’ = (rZ, wTry, -v,) in R3, and each blue point 
b of 5’ by the plane b” in IR3 with equation X + (1 /vb)Y + (by/q,)2 = b,. 

If r, < b,, then Lemma 3.1 implies that r and b collide iff point r’ lies on the plane b”. Note that 
this plane can be written as the intersection of two halfspaces in iR 3. To solve our collision detection 
problem, we use the following result. 

Theorem 3.1 (MatouSek [15]). Let V be a set of n points in Rd, let m be a parameter such that 
n < m < nd, let h be an integer such that 1 < h < d + 1, and let 6 > 0 be any real number. In 
0(n’+6 + m(log n)‘) time, we can preprocess the points of V into a data structure of size O(m) such 
that the points of V lying in the intersection of any h halfpaces can be counted in time 

0 ( (n/m’ld) ( log z) i-(dh;‘)‘d). 

We store the red points of S in the leaves of a balanced binary search tree, sorted by their r,-values. 
At each internal node w of this tree, we store a data structure D(w), storing the red points that are 
contained in the subtree of w. This structure supports the following query: given any blue point b, 
decide if a collision takes place between b and any red point stored in D(w). By the discussion above, 
we can represent these red points r by the points r’ in R3, and the query point b by the intersection 
of two halfspaces in R3. We take for D(w) the data structure of Theorem 3.1 with d = 3, h = 2 and 

312 
m = nW , where nW is the number of red points in the subtree of 20. 

Given this augmented binary tree, we can solve our red-blue collision detection problem, as follows. 
For each blue point b, we follow the path from the root of the tree to the red point with maximum 
r,-value, such that r, < b,. This path defines O(log n) so-called canonical nodes, having the property 
that the red points stored in their subtrees partition the set of all red points r such that r, < b,. For 
each of these nodes w, we query the data structure D(w) and count the number of red points that 
collide with b. 

There is a red-blue collision iff for at least one blue point one of these queries gives a positive 
count. 

Note that the data structure D(w) has size 0(nz2), building time O(ny2(logn)‘) and query time 
0( G(log n)4/3). Estimating the complexity of the entire data structure level by level, we get a 
decreasing geometric series. Hence, the entire data structure has size 0(n3j2), can be built in time 
O(n3j2(logn)‘) and has query time 0(fi(logn)4/3). Since we do at most n queries, this proves the 
following theorem. 
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Theorem 3.2. Consider a set S of n points in the plane, all moving with constant but possibly diflerent 
velocities along trajectories that are parallel to the x- or y-axis. In O(n3j2(log n)4/3) time and O(n3i2) 
space, we can determine if any two points of S ever collide. 

3.2. Points moving in arbitrary directions 

We now consider the case where the points move in arbitrary directions. Our approach is similar to 
that of the previous section. The position of any point p of S at time t 3 0 is given by 

p(t) = (Pz + v,zCP, + up&. 

Here, uPz and uPupy are the x- and y-components of p’s velocity vector up, respectively. 

Lemma 3.2. Let p and q be points of 5’. These points collide iff 
(1) (PZ - q&?y - upy) = (pU - qV)(u92 - ztpZ), and 
(2) P, - qx and uqx - vpx are both less than, greater than, or equal to zero, and 
(3) P, - qy and vqy - vpy are both less than, greater than, or equal to zero. 

Proof. Assume p and q collide and let t* be the time of collision. We consider two cases. First 
assume that p, # qx and p, # qy. Thus t* > 0. Then the first equation follows from the fact that p(t) 
;;d!t)ja;p equal at the time t” of collision. Also, t* > 0 implies that (px - qZ)/(~qx - upx) and 

Y Y %Y - vpy) are both positive, which in turn imply (2) and (3), respectively. Now consider 
the case where either p x = qx or p, = qy, but not both. (We assume that all points of S are distinct at 
t = 0.) Assume w.1.o.g. that p, = qx. Since p and q collide, we must have uPx = ‘uqx. This implies (1) 
and (2). The fact that the time t* of collision is positive implies (3). 

To prove the converse, assume that the three conditions hold. Since p and q are distinct at t = 0, we 
know that p, # qx or p, # qy or both. Assume w.1.o.g. that p, # qx. Let t* = (px - qx)/(uqx - wPx). 

Then (2) implies that t* > 0. If p, # qy, then (1) implies that p(t*) = q(t*), i.e., p and q collide. If 
p, = qy, then (3) implies that vqy = uPy. In this case also, we have p(t*) = q(t*). 0 

For any point p of S, we define the point p’ in JR5 by 

P’ = (Px, P,, VPZ, vpy, PxVpy -P&x)7 

and for any point q in S we define the hyperplane q” in R5 by 

q? -uqyx1 + uqxx2 + qyx3 - 4xX4 + x5 + (qxvqy - qyuqx) = 0. 

Then, condition (1) of Lemma 3.2 holds iff the point p’ is contained in the hyperplane q”. 

We store the points of S in a five-layer data structure that is defined as follows. First, we store the 
points in the leaves of a balanced binary search tree, sorted by their px-values. Each node u in this 
tree contains a pointer to a balanced binary search tree that stores the same points as in u’s subtree, 
but sorted by their wPx -values. Similarly, each node in this tree contains a pointer to a balanced binary 
search tree storing points sorted by their py-values. Each node in the latter tree contains a pointer to a 
balanced binary search tree storing points sorted by their Us -values. Let w be any node of the latter 
“fourth-layer-tree”, and let S, be the subset of S that is stored in w’s subtree. Then w stores the data 

513 structure D(w) of Theorem 3.1 with d = 5, h = 2 and mur = nL,, , where n, = IS,l, for the points 
(PI: P E SJJ. 
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Given this data structure, we can solve our collision detection problem, as follows. For each point 
q of S, we determine 0(log4 n) canonical nodes of the fourth layer, for each case resulting out of 
combining conditions (2) and (3) of Lemma 3.2. For each of these nodes w, we query the data structure 
D(w) and count the number of points not equal to q that collide with q. 

The data structure D(w) at the last layer has size S(n,) = O(m,), can be built in time P(n,) = 

o(nh+,s6 + m,(logn)‘) and has a query time of Q(n,) = 0((nlu/m~5)(logn)6/5). Therefore, again 
considering the complexity of the entire data structure level by level in each layer, we see that it has 
size O(S(n)), building time O(P(n)) and query time 0(&(n)). 0 ur complete algorithm has running 
time 

O(P(n) + nQ(n)) = 0(n5’3(logn)6’5). 

We have proved Theorem 3.3. 

Theorem 3.3. Consider a set S of n points in the plane, all moving with constant but possibly different 
velocities. In 0(n5i3 (log n)6/5) time and 0(n5j3) space, we can determine if any two points of S ever 
collide. 

Remark 3.1. The subquadratic bound provided by Theorem 3.3 solves an open problem raised by 
Ottmann and Wood [ 191. Theorem 3.3 also holds for determining a red-blue collision between a set 
of n red points and a set of n blue points that move at constant but possibly different velocities. In 
this case, we build the data structure for the red points and query it with the blue points. This solves 
an open problem mentioned by Atallah [4]. 

Remark 3.2. We leave open the problem of finding efficiently the closest distance taken over all times 
t 3 0 in a set of n points moving in the plane with constant but possibly different velocities. Viewing 
the trajectory of each point as a ray in zyt-space, we have to find the shortest segment parallel to the 
zy-plane that connects two rays. 

In [20], Pellegrini gives a randomized algorithm for finding the shortest vertical segment that 
connects two lines in a set of n lines in 3-space. This algorithm has expected running time 0(n8i5+&). 
It is not clear if his technique can be extended to solve our problem since (i) we are looking for a 
shortest segment parallel to the zy-plane and (ii) we want t 2 0. 

4. Collision detection for orthogonally moving boxes in d 2 2 dimensions 

Let B = Br U B2 U. . - U& be a collection of axes-parallel rectangles in Wd, called d-boxes for short. 
(Recall that d > 2 is a constant.) Each Bi contains ni elements that move in the positive xi-direction. 
The Bi’s are disjoint and cf=, ni = n. The problem is to decide if any two d-boxes of 23 ever collide. 

4. I. The equal-velocities case 

Assume that all boxes move with the same constant velocity 21. We consider collisions between boxes 
in B1 with boxes in B2. (Collisions between boxes in Bi with boxes in Bj, j # i, can be detected in 
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the same way.) The boxes of B1 and B2 are colored red and blue, respectively. The position of any 
red box r is given by 

r(t) = [rl + vt : r1 + vt + L,,] x fi[ri : ri + L,i]. 
i=2 

Here, (rl, . . , rd) is the position of the “lower-left”, i.e., lexicographically smallest corner of r at 
t = 0 and L,i is the length of r along the ith dimension. Similarly, the position of any blue box b is 
given by 

b(t) = [bl : bl + Lb,] x [bz + vt : b2 + wt + Lb21 x k[b, : bi + Lb& 
i=3 

where (bl, . . . , bd) is the position of the “lower-left” comer of b at t = 0 and Lbi is the length of b 
along the ith dimension. 

Lemma 4.1. The boxes r and b collide iff the static (d + 1)-boxes r’ and b’ intersect, where 

r’ = b-1 + r2 : rl + r2 + h-1 + Lr2] x [rk : co) x (-oc : r2 + Lr2] x fi[rj 
i=3 

and 
d 

b’ = [bl + b2 : bl + b2 + Lb1 + Lb21 x (-m : bl + Lb,] x [b2 : co) x n[bi bi + L&l. 

: 7-i + L,i] 

i=3 

Proof. It is clear that in order for r and b to collide the (d - 2)-boxes n,“=,[ri : r-i + L,J and 

J-&_,[bi : bi + L bz must intersect. Put another way, it suffices to prove the lemma for the case d = 2. ,] 
The 2-boxes r and b collide iff there is a t 3 0 such that the 2-boxes [rl + vt : rl + vt + L,l] x [r2 : 

r2 + Lr2] and [bl : bl + Lb,] x [b2 + vt : b2 -I- wt + L&2] intersect. 
Using the fact that the intervals [CY : p] and [r : b] intersect iff y 6 ,D and 6 3 CY, it follows that r 

and b collide iff there is a t > 0 such that bl < rl + vt + L,,, bl + Lb1 3 rl + wt, b2 + vt < r:! + Lr2 
and b2 + vt + Lb2 3 r2. This is true iff there is a t >, 0 such that bl - rl - L,l < wt < bl + Lb, - r1 
and r2 - b2 - Lb2 < vt < r2 + Lr2 - b2. This in turn is equivalent to r2 - b:! - Lb2 < bl + Lb1 - rl, 
bl + Lb* - rI 3 0, bl - r1 - L,l 6 r2 + Lr2 - b2 and r2 + LT2 - b2 3 0. 

Again using the fact that the intervals [CX : ,8] and (7 : S] intersect iff y 6 0 and 6 > CY, it follows 
that r and b collide iff the 3-boxes [rl + r:! : rl +r2 + L,I + Lr2] x [rl : oo) x (--00 : r2 + Lr2] and 
[bl + b2 : bl + b2 + Lb, + Lb21 x (-cm : bl + Lbl] x [b2 : co) intersect. 0 

We map the red d-boxes r to the (d + 1)-boxes r’ and the blue d-boxes b to the (d + l)-boxes b’. 
Then our problem of detecting collisions between moving boxes in B1 with boxes in B2 is equivalent 
to detecting intersections between the static red (d + I)-boxes and the blue (d + 1)-boxes. 

We first solve this problem for the planar case. So, let d = 2. Note that [rl : m) x (-m : r2 + L,z] 
and (-oo : bl + Lbl] x [b2 : cm) intersect iff the planar point (q, r2 + L,z) lies in the north-west 
quadrant of the point (bl + Lb,, b2). 
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This observation leads to the following solution. We sort the left and right endpoints of the first 
intervals of all boxes r’ and b’. Then we sweep over them in this order. During this sweep, we maintain 
a priority search tree T. 

If the sweep line visits a red left endpoint ~1 + rz, then we insert the point (~1, ~2 + Lr2) into T. 
If a red right endpoint rt + ~2 + L,t + Lr2 is visited, then the point (~1, r2 + Lr2) is deleted from T. 
If the sweep line visits a blue left endpoint bl + b2 or a blue right endpoint bl + b2 + Lb1 + Lb2, then 
we search in T for the red points that are in the north-west quadrant of the point (bl + Lb*, b2). Of 
course, the entire algorithm stops as soon as a collision is detected. 

However, in this way, we might miss intersections between boxes r’ and b’ such that the first interval 
of r’ is completely contained in the first interval of b’. Therefore, we repeat the above,sweep algorithm 
with the roles of r and b interchanged. 

It is clear that the entire algorithm correctly solves our problem and that its running time is bounded 
by O(nlogn) and the space used is O(n) since T has query and update time O(logn) and uses O(n) 
space. 

We now extend this solution to the d-dimensional case. For 3 < i < d, the intervals [ri : ri + L,i] 
and [bi : bi + Lbi] intersect iff bi < ri + L,i and bi + Lbi > ri. Therefore, we can obtain a solution for 
the d-dimensional problem by adding 2(d - 2) orthogonal range restrictions (see [22]) to the solution 
for the planar case. Specifically, instead of using a priority search tree T as the supporting structure 
for the sweep, we use a structure T’ which is obtained by adding the 2(d - 2) range restrictions to T. 
Since each range restriction adds a log n factor to the bounds of T, it follows that the overall algorithm 
for red-blue collision detection takes time O(n log2d-3 n) and space O(n log2d-4 n). 

Note that we also have to detect collisions among boxes in Bi. Since the distance between two 
boxes in Bi is the same for all time instants, it suffices to detect intersections at time t = 0. For d = 2, 
this problem can be solved in O(nlogn) time and O(n) space by a simple plane sweep algorithm. 
For d > 2, we add 2(d - 2) orthogonal range restrictions, as above. 

We summarize our result. 

Theorem 4.1. Let B be a collection of n boxes in lRd, where each box moves parallel to one of 
the coordinate axes. If all the boxes move with the same constant velocity, then we can decide in 
O(n 1og2d-3 n) time and 0(nlog2d-4 n) space whether any two boxes ever collide. 

4.2. The different-velocities case 

In this section, we consider the case where the boxes move with constant but possibly different 
velocities. Our solution uses the method of simplex composition, which was introduced by van Kre- 
veld [ 121. We first review this method briefly. 

4.2. I. Simplex composition 
Let S be a set of n geometric objects in Wd and let T be a data structure for some query problem 

on S. Suppose that we wish now to solve our query problem not w.r.t. S but w.r.t. a subset S’ of 
S that satisfies some condition. Moreover, suppose that S’ can be specified by putting S in l-l 
correspondence with a set P of n points in Rd and letting S’ correspond to the subset P’ of P 
that is contained in some query simplex. Van Kreveld gives an efficient data structure to solve the 
query problem on S’, based on combining cutting trees and partition trees. (See [13,14].) He calls 
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his technique a simplex composition on P to T. His result is as follows. (We only state the part of 
his result that is relevant to us. Also, the building time stated below is not given in [12] but can be 
derived easily.) 

Theorem 4.2 (van Kreveld [12]). Let P be a set of n points in I@, and let S be a set of n objects in 
IRd in correspondence with P. Let T be a data structure on S having building time p(n), size f(n) 
and query time g(n). Let E be a positive constant and let m be a parameter such that n < m 6 nd. 
The application of simplex composition on P to T results in a data structure having building time 

O(rWn + p(n))), size O(m’(m + f(n))) and query time O(n’(g(n) + n/m’ld)). 

4.2.2. Solving the collision detection problem 
We now return to the problem at hand. Again, as in Section 4.1, we consider collisions between 

boxes in Bt with boxes in I32. These boxes are colored red and blue, respectively. The position of 
any red box r is given by 

r(t) = [rt + v,t : r1 + v,t + L,l] x fr[ri : 7-i + &i], 
i=2 

and the position of any blue box b is given by 

b(t) = [bl : bl + Lb]] x [b2 + vbt : b2 + vbt + Lb21 X fr[hi : bi + .&I. 
i=3 

Lemma 4.2. The boxes r and b collide iff 
(1) v,r2 - v,(b2 + Lb2) - vb(h + Lbl) + vbrl < 0, and 

(2) v,(r2 + L2) - v,b2 - vbh + (rl + &l)Vb > 0, and 

(3) bl + Lb1 > rl, and 

(4) r2 + Lr2 3 b2, and 
(5) n&,[ri : ri + L,i] intersects fltZ3[bi : bi + Lbi]. 

Proof. As in Lemma 4.1, it suffices to prove the lemma for d = 2. The 2-boxes r and b collide 
iff there is a t 3 0 such that [rl + v,t : rr + v,t + l&.1] and [bl : bl + Lbl] intersect and [r2 : 
r2 + Lr2] and [b2 + Vbt : b2 i- Vbt + Lb21 intersect. This in turn is true iff there is a t > 0 such that 
(bl - r1 - L,I)/v, < t < (bt - rt + Lbl)/% and ( 7-2 - b2 - &Q)/vb 6 t < (r2 - b2 + &2)/vb. The 
latter two conditions are equivalent to the four conditions (r2 - b2 - &2)/q, < (bl + &,I - rI)/q., 
(bl - rl - LI)/ v, < (r2 + Lr2 - b2)/%, bl + Lb1 3 rI and r2 + Lr2 3 b2. •I 

The first two conditions of Lemma 4.2 are equivalent to saying that the point 

b’ = (-(b2 + Lb2), --vb(h + Lbl), vb) 

is in the lower halfspace 

r’: v,Xl + X2 + rlX3 + vuTr2 6 0, 

and the point 

b” = (-b2, --Vbbl,vb) 
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is in the upper halfspace 

r”: w,Xt + X2 + (rt + &-1)X3 + q-(7-2 + L-2) 3 0. 

Thus, these two conditions can be handled by doing two halfspace compositions in R3. Specifically, 
we apply Theorem 4.2 as follows. We take B2, compute b’ for each b E B2, and build the partition- 
treeecutting-tree structure underlying Theorem 4.2 on these points b’. At each node 21 of this structure 
we store a secondary structure D(w), which is the 3-dimensional halfspace range reporting structure 
given in [2]. D( 21 is built on a set of points b” such that b’ is in V’S subtree. D(V) can be trivially ) 
modified so that for any query halfspace, it returns “false” iff the halfspace contains some point of 
D(V). Denote this structure for B2 by T2. We take Bt and for each r E Bt we compute r’ and r”. We 
query the outer structure of T2 with r’ and identify a set of canonical nodes. At each canonical node 
w, we query D(V) with r”. We report a collision (modulo the remaining conditions (3), (4) and (5) 
of Lemma 4.2) iff the query on some D(V) returns “false”. To handle the remaining conditions of 
Lemma 4.2, we apply to T2 the 2d - 2 (orthogonal) range restrictions that these conditions specify. 

Let us now analyze the complexity of this solution. Consider the structure T2. Suppose that D(V) 
is built on s, points and let p(s,), f(s,) and g(sV) be the preprocessing time, space and query time 
of D(V), respectively. From [2], we have p(s,) = f(s,) = O(s, logs,) and g(sV) = O(logs,). 
Let m2 be a parameter, where n2 < m2 < ni and let E > 0 be an arbitrarily small constant. Let 
P(n;?), J’(Q) and G(n2) be the preprocessing time, space and query time of T2, respectively. From 
Theorem 4.2, we get P(n2) = F(n2) = O(m:+E + m$n2 log n2) = O(m~-tE). (This follows since 
m2 3 n2. Note that here, and subsequently, we absorb polylog factors in the E by picking a slightly 
larger E.) Also, G(n2) = O(nz logn2 + n:+E/mi’3) = 0(ni+“/mi’3). (This follows since the second 

113 term, i.e., ni+‘/m2 , has a minimum value of n;, when m2 = nz, and this is within a logarithmic 
factor of the first term.) The addition of the range restrictions to T2 contributes a logQ(d) n2 factor to 
each of P(n2), F(n2) and G(Q), so that the bounds for the range-restricted T2 are asymptotically the 
same as above. 

Let R(nl, n2) be the time to build the range-restricted T2 and to query it with each of the nt 

boxes of Bi. Then R(nr , n2) = P(n2) + n1 . G(n2) = O(mifE + nt . n:+E/m:‘3). Choosing m2 = 

(nl . n2 ’ +E) 1/(4/3+E) gives 

R(nl,n2) = ()( (nl . n:+E)(‘+e)‘(4’3+C)) = ()((nl . n2)3/4+E) = 0(n3/2+E). 

(For simplicity, we continue to use E here rather than introduce new constants E’, E”, etc.) It can be 
verified that the total space is also 0(n3/2+E). 

In this way, we detect collisions between boxes in Bi and boxes in Bj, j # i. Collisions between 
boxes in Bi can be detected with the same approach and within the same time and space bounds. 

Since we repeat the above for each pair Bi, Bj, the total running time is bounded by 0(d2n3i2SE). 
By a more careful analysis, similar to the one in the proof of Theorem 2.1, we can reduce the constant 
d2 to d. We summarize our result. 

Theorem 4.3. Let B be a collection of n boxes in Rd, where each box moves parallel to one of the 
coordinate axes with a constant but possibly different velocity. We can decide in 0(n312+&) time and 
space whether any two boxes ever collide. 
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5. Collision detection for moving segments in the plane 

Let 5’ be a set of n moving segments in the plane. We assume that each segment p E S moves 
along its supporting line HP with constant velocity up > 0. For simplicity, we assume that no segment 
is horizontal or vertical. Thus each segment has an associated upper endpoint and a lower endpoint at 
all times. 

We treat separately the case where two segments moving along the same line of support collide. 
This can be done easily in O(n log n) time. 

For segment p E S, let pi(t) (respectively p,(t)) be the lower (respectively upper) endpoint of p at 
time t. Let mP denote the slope of HP and L, the length of p. Let pz(0) = (c+, bP) and ~~(0) = (c+, c&). 
Then mP = (dP - bP)/(cP - up). Two (static) segments intersect if and only if each segment intersects 
the line supporting the other. The motion of a segment p E S can have one of four different orientations, 
namely NE, NW, SE and SW. Thus when we consider pairs of segments, there are sixteen different 
cases that arise. We only consider those pairs of segments such that each segment has positive slope 
and is moving along its supporting line in a direction such that the z-coordinates of the endpoints 
increase. (All other cases can be similarly treated.) 

For any segment p E S, we denote by HP+ (respectively H;) the halfplane above (respectively 
below) the line HP. The following lemma is straightforward. 

Lemma 5.1. A pair of line segments p and q, mP > 0, m, > 0 and mP < m4, intersect iff 3t 3 0 
such that qU(t) E Hz, ql(t) E H;, pU(t) E H; and pi(t) E Hz. 

For segment p E S, the line HP is given by the equation: y - bP = mP(z - up). We denote by 
I+,~ (respectively vPY) the components of the velocity vP in the z- and y-directions, respectively. Then 
?Jpx = VP . we have(% - %wP and VPY = VP s (dP - bP)/LP. Similarly, we define I&, vqz and vgY. 

3 3 0 such that qU(t) E H,’ 

@ (cq + v& dq + vqyt) E Hpf 

H d, + F(d, - b,)t - bP - m,c, - m %(c, - u,)t + mPuP > 0 

* d&P II%) - %(dP - b) 

pL 9 

+ F (($ - uJ(d, - b,) - (cq - uq)(dp - b))t - A, 2 0, 
4 

where AP = (bP(cp - up) - uP(dP - bP)). Similarly, 

3 3 0 such that ql(t) E HP 

H (uq + vq& bq + vqyt) E H; 

e b, + ?(d, - b,)t - bP - m,a, - mPz(cq - u,)t + mPuP < 0 

* b&J -lJ - %(dP - b) 

+ ?((cP - up)(dq - bq) - ( cq - uq)(dP - bp))t - AP < 0. 
4 

(1) 

(2) 
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Conditions (1) and (2) imply that 

(It > 0 such that qu(t) E Hz) and (3t 3 0 such that Al E Hi) 

H 3t 3 0 such that 2 (A, - d,(c, - up) + cq(dp - b,)) 

G [(% - uxJ(d4 - h?) - (% - uq)(dp - hJ]t 

< %(A, - b,(c, 
% 

- up) + uq(dp - b)). 

Similarly, we get 

(3) 

(3t 3 0 such that pU(t) E H;) and (3t 3 0 such that pl E Hz) 

w 3 3 0 such that 2( - A, + dp(cq - uq) - cP(d, - b,)) 

G [@P - UP)& - b,) - kq - %)(dp - bp)]t 
6 L, ( - A, + bp(cq - uq) - up(dq - b,)). 

VP 
(4) 

Assume that mq > mp. Then [(cr, - up)(dq - bq) - (cq - uq)(dP - br,)] > 0. Then Lemma 5.1 is 
satisfied iff (a) the intervals defined by inequalities (3) and (4) intersect in a non-empty interval I, and 
(b) 3t 3 0, such that ((I+ - uP)(dq - bq) - (cq - uq)(dp - bp))t lies in I. 

Condition (a) holds e 

(W~-‘P){ - A, + d&q - %) - c&r - b,)} G (Vu,){& - bqkp - up) + aq(dp - bp)} (5) 

and 

(-%/%&%J - dqkp - up) + cq@p - bp)} G @p/%){ - A, + bp(cq - uq) - up@, - bq)}, (6) 

which is equivalent to saying that the point 

P’, = 4, -cp> -pAplLp, ,qdcp - up)&, -F(d, - bp) 
P > 

in IF@ lies in the halfspace q/11 E I@ defined as 

$cq - u,)Xl + (d, - b,)?X 
Q 

2 + X3 + b,X4 + uqXs - 2Aq < 0, 
4 

and the point 

P; = 
( 

&, -up, -zlpAplLp, dcp - 4lLp, -F& - b> 
P > 

in II@ lies in the halfspace q$’ E R5 defined as 

$c, - a,)Xl + (dq - b,)?Xz +X3 + dqX4 + cqX5 - FAq 3 0. 
9 Q 

Condition (b) holds H 

(7) 

(8) 

(9) ?{A~ - b,(c, - up) + aq(dp - b,)} 2 0 
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and 

387 

(10) 

which is equivalent to saying that the point pi = (-Ap/(~ - ap), -(dp - bp)/(cp - ap)) in R2 lies 
in the halfplane 4; = Xi + a,X2 + b, 3 0, and the point p& = (bp, -+,) in R2 lies in the halfplane 
4: = (cq - U&XI + (d, - bq)X2 - A, 3 0. 

Now we apply Theorem 4.2 as in Section 4.2. 
To handle conditions (7) and (8), we apply two halfspace compositions in IR5. We build a partition- 

tree-cutting-tree structure D on points pi for p E S. At each node u of this structure, we store a 
secondary structure which is the 5-dimensional partition-tree-cutting-tree structure on points pi for p 
such that pi E S(U). At each node u of S(U), for each u of D, we store a 2-dimensional partition- 
tree-cutting-tree structure on points pi for p such that pi E S(V). For each node w at the third layer, 
we store a structure D’(w) for halfplanar range searching [6]. This completes the definition of D. We 
build a binary search tree T storing the points sorted by their mp values at the leaves. At each internal 
node ‘u of T, we store an instance of D built on points at the leaves of the subtree at 21. Thus the 
overall data structure consists of five layers. 

Given ‘a query segment q E S, we can detect if q intersects any segment p E S as follows. We 
search in T to find O(log n) canonical nodes resulting from the condition mr, < mq in Lemma 5.1. 
Then for layer i, 2 < i < 5, we query with q:_1. We repeat this for each q E S. A collision between 
two segments p and q with mp = mq can be detected easily in O(n log n) time since we must have 
HP = H4 in this case. 

The time and space bounds follow from repeated application of Theorem 4.2. For parameter m 

satisfying n < m < n5, the total time taken is 0(m1+E+n.n1+tE/m1/5). Choosing m = n(2+E)/(6/5+E), 
we get a total time of O(n 5/3+s). The total space is also 0(n5/3SE). 

Theorem 5.1. Given a set of n line segments in the plane, where the segments move along their lines 
of support with constant but possibly diflerent velocities, we can decide in O(~L~/~+&) time and space, 
whether any two segments ever collide. 

6. Computing the minimum &-diameter over all times t 3 0 

Let S be a set of n points in the plane that are moving at constant but possibly different velocities. 
The diameter of the points at time t is the largest Euclidean distance among all pairs of points at time 
t. In this section, we consider the problem of computing the minimum &-diameter of S over all times 
t 3 0. We will solve this problem using Megiddo’s parametric search technique. (See [ 1,16,18].) First 
we review this paradigm. 

6. I. Parametric search 

The parametric search technique is a powerful tool for solving efficiently a variety of optimization 
problems. Suppose we have a decision problem P(t) that receives as input n data items and a real 
parameter t. Assume that P is monotone, meaning that if P(t,) is true for some to. then P(t) is also 
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true for all t < to. Our aim is to find the maximum value of t for which P(t) is true. We denote this 
value by t*. 

Assume we have a sequential algorithm A, that, given the n data items and t, decides if P(t) is 
true or not. The control flow of this algorithm is governed by comparisons, each of which involves 
testing the sign of some low-degree polynomial in t. Let T, and C, denote the running time and the 
number of comparisons made by algorithm A,, respectively. Note that by running A, on input t, we 
can decide if t < t* or t > t*: we have t < t* iff ‘P(t) is true. 

The parametric search technique simulates A, generically on the unknown critical value t*. When- 
ever A, reaches a branching point that depends on a comparison operation, the comparison can be 
reduced to testing the sign of a suitable low-degree polynomial f(t) at t = t* . The algorithm computes 
the roots of this polynomial and checks each root a to see if it is less than or equal to t*. In this 
way, the algorithm identifies two successive roots between which t* must lie and thus determines the 
sign of f(t*). In this way we get an interval I in which t* can possibly lie. Also the comparison 
now being resolved, the generic execution can proceed. As we proceed through the execution, each 
comparison that we resolve results in constraining I further and we get a sequence of progressively 
smaller intervals each known to contain t*. The generic simulation (since it is able to correctly resolve 
each comparison at each branching point in its execution) will run to completion and we are left with 
an interval I that contains t*. It can be shown that for any real number T E I, P(r) is true. Therefore, 
t* must be the right endpoint of 1. 

Since A, makes at most C, comparisons during its execution, the entire simulation and, hence, the 
computation of t* take O(C,T,) time. To speed up this algorithm, Megiddo replaces A, by a parallel 
algorithm A, that uses P processors and runs in Tp parallel time. At each parallel step, let Ap make 
a maximum of W, independent comparisons. Then our algorithm simulates Ap sequentially, again at 
the unknown value t*. At each parallel step, we get at most W, low-degree polynomials in t. We 
compute the roots of all of them and do a binary search among them using repeated median finding 
to make the probes for t*. For each probe, we run the sequential algorithm A,. In this way, we get 
the correct sign of each polynomial in t’, and our algorithm can simulate the next parallel step of Ap. 

For the simulation of each parallel step, we spend O(W,) time for median finding. Hence, the entire 
simulation of this step takes time O(W, + T, log W,). As a result, the entire algorithm computes t* in 
time O(W,T, + TsTp log I$,). Since W, < P, the running time is bounded by O(PT, + TsTp log P). 

6.2. Applying parametric search 

Let t* be the time at which the Euclidean diameter of S is minimum. If t* is not unique, then we 
take the largest possible value. 

The position of any point p of S is given by p(t) = (pz + v&p, + up&). Let Z,,(t) denote the 
square of the Euclidean distance between the points p and 4. Note that Z,,(t) is a polynomial of 
degree two. Let t& be the time at which p and q are closest. Again, if t& is not unique, then we 
take the largest possible value. (Recall that we only consider time instants that are nonnegative. Also, 
if p and q have the same velocity vectors, then their distance is invariant over time, and we have 
t& = co.) Finally, let D(t) denote the diameter of S at time t. 

Lemma 6.1. Let t 2 0. Then t > t* iff t > t&for all points p, q E S such that Z,,(t) = D2(t), 
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Proof. Let t > t* and assume there are p, 4 E S such that Z,,(t) = D*(t), but t < t&. Since Z,, is 
non-increasing as t increases in the interval [0 : t&l, we have .Z’,,(t*) 3 Z,,(t). But Z,,(t) = D*(t), 

which is strictly larger than II’( because t > t* and because of how we have chosen t* as the 
largest time instant at which the diameter is minimum. Hence, Z,,(t*) > D*(t*), a contradiction. 

To prove the converse, assume that t > t& for all p, q E S such that Z,,(t) = D*(t) . By our choice 
of t& as the largest time instant at which Z,, is minimum, it follows that Z,,(t) is strictly increasing 
as t increases in the interval [t& : co). Now, for any t’ > t, we have 

II* 3 .z,,(t’) > 2,,(t) = P(t). 

Therefore t* < t. Let E be a positive real number. For E sufficiently small, there is a pair p, q such 
that Z&(t) = D*(t) and .Z,,(t - E) = D*(t - E). Note that since t > t&, we have t - E > t&. Thus 

Z,*(t - 4 < %7(t), i.e., D*(t - c) < D*(t). Therefore, t* < t. 0 

Remark 6.1. Lemma 6.1 also holds if there are points whose separation is invariant over time, since 
the proof does not assume the absence of such points. Alternatively, this can be seen from the following 
argument. Let p, q be two such points. Let [tl, t2] be a time interval such that for any t E [tl , t2] we 
have Z,, = D*(t). Since D(t*) is the minimum diameter, we have D(t) >, D(t*). Moreover, since 
Z,, is invariant over time, we have D*(t*) > Z,,(t*) = Z,,(t) = D*(t). It follows that D(t) = D(t*) 
and hence by the definition of t* we have t* 2 t2. 

Also, by definition of t&, we have t& = 00. Hence, if t E [tl , t2], then we have t < t&. Lemma 6.1 
says that then t < t*, which is true. 

The decision problem P(t) we need to solve is as follows. Given n points in the plane, all moving 
with constant but possibly different velocities and a real number t 3 0, decide if t > t& for all points 
p,q E S such that Z,,(t) = D*(t). 

Clearly, ‘P(t) is monotone (with “true” and “false” interchanged) and by Lemma 6.1 t* is the 
maximum t for which P(t) is false. Thus, in order to apply parametric search, we need an algorithm 
that finds all pairs p, q E S that achieve the diameter at time t, and checks for each such pair if t > t&, 
i.e., if t is to the right of the lowest point of the parabola segment Z,,. 

The sequential algorithm A, does the following. It first computes the position of the points at time t. 
Then it computes all pairs p, q E S such that Z,,(t) = D*(t). (See [21] .) Finally, for each such pair, 
it checks if t > t&. All this can be done in T, = O(n log n) time. (Note that there are only O(n) 
diametral pairs.) 

For the parallel algorithm A,, we use the parallel version of the above algorithm as given in Akl 
and Lyons [3]. This version uses P = n processors and runs in Tp = O(logn) parallel time on a 
CREW PRAM. 

We run the parametric search with these algorithms. Having found t*, we run A, once more with 
this value to get the diameter at time t*. Substituting the values for P, T, and TPr we conclude that 
the running time of the entire algorithm is bounded by O(n log3 n). 

Theorem 6.1. Consider a set S of n points in the plane, all moving with constant but possibly different 
velocities. In O(n log3 n) time, we can compute the minimum L2-diameter of S taken over all times 
t 3 0. 
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7. Concluding remarks and open problems 

We have given several techniques to solve collision detection and distance problems on moving 
objects. Our main strategy was to reduce the problem to a problem for other objects that do not move 
and then to solve the latter by known techniques. 

A number of interesting open problems remain. First, can some of our bounds be improved? E.g., can 
we compute the minimum &-diameter over time of n moving planar points in O(n log n) time? Can 
we extend our solution to three dimensions? Note that in our approach, we need a parallel algorithm 
for finding all diametral pairs at a given time t. Fortunately, in 3-space, there are only O(n) such pairs 
and, moreover, there is an efficient algorithm to compute them [5]. What is lacking is an efficient 
parallel algorithm. In dimensions higher than three, our approach will not be efficient because the 
number of diametral pairs is 0(n2). (See [21, pp. 182-1831.) 

Another open problem is to extend our solution of Section 2.2 for computing the minimum interpoint 
distance over time to the case where the points move with constant but possibly different velocities 
and directions. (See also Remark 3.2.) Finally, can we generalize our approach to detect collisions in 
a set of moving simplices? 
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