Skip to main content

A new approach to resultant computations and other algorithms with exact division

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 855))

Abstract

Computations like Collins' subresultant algorithm or Bareiss' method for the exact evaluation of determinants with integral entries spend a substantial amount of their running time in performing exact divisions, integer by an integer, or polynomial by a polynomial with remainder known to be zero. Here the main achievements are faster algorithms for exact division, their application to determinant evaluation and subresultant algorithms, thereby considerably reducing also the number of divisions and the other operation costs, and better asymptotical performance by fast computations (including divisions) modulo numbers of the form 2N+1.

Supported by a grant from Deutsche Forschungsgemeinschaft (Az: Scho 415/2).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Bareiss, Sylvester's identity and multistep integer-preserving Gaussian elimination. Math. Comp. 22 (1968), 565–578.

    MATH  MathSciNet  Google Scholar 

  2. W. S. Brown, On Euclid's algorithm and the computation of polynomial greatest common divisors. J. ACM 18 (1971), 478–504.

    MATH  Google Scholar 

  3. W. S. Brown, The Subresultant PRS Algorithm. ACM TOMS 4 (1978), 237–249.

    MATH  Google Scholar 

  4. G. E. Collins, Subresultants and reduced polynomial remainder sequences. J. ACM 14 (1967), 128–142.

    Article  MATH  Google Scholar 

  5. G. E. Collins, The calculation of multivariate polynomial resultants. J. ACM 18 (1971), 515–532.

    Article  MATH  Google Scholar 

  6. T. Jebelean, An algorithm for exact division. J. Symbolic Computation 15 (1993), 169–180.

    MATH  MathSciNet  Google Scholar 

  7. J. Klose. Schnelle Polynomarithmetik zur exakten Lösung des Fermat-Weber-Problems. Dissertation Universiät Erlangen, 1993.

    Google Scholar 

  8. D. E. Knuth. The Art of Computer Programming, Vol. 2, Seminumerical Algorithms. Addison-Wesley, Reading, MA, 2nd ed, 1981.

    Google Scholar 

  9. R. Loos, Generalized polynomial remainder sequences. In Computer Algebra, Symbolic and Algebraic Computation, eds. B. Buchberger, G. E. Collins, R. Loos. Springer-Verlag, Wien, 2nd ed, 1982, 115–137.

    Google Scholar 

  10. A. Schönhage. Asymptotically fast algorithms for the numerical multiplication and division of polynomials with complex coefficients. In Computer Algebra EUROCAM '82 (Marseille 1982), ed. J. Calmet. Lect. Notes Comp. Sci. 144, 3–15.

    Google Scholar 

  11. A. Schönhage. Probabilistic computation of integer polynomial GCDs. J. of Algorithms 9 (1988), 365–371.

    MATH  Google Scholar 

  12. A. Schönhage, A. F. W. Grotefeld, E. Vetter. Fast Algorithms—A Multitape Turing Machine Implementation. BI-Wissenschaftsverlag, Mannheim, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan van Leeuwen

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schönhage, A., Vetter, E. (1994). A new approach to resultant computations and other algorithms with exact division. In: van Leeuwen, J. (eds) Algorithms — ESA '94. ESA 1994. Lecture Notes in Computer Science, vol 855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0049430

Download citation

  • DOI: https://doi.org/10.1007/BFb0049430

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58434-6

  • Online ISBN: 978-3-540-48794-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics