Skip to main content

Closure under complementation of logspace complexity classes - A survey -

  • Chapter
  • First Online:
Foundations of Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1337))

  • 293 Accesses

Abstract

In this article we chronologically survey the closure under complementation results for several logspace-bounded complexity classes, namely the early collapses of the logspace alternation and oracle hierarchies, and the closure under complementation for NL, LOGCFL, and SL. The presentation of the proofs follows a uniform approach based on exact counting.

Work was done while on vacation from Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, during the academic year 1996–97 with DFG-Habilitandenstipendium Je 154 3/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai, J. Komlos, and E. Szemeredi. An O(n log n) sorting network. In Proc.of 15th ACM STOC, pages 1–9. Association for Computing Machinery, 1983.

    Google Scholar 

  2. C. Alvarez and R. Greenlaw. A compendium of problems complete for symmetric logarithmic space. Technical Report ECCC-TR96-039, http://www.eccc.unitrier.de/eccc/, 1996.

    Google Scholar 

  3. C. àlvarez and B. Jenner. A very hard log-space counting class. Theoretical Computer Science, 107:3–30, 1993.

    Article  MathSciNet  Google Scholar 

  4. C. àlvarez and B. Jenner. A note on logspace optimization. J. of Computational Complexity, 5:155–166, 1995.

    Article  Google Scholar 

  5. Y. Ben-Asher, K.-J. Lange, D. Peleg, and A. Schuster. The complexity of reconfiguring network models. Information and Computation, 121(1):41–58, 1995.

    Article  MathSciNet  Google Scholar 

  6. A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa. Two applications of inductive counting for complementation problems. SIAM J. on Computing, 18(3):559–578, 1989. & Erratum: 18(6):1283, 1989.

    Article  MathSciNet  Google Scholar 

  7. S.R. Buss, S.A. Cook, P.W. Dymond, and L. Hay. The log space oracle hierarchy collapses. Technical Report CS103, Dept. of Computer Science and Engineering, Univ. of California, San Diego, CA, 1988.

    Google Scholar 

  8. J. Cai and D. Sivakumar. Resolution of Hartmanis' conjecture for NL-hard sparse sets. Technical Report TR 95-40, SUNY Buffalo, 1995.

    Google Scholar 

  9. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. of the ACM, 28(1):114–133, 1981.

    Article  MathSciNet  Google Scholar 

  10. S. A. Cook. Characterizations of pushdown machines in terms of time-bounded computers. J. of the ACM, 18:4–18, 1971.

    Article  MATH  Google Scholar 

  11. S. A. Cook. Towards a complexity theory of synchronous parallel computation. L'Enseignement Mathématique, XXVII(1–2):75–100, 1981.

    Google Scholar 

  12. S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control, 64(1):2–22, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic space. J. of Algorithms, 8:385–394, 1987.

    Article  MathSciNet  Google Scholar 

  14. P. W. Dymond and S. A. Cook. Hardware complexity and parallel computation. In Proc. of 10th FOCS, pages 360–372. IEEE, 1980.

    Google Scholar 

  15. L.M. Goldschlager. Synchronous parallel computation. JACM, 29:1073–1086, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Hartmanis and H.B. Hunt. The LBA problem and its importance in the theory of computing. In Complexity of Computation, pages 1–26. SIAM-AMS Proceedings, Vol. 7, 1974.

    MathSciNet  Google Scholar 

  17. N. Immerman. Languages that capture complexity classes. SIAM J. on Computing, 16(4):760–778, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  18. N. Immerman. Nondeterministic space is closed under complementation. SIAM J. on Computing, 17(5):935–938, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Jenner. Knapsack problems for NL. Inform. Proc. Letters, 54:169–174, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  20. B. Jenner. Between NC 1 and NC 2: Classification of Problems by Logspace Resources. Manuscript of habilitation thesis, 1997.

    Google Scholar 

  21. B. Jenner, B. Kirsig, and K.-J. Lange. The logarithmic alternation hierarchy collapses: A∑ 2 L =A∏ 2 L . Information and Computation, 80:269–288, 1989.

    Article  MathSciNet  Google Scholar 

  22. B. Jenner, K.-J. Lange, and P. McKenzie. Tree isomorphism and some other complete problems for deterministic logspace. Technical Report #1059, DIRO, Université de Montréal, 1997.

    Google Scholar 

  23. N. Jones. Space-bounded reducibility among combinatorial problems. J. of Computer and System Sciences, 11:68–85, 1975.

    MATH  Google Scholar 

  24. N. D. Jones, Y. E. Lien, and W. T. Laaser. New problems complete for nondeterministic log space. Mathematical Systems Theory, 10:1–17, 1976.

    Article  MathSciNet  Google Scholar 

  25. S.-Y. Kuroda. Classes of languages and linear-bounded automata. Information and Control, 7:207–223, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Ladner and N. Lynch. Relativization of questions about log space computability. Mathematical Systems Theory, 10:19–32, 1976.

    Article  MathSciNet  Google Scholar 

  27. H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded computation. Theoretical Computer Science, 19:161–187, 1982.

    Article  MathSciNet  Google Scholar 

  28. S. Lindell. A logspace algorithm for tree canonization. In Proc. of the 24th STOC, pages 400–404. ACM, 1992.

    Google Scholar 

  29. R. Niedermeier and P. Rossmanith. Unambiguous auxiliary pushdown autoata and semi-unbounded fan-in circuits. IC, 118(2):227–245, 1995.

    MathSciNet  Google Scholar 

  30. N. Nisan and A. Ta-Shma. Symmetric logspace is closed under complement. Chicago J. of Theoretical Computer Science, Volume 1995:Article 1, 1995.

    Google Scholar 

  31. A. Razborov. Lower bounds for deterministic and nondeterministic branching programs. In Proc. of the 8th FCT, LNCS 529, pages 47–60, 1991.

    MathSciNet  Google Scholar 

  32. J. H. Reif. Symmetric complementation. J. of the ACM, 31(2):401–421, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  33. W. Ruzzo. Tree-size bounded alternation. J. of Computer and System Sciences, 21:218–235, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  34. W. Ruzzo. On uniform circuit complexity. J. of Computer and System Sciences, 22:365–338, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  35. W. L. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and probabilistic computations. J. of Computer and System Sciences, 28:216–230, 1984.

    Article  MathSciNet  Google Scholar 

  36. U. Schöning. The power of counting. In Complexity Theory Retrospective, pages 205–223. Springer-Verlag, 1990.

    Google Scholar 

  37. U. Schöning and K. Wagner. Collapsing oracles, hierarchies, census functions, and logarithmically many queries. In Proc. of the 5th STACS, number 294 in LNCS, pages 91–97. Springer-Verlag, 1988.

    Google Scholar 

  38. I. Simon. On some subrecursive reducibilities. Ph.D. thesis, Stanford University, Computer Science Department, Technical Report STAN-CS-77-608, 1977.

    Google Scholar 

  39. S. Skyum and L. G. Valiant. A complexity theory based on boolean algebra. J. of the ACM, 32(2):484–502, 1985.

    Article  MathSciNet  Google Scholar 

  40. I. H. Sudborough. On tape-bounded complexity classes and multihead finite automata. J. of Computer and System Sciences, 10:62–76, 1975.

    MATH  MathSciNet  Google Scholar 

  41. I. H. Sudborough. On the tape complexity of deterministic context-free languages. J. of the ACM, 25:405–414, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  42. R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta Informatica, 26:279–284, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  43. S. Toda. σ2 NSPACE(n) is closed under complement. J. of Computer and System Sciences, 35:145–152, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  44. H. Venkateswaran. Properties that characterize LOGCFL. J. of Computer and System Sciences, 43:380–404, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  45. H. Venkateswaran. Circuit definitions of nondeterministic complexity classes. SIAM J. on Computing, 21:655–670, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  46. E. Wanke. Bounded tree-width and LOGCFL. J. of Algorithms, 16:470–491, 1994.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Freksa Matthias Jantzen Rüdiger Valk

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jenner, B. (1997). Closure under complementation of logspace complexity classes - A survey -. In: Freksa, C., Jantzen, M., Valk, R. (eds) Foundations of Computer Science. Lecture Notes in Computer Science, vol 1337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0052085

Download citation

  • DOI: https://doi.org/10.1007/BFb0052085

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63746-2

  • Online ISBN: 978-3-540-69640-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics