
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/223367296

An	optimal	algorithm	for	preemptive	on-line
scheduling

Article		in		Operations	Research	Letters	·	October	1995

DOI:	10.1016/0167-6377(95)00039-9

CITATIONS

55

READS

51

3	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Mechanism	Design	and	Analysis	View	project

Scheduling	Theory	and	Applications	View	project

Bo	Chen

The	University	of	Warwick

76	PUBLICATIONS			1,413	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Bo	Chen	on	06	October	2014.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/223367296_An_optimal_algorithm_for_preemptive_on-line_scheduling?enrichId=rgreq-ba8ea695cf555d881c9e586bf3b43a41-XXX&enrichSource=Y292ZXJQYWdlOzIyMzM2NzI5NjtBUzoxNDkyNjk3NzIyNDcwNDBAMTQxMjYwMDA5NTAzNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/223367296_An_optimal_algorithm_for_preemptive_on-line_scheduling?enrichId=rgreq-ba8ea695cf555d881c9e586bf3b43a41-XXX&enrichSource=Y292ZXJQYWdlOzIyMzM2NzI5NjtBUzoxNDkyNjk3NzIyNDcwNDBAMTQxMjYwMDA5NTAzNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Mechanism-Design-and-Analysis?enrichId=rgreq-ba8ea695cf555d881c9e586bf3b43a41-XXX&enrichSource=Y292ZXJQYWdlOzIyMzM2NzI5NjtBUzoxNDkyNjk3NzIyNDcwNDBAMTQxMjYwMDA5NTAzNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Scheduling-Theory-and-Applications?enrichId=rgreq-ba8ea695cf555d881c9e586bf3b43a41-XXX&enrichSource=Y292ZXJQYWdlOzIyMzM2NzI5NjtBUzoxNDkyNjk3NzIyNDcwNDBAMTQxMjYwMDA5NTAzNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ba8ea695cf555d881c9e586bf3b43a41-XXX&enrichSource=Y292ZXJQYWdlOzIyMzM2NzI5NjtBUzoxNDkyNjk3NzIyNDcwNDBAMTQxMjYwMDA5NTAzNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bo_Chen20?enrichId=rgreq-ba8ea695cf555d881c9e586bf3b43a41-XXX&enrichSource=Y292ZXJQYWdlOzIyMzM2NzI5NjtBUzoxNDkyNjk3NzIyNDcwNDBAMTQxMjYwMDA5NTAzNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bo_Chen20?enrichId=rgreq-ba8ea695cf555d881c9e586bf3b43a41-XXX&enrichSource=Y292ZXJQYWdlOzIyMzM2NzI5NjtBUzoxNDkyNjk3NzIyNDcwNDBAMTQxMjYwMDA5NTAzNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Warwick?enrichId=rgreq-ba8ea695cf555d881c9e586bf3b43a41-XXX&enrichSource=Y292ZXJQYWdlOzIyMzM2NzI5NjtBUzoxNDkyNjk3NzIyNDcwNDBAMTQxMjYwMDA5NTAzNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bo_Chen20?enrichId=rgreq-ba8ea695cf555d881c9e586bf3b43a41-XXX&enrichSource=Y292ZXJQYWdlOzIyMzM2NzI5NjtBUzoxNDkyNjk3NzIyNDcwNDBAMTQxMjYwMDA5NTAzNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bo_Chen20?enrichId=rgreq-ba8ea695cf555d881c9e586bf3b43a41-XXX&enrichSource=Y292ZXJQYWdlOzIyMzM2NzI5NjtBUzoxNDkyNjk3NzIyNDcwNDBAMTQxMjYwMDA5NTAzNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


An Optimal Algorithm for Preemptive On-line Scheduling ∗

Bo Chen †

André van Vliet ‡

Gerhard J. Woeginger §

June 22, 1995

Abstract. We investigate the problem of on-line scheduling jobs on m iden-
tical parallel machines where preemption is allowed. The goal is to minimize
the makespan. We derive an approximation algorithm with worst-case guarantee
mm/(mm−(m−1)m) for every m ≥ 2, which increasingly tends to e/(e−1) ≈ 1.58
as m → ∞. Moreover, we prove that for no m ≥ 2 there does exist any approxi-
mation algorithm with a better worst-case guarantee.

Keywords. scheduling ∗ preemption ∗ on-line algorithms ∗ worst-case bounds

1 Introduction

We study the problem of preemptively scheduling a list (J1, J2, . . .) of jobs on-line on m
identical parallel machines. Associated with each job Jj is its processing time (or length)
pj = p(Jj). At any time, each machine can handle at most one job and each job can be
processed by at most one machine. Preemption is permitted, which allows to split a job
and spread its processing over several machines. The jobs are not known a priori : job Jj
becomes known only when Jj−1 has already been scheduled. As soon as job Jj appears, it
must irrevocably be assigned to one or more time slots of one or more machines. The objective
is to find a schedule that minimizes the maximum completion time, or makespan.

The off-line version of this problem, where all the job information, such as the total
number of jobs, their arrival times and processing times, is fully known in advance, can be
easily solved to optimality in polynomial time (see McNaughton [2]). On the other hand, the
off-line version without preemption is known to be strongly NP-complete [1].

The quality of an (approximation) algorithm H, often called heuristic, is usually measured
by its worst-case (performance) ratio

RH(m) = sup{H(L)/Opt(L) : L is a list of jobs}, (1)

∗This article appears in Operations Research Letters 18 (1995), 127–131. The work was supported by the
Tinbergen Institute at Erasmus University Rotterdam and by the Christian Doppler Laboratorium für Diskrete
Optimierung.
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Preemptive On-Line Scheduling 2

where H(L) denotes the makespan of a schedule produced by heuristic H for scheduling the
list L of jobs on m machines, and Opt(L) denotes the corresponding makespan of some
(off-line) optimal schedule.

In this note we will develop an approximation algorithm with worst-case ratio mm/(mm−
(m − 1)m) for on-line preemptive scheduling on m machines. As m increases, this ratio
increasingly tends to e/(e− 1) ≈ 1.58, where e denotes the Eulerian constant. By deriving a
lower bound on the worst-case ratio of any on-line algorithm, we will prove that our algorithm
is best possible.

2 Preliminaries

For a set of jobs with processing times p1, . . . , pn, there are two straightforward lower bounds
for the makespan of any preemptive schedule on m machines. First, the makespan must be at
least max1≤j≤n{pj} since no job can be processed on two machines at the same time. Secondly,
the makespan must be at least (

∑n
j=1 pj)/m, the average machine load. McNaughton [2]

proved that there always exists a schedule with makespan equal to the maximum of these two
bounds.

Proposition 2.1 (McNaughton) For every set of n jobs with processing times p1, . . . , pn
and for m ≥ 1 machines, the length Opt of the optimal preemptive schedule equals
max{(

∑n
j=1 pj)/m,max1≤j≤n pj}. 2

We will use the following notation. For m ≥ 2, we introduce the numbers α(m) =
m/(m− 1) and

r(m) =
αm

αm − 1
=

mm

mm − (m− 1)m
.

To simplify the presentation, we will drop the dependence on m and always write α and r
instead of α(m) and r(m).

3 The Approximation Algorithm

Throughout this section, the machine loads at step t ≥ 0 (i.e., immediately after the t-th job
has been scheduled) will be denoted by {Lt

i}, where Lt
1 ≤ Lt

2 ≤ · · · ≤ Lt
m. The corresponding

machines are denoted by M t
1, . . . ,M

t
m. The current optimum makespan in step t (for the

job set {J1, . . . , Jt}) is denoted by Optt, and the sum
∑t

j=1 pj of the processing times of all
known jobs is denoted by St.

The basic principle of our algorithm is to keep the most lightly loaded machines still lightly
loaded in an anticipation of possible arrival of longer jobs. The algorithm will schedule jobs
in such a way that, at any step t ≥ 0,

(I1) Lt
m ≤ rOptt.

(I2) For any 1 ≤ k ≤ m,
k∑

i=1

Lt
i ≤

αk − 1

αm − 1
St.
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Let us formally describe how the algorithm schedules a new job Jt+1. First, compute
the new optimum makespan Optt+1 according to Proposition 2.1. If Lt

m + pt+1 ≤ rOptt+1,
then schedule job Jt+1 onto machine M t

m. Otherwise, let ` = min{1 ≤ i ≤ m : Lt
i + pt+1 ≥

rOptt+1}. Schedule rOptt+1 −Lt
` portion of Jt+1 onto machine M t

` , and the remaining part
of Jt+1, if any, onto machine M t

`−1.

The following two lemmas show that the above described algorithm is well defined, and
(I1) and (I2) are always fulfilled.

Lemma 3.1 If (I1) and (I2) are fulfilled at step t, then job Jt+1 can be successfully scheduled,
and (I1) is still fulfilled at step t+ 1.

Proof. If Lt
m+pt+1 ≤ rOptt+1 then we are done, since Lt+1

m = Lt
m+pt+1. Suppose Lt

m+pt+1 >
rOptt+1. Then ` is well defined. Suppose ` ≥ 2. Since

Lt
`−1 + (pt+1 − (rOptt+1 − Lt

`)) < Lt
`

according to the definition of `, we conclude that, if machine M t
`−1 receives any workload of

Jt+1, then it can finish the work by Lt
`, the time machine M t

` starts processing Jt+1. Therefore,
the constraint that any job can be processed by at most one machine at a time is honored.
On the other hand, we have

Lt+1
m = Lt

` + (rOptt+1 − Lt
`) = rOptt+1,

hence (I1) is fulfilled.
Finally, suppose ` = 1. We will show that Lt

1 + pt+1 ≤ rOptt+1. Hence we can conclude
that Lt

1 + pt+1 = rOptt+1, which simply implies what we want to prove.
Condition (I2) with k = 1 yields Lt

1 ≤ (α−1)St/(αm−1). Let St = λpt+1 for some λ ≥ 0.
It is easy to verify that

(α− 1)λ

αm − 1
+ 1 ≤ rmax

{
λ+ 1

m
, 1

}
,

which, together with the fact that

Optt+1 ≥ max

{
St + pt+1

m
, pt+1

}
= pt+1 max

{
λ+ 1

m
, 1

}
,

leads to

Lt
1 + pt+1 ≤ α− 1

αm − 1
St + pt+1 =

(
(α− 1)λ

αm − 1
+ 1

)
pt+1

≤
(

(α− 1)λ

αm − 1
+ 1

)(
max

{
λ+ 1

m
, 1

})−1
Optt+1 ≤ rOptt+1.

This completes our argument. 2

Lemma 3.2 If (I1) and (I2) are fulfilled at step t, then (I2) is still fulfilled at step t+ 1.

Proof. We proof that for each 1 ≤ k ≤ m the corresponding inequality in (I2) holds. Let

u = min{1 ≤ i ≤ m : machine M t
i receives workload of Jt+1}.
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We will distinguish two cases depending on the machine index u.
If k < u, all the loads in the left-hand side of the inequality in (I2) did not increase when

going from step t to step t+ 1, whereas the sum of processing times in the right-hand side of
(I2) did increase by pt+1. This settles the easy first case.

In the other case k ≥ u, we will prove that

m∑
i=k+1

Lt+1
i ≥ αm − αk

αm − 1
St+1. (2)

Since
∑m

i=1 L
t+1
i = St+1, inequality (2) is equivalent to the desired inequality in (I2). If k = m

then (2) is trivial. Suppose k < m. Observe that by the way the algorithm schedules job
Jt+1, we have Lt+1

m = rOptt+1 and Lt+1
i = Lt

i+1 for u < k + 1 ≤ i ≤ m− 1, which transform
the expression in the left-hand side of (2) into

m∑
i=k+2

Lt
i + rOptt+1 ≥ αm − αk+1

αm − 1
(St+1 − pt+1) + rOptt+1, (3)

where the inequality follows from (I2) at step t for k + 1 and from St = St+1 − pt+1. Let
pt+1 = µSt+1 for some 0 ≤ µ ≤ 1. Then, noticing that Optt+1 ≥ max{St+1/m, pt+1}, we
conclude that the right-hand side of (3) is at least

(αm − αk+1)(1− µ)

αm − 1
St+1 + rmax

{ 1

m
,µ
}
St+1. (4)

By direct calculation one finds that the right-hand side of (4) cannot be smaller than that of
(2). 2

In conclusion, we have established the following.

Theorem 3.3 The approximation algorithm we described has a worst-case ratio at most
r(m) = mm/(mm − (m− 1)m) < e/(e− 1).

Proof. The above two lemmas, together with the trivial fact that, at step 0, both (I1) and
(I2) are fulfilled, imply that (I1) and (I2) are fulfilled at any step of the algorithm. Then (I1)
immediately leads to the theorem. 2

4 A Matching Lower Bound

In this section, we prove that there cannot exist any on-line algorithm with worst-case ratio
smaller than r(m). From the problem statement we see that one has the freedom to reserve
idle time for coming new jobs. However, intuition suggests that this sort of idle time is not
necessary. The following observation supports this intuition.

Observation 4.1 If there exists an approximation algorithm H1 for on-line preemptive
scheduling with worst-case ratio r∗, then there exists another approximation algorithm H2

with a worst-case ratio at most r∗ that never introduces machine idle time between two jobs
on the same machine.
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Proof. Given any schedule S1 (with or without idle time). For any 0 ≤ i ≤ m, we denote
by Ii a maximal (with respect to containment) time interval during which exactly i machines
are busy. Let Ti = {Ii} and ti =

∑
{|Ii| : Ii ∈ Ti} for i = 0, . . . ,m, where |Ii| denotes the

length of interval Ii. Then we see that the makespan of S1 is at least
∑m

i=1 ti. Consider the
following schedule S2: During time interval [

∑m
j=m−i+2 tj ,

∑m
j=m−i+1 tj ] only machine Mi up

to machine Mm are busy, i = 1, . . . ,m. Clearly, this simple schedule does not have machine
idle time between any two jobs, and its makespan is

∑m
i=1 ti. Moreover, both schedules S1

and S2 have the same {ti}mi=0.
Now suppose both S1 and S2 are schedules of the same set of jobs, and one more job

is added to S1. Suppose the job is processed within time interval(s) of Ti for qi time units,
i = 0, . . . ,m− 1. Then in S2 we can simulate this assignment by letting machine Mm−i start
processing qi portion of the job at time

∑m
j=i+1 tj , i = 0, . . . ,m−1. It is easy to see that after

adding the job to S1 and S2 in the above way, the makespan of the new S2 is still less than
or equal to that of the new S1, and both new schedules have the same new {ti}mi=1.

It should be clear now that the required approximation algorithm H2 can be obtained by
making H2 simulate H1 for assigning every job in the way we just described. Both H1 and
H2 start with the same empty schedule. 2

Next, we introduce the following sequence of jobs, and consider any algorithm’s behavior
in assigning these jobs.

• At step 0, there arrive m jobs, all with processing times 1/m.

• At step t, t ≥ 1, there arrives a new job Jt with processing time pt = mt−1/(m− 1)t.

Observation 4.2 At step t, immediately after the arrival of job Jt, the overall sum of pro-
cessing times equals αt and the optimum makespan equals pt = αt/m.

Proof. This follows from Proposition 2.1. 2

Now suppose that there exists an approximation algorithm H with worst case ratio r(m)−ε
for some real ε > 0. By Observation 4.1 we may assume that H never introduces machine idle
time. Analogously to the preceding section, we denote by Lt

1 ≤ Lt
2 ≤ · · · ≤ Lt

m the machine
loads at the time immediately after algorithm H scheduled job Jt.

Claim 4.3 For any t ≥ 0, Lt
m ≤ (r − ε)αt/m must hold.

Proof. Since Lt
m ≤ (r − ε)Optt = (r − ε)αt/m. 2

Claim 4.4 For all 1 ≤ i ≤ m− 1 and all t ≥ 0, Lt+i
m−i ≤ Lt

m holds.

Proof. We use induction on i. For i = 1 we must prove that Lt+1
m−1 ≤ Lt

m holds. Suppose
the contrary. Then at step t+ 1, two machines have loads larger than Lt

m. Since H does not
introduce machine idle time, at the time point Lt

m, the job Jt+1 was processed on at least two
machines with largest and second largest load, which is a contradiction.

Now assume that we have proved the claim up to some fixed value i (1 ≤ i ≤ m− 2), i.e.,
Lt+i
m−i ≤ Lt

m. In case Lt+i+1
m−i−1 > Lt

m ≥ Lt+i
m−i would be true, we could argue as above that job

Jt+i+1 is processed on at least two machines at the same time. 2
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Theorem 4.5 For all m ≥ 2, there does not exist any on-line algorithm for preemptive
scheduling on m machines with worst-case ratio strictly smaller than r(m).

Proof. We are ready to derive a contradiction to the assumption that H has worst-case ratio
r − ε. Let us take a closer look at step (m− 1).

By Claim 4.4, we know that Lm−1
i ≤ Li−1

m for all 1 ≤ i ≤ m − 1, which, together with
Claim 4.3 and Observation 4.2, yields that (r − ε) times the current optimum makespan

(r − ε)αm−1/m ≥ Lm−1
m = αm−1 −

m−1∑
i=1

Lm−1
i

≥ αm−1 −
m−1∑
j=1

Lj−1
m ≥ αm−1 −

m−1∑
i=1

(r − ε)αi−1/m

Comparing the last expression in the right-hand side to the left-hand side and doing some
easy calculations, we see that ε ≤ 0 must hold. 2
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