Skip to main content

Qualitative vs. Fuzzy representations of spatial distance

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1337))

Abstract

Fuzzy set theory is a well-established modeling tool with applications in many domains, one of them being spatial reasoning. Qualitative approaches to the representation of spatial knowledge, by contrast, have become increasingly popular only in the last five years. In this paper, we compare fuzzy and qualitative approaches to the representation of the distance between two entities in physical space. We show commonalities and differences in the way the world is modeled, uncertainty handled, and inferences drawn in each framework, as well as possible combinations of both approaches. Furthermore, we discuss their relation to linguistic and cognitive issues, and how well each of them models human perception and expression of distance information.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Altman, D. (1994). Fuzzy set theoretic approaches for handling imprecision in spatial analysis. International Journal of Geographical Information Systems, 8(3), 271–289.

    Google Scholar 

  • Bierwisch, M. (1988). On the grammar of local prepositions. In Bierwisch, Motsch, and Zimmermann, editors, Syntax, Semantik und Lexikon, Number 29 in Studia Grammatica, pages 1–65. Akademie-Verlag, Berlin.

    Google Scholar 

  • Briggs, R. (1973). Urban cognitive distance. In Downs and Stea (1973b), pages 361–388.

    Google Scholar 

  • Canter, D. and Tagg, S. K. (1975). Distance estimation in cities. Environment and Behavior, 7, 59–80.

    Google Scholar 

  • Clementini, E., Di Felice, P., and Hernández, D. (1997). Qualitative representation of positional information. To appear in Artificial Intelligence.

    Google Scholar 

  • Downs, R. M. and Stea, D. (1973a). Cognitive maps and spatial behavior: Process and products. In Downs and Stea (1973b), pages 8–26.

    Google Scholar 

  • Downs, R. M. and Stea, D., editors (1973b). Image and Environment: Cognitive Mapping and Spatial Behavior. Aldine, Chicago.

    Google Scholar 

  • Dubois, D. and Prade, H. (1994). Similarity-based approximate reasoning. In Zurada, J. M., editor, Computational Intelligence: Imitating Life, pages 69–80. IEEE Press, New York.

    Google Scholar 

  • Dutta, S. (1991). Approximate spatial reasoning: Integrating qualitative and quantitative constraints. International Journal of Approximate Reasoning, 5, 307–331.

    Article  MathSciNet  Google Scholar 

  • Frank, A. U. (1992). Qualitative spatial reasoning with cardinal directions. Journal of Visual Languages and Computing, 3, 343–371.

    Article  Google Scholar 

  • Frank, A. U. and Kuhn, W., editors (1995). Spatial Information Theory. A Theoretical Basis for GIS. International Conference, COSIT'95, Semmering, Austria, Volume 988 of Lecture Notes in Computer Science. Springer, Berlin.

    Google Scholar 

  • Freksa, C. (1994). Fuzzy systems in AI: An overview. In Kruse, R., Gebhardt, J., and Palm, R., editors, Fuzzy Systems in Computer Science, pages 155–169. Vieweg, Wiesbaden.

    Google Scholar 

  • Hernández, D., Clementini, E., and Di Felice, P. (1995). Qualitative distances. In Frank and Kuhn (1995), pages 45–57.

    Google Scholar 

  • Herskovits, A. (1986). Language and Spatial Cognition. An Interdisciplinary Study of the Prepositions in English. Cambridge University Press, Cambridge, MA.

    Google Scholar 

  • Jackendoff, R. and Landau, B. (1992). Spatial language and spatial cognition. In Jackendoff, R., editor, Languages of the mind: Essays on mental representation, chapter 6, pages 99–124. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Jong, J.-H. (1994). Qualitative Reasoning about Distances and Directions in Geographic Space. Ph.D. thesis, University of Maine.

    Google Scholar 

  • Jorge, J. A. and Vaida, D. (1996). A fuzzy relational path algebra for distances and directions. In Proceedings of the ECAI-96 Workshop on Representation and Processing of Spatial Expressions, Budapest, Hungary.

    Google Scholar 

  • Lee, T. R. (1970). Perceived distance as a function of direction in the city. Environment and Behavior, 2, 40–51.

    Google Scholar 

  • Mavrovouniotis, M. L. and Stephanopoulos, G. (1988). Formal order-of-magnitude reasoning in process engineering. Computer Chemical Engineering, 12, 867–880.

    Article  Google Scholar 

  • Montello, D. R. (1995). The perception and cognition of environmental distance: processes and knowledge sources. Unpublished Manuscript, Department of Geography, University of California, Santa Barbara.

    Google Scholar 

  • Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In Rosch, E. and Lloyd, B. B., editors, Cognition and Categorization. Lawrence Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Peuquet, D. (1992). An algorithm for calculating the minimum Euclidean distance between two geographic features. Computers & Geosciences, 18(8), 989–1001.

    Article  Google Scholar 

  • Pribbenow, S. (1991). Zur Verarbeitung von Lokalisierungsausdrücken in einem hybriden System. Ph.D. thesis, Universität Hamburg. Reprinted as IWBS Report 211, IBM Deutschland, 1992.

    Google Scholar 

  • Retz-Schmidt, G. (1988). Various views on spatial prepositions. AI Magazine, 9(2), 95–105.

    Google Scholar 

  • Sadalla, E. K. and Magel, S. G. (1980). The perception of traversed distance. Environment and Behaviour, 12, 65–79.

    Google Scholar 

  • Smith, T. R. and Park, K. K. (1992). Algebraic approach to spatial reasoning. International Journal of Geographical Information Systems, 6(3), 177–192.

    Google Scholar 

  • Stea, D. (1969). The measurement of mental maps: an experimental model for studying conceptual spaces. In Cox, K. R. and Golledge, R. G., editors, Behavioral Problems in Geography: A Symposium, pages 228–253. North-western University Press, Evanston, Ill.

    Google Scholar 

  • Talmy, L. (1983). How language structures space. In Pick, H. L. and Acredolo, L. P., editors, Spatial Orientation: Theory, Research and Application. Plenum Press, New York.

    Google Scholar 

  • Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental models. In Frank, A. U. and Campari, I., editors, Spatial Information Theory. A Theoretical Basis for GIS. European Conference, COSIT'93, Marciana Marina, Italy, Volume 716 of Lecture Notes in Computer Science, pages 14–24. Springer, Berlin.

    Google Scholar 

  • Wunderlich, D. and Herweg, M. (1989). Lokale und Direktionale. In von Stechow, A. and Wunderlich, D., editors, Handbuch der Semantik. Athenäum, Königstein.

    Google Scholar 

  • Zadeh, L. A. (1973). The concept of a linguistic variable and its application to approximate reasoning. Memorandum ERL-M 411, University of California at Berkeley.

    Google Scholar 

  • Zimmermann, H.-J. (1992). Fuzzy set theory and its applications. Kluwer, Dordrecht.

    Google Scholar 

  • Zimmermann, K. (1995). Measuring without measures: The delta-calculus. In Frank and Kuhn (1995), pages 59–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Freksa Matthias Jantzen Rüdiger Valk

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hernández, D. (1997). Qualitative vs. Fuzzy representations of spatial distance. In: Freksa, C., Jantzen, M., Valk, R. (eds) Foundations of Computer Science. Lecture Notes in Computer Science, vol 1337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0052107

Download citation

  • DOI: https://doi.org/10.1007/BFb0052107

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63746-2

  • Online ISBN: 978-3-540-69640-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics