Lecture Notes in Computer Science

1294

Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Advisory Board: W. Brauer D. Gries J. Stoer

Advances in Cryptology – CRYPTO '97

17th Annual International Cryptology Conference Santa Barbara, California, USA August 17-21, 1997 Proceedings

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Burton S. Kaliski Jr.
RSA Laboratories
20 Crosby Drive, Bedford, MA 01730-1402, USA
E-mail: burt@rsa.com

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Advances in cryptology: proceedings / CRYPTO '97, 17th Annual International Cryptology Conference, Santa Barbara, California, USA, August 17 - 21, 1997. Burton S. Kaliski (ed.). [IACR]. - Berlin; Heidelberg; New York; Barcelona; Budapest; Hong Kong; London; Milan; Paris; Santa Clara; Singapore; Tokyo: Springer, 1997

(Lecture notes in computer science; Vol. 1294) ISBN 3-540-63384-7

CR Subject Classification (1991): E.3, G.2.1, D.4.6, K.6.5,F.2.1-2, C.2, J.1, E.4

ISSN 0302-9743 ISBN 3-540-63384-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer -Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1997 Printed in Germany

Typesetting: Camera-ready by author SPIN 10546375 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

Preface

Crypto '97, the Seventeenth Annual Crypto conference organized by the International Association for Cryptologic Research (IACR) in cooperation with the IEEE Computer Society Technical Committee on Security and Privacy and the Computer Science Department of the University of California, Santa Barbara, represents another step forward in the steady progression of the science of cryptology. There is both a tremendous need for and a great amount of work on securing information with cryptologic technology. As one of the two annual meetings held by the IACR, the Crypto conference provides a focal point for presentation and discussion of research on all aspects of this science.

It is thus a privilege to coordinate the efforts of this community in focusing on its steps forward. Crypto '97 is a conference for its community, and to the researchers who have contributed to it — those whose papers appear in the proceedings, those whose submissions were not accepted, and those who have laid the foundation for the work — the community owes a debt of gratitude.

The process of developing a conference program is a challenging one, and this year's committee made the process both enjoyable and effective. My thanks go to Antoon Bosselaers, Gilles Brassard, Johannes Buchmann, Ivan Damgård, Donald Davies, Alfredo de Santis, Susan Langford, James L. Massey, Moni Naor, David Naccache, Tatsuaki Okamoto, Douglas Stinson, Michael J. Wiener, Rebecca Wright, and Yuliang Zheng for many hours of reviewing submissions and presenting their comments to the committee.

My thanks also to the committee's two advisory members, Neal Koblitz and Hugo Krawcyzk, the program chairs of Crypto '96 and '98. Neal's experience from a year ago and Hugo's perspective on the year ahead have helped to make this year's conference what it is, and should provide continuity to the next one.

Continuing a recent tradition, the review process for Crypto '97 was conducted entirely by e-mail and fax, without a program committee meeting. Each submission was assigned anonymously to three committee members (though many submissions were reviewed by more than three people), and decisions were made through several rounds of e-mail discussions. Of the 160 submissions received, the committee accepted 36, of which 35 appear in final form in these proceedings. Except for the papers themselves, nearly all correspondence with authors was also conducted by e-mail.

Gilles Brassard and Oded Goldreich complete this year's program with their invited lectures on quantum information processing and the theoretical foundations of cryptology. My appreciation to both of them, as well as to Stuart Haber, who chairs the conference's informal rump session (whose papers, due to logistics, cannot be included in these proceedings).

The program committee benefited from the expertise of many colleagues: Carlisle Adams, Carlo Blundo, Dan Boneh, Jørgen Brandt, Ran Canetti, Don Coppersmith, Erik De Win, Giovanni Di Crescenzo, Matthew Franklin, Atsushi Fujioka, Eiichiro Fujisaki, Rosario Gennaro, Helena Handschuh, Michael Jacobson Jr., Markus Jakobsson, Joe Kilian, Lars Knudsen, Tetsutaro Kobayashi, Françoise Levy-dit-Vehel, Keith Martin, Markus Maurer, Andreas Meyer, David M'raihi, Volker Mueller, Stefan Neis, Kobbi Nissim, Kazuo Ohta, Pascal Paillier, Sachar Paulus, Giuseppe Persiano, Erez Petrank, Benny Pinkas, Bart Preneel, Tal Rabin, Omer Reingold, Mike Reiter, Pankaj Rohatgi, Taiichi Saitoh, Berry Schoenmakers, Martin Strauss, Edlyn Teske, Shigenori Uchiyama, Paul Van Oorschot, Susanne Wetzel, and Hugh Williams. My thanks to each one, as well as to any others whom I have inadvertently omitted.

The successful organization of this year's conference is due to its general chair, Bruce Schneier. The functions of general chair and program chair are for the most part independent, but at those times where collaboration was required, Bruce was very helpful, and I appreciate the opportunity to have worked with him. On behalf of Bruce, I would also like to extend my thanks to Raphael Carter and Karen Cooper for their assistance in the organization of Crypto '97.

My work was also not without assistance, and I would like to thank Ari Juels and Gerri Sireen for their participation in administrative aspects of the program.

In the Proverbs, it is written, "It is the glory of God to conceal a thing; but the honour of kings is to search out a matter." The search for knowledge about cryptology — itself the science of secrets — is an essential part of protecting information in today's increasingly open world. Another step in this search is expressed in these proceedings. May the search of such matters, and the search for knowledge about cryptology, continue for many years to come.

Burt Kaliski

June 16, 1997 Bedford, Massachusetts

CRYPTO '97

August 17-21, 1997, Santa Barbara, California, USA

Sponsored by the

International Association for Cryptologic Research (IACR)

in cooperation with

IEEE Computer Society Technical Committee on Security and Privacy Computer Science Department, University of California, Santa Barbara

General Chair

Bruce Schneier, Counterpane Systems, USA

Program Chair

Burt Kaliski, RSA Laboratories, USA

Program Committee

A	TZ at at a TV to an table to the Deletions			
	Katholieke Universiteit Leuven, Belgium			
Gilles Brassard	Université de Montréal, Canada			
	Techniche Hochschule Darmstadt, Germany			
Ivan Damgård	Aarhus University, Denmark			
Donald DaviesRo	oyal Holloway College London, United Kingdom			
Alfredo de Santis				
Susan Langford	Atalla Corporation, USA			
James L. MasseySv	wiss Federal Institute of Technology, Switzerland			
Moni Naor	Weizmann Institute, Israel			
David Naccache	Gemplus, France			
Tatsuaki Okamoto	NTT Laboratories, Japan			
Douglas Stinson				
Michael J. Wiener	Entrust Technologies, Canada			
Rebecca Wright	AT&T Labs, USA			
Yuliang Zheng				
Advisory Members				
Neal Koblitz (Crypto '96 program chair)				
Hugo Krawczyk (Crypto '98 program chair) IBM T.J. Watson Research Center, USA				

......and Technion, Israel

Contents

Complexity Theory
The Complexity of Computing Hard Core Predicates
Statistical Zero Knowledge Protocols to Prove Modular Polynomial Relations16
Eiichiro Fujisaki and Tatsuaki Okamoto
Keeping the SZK-Verifier Honest Unconditionally31 Giovanni Di Crescenzo, Tatsuaki Okamoto, and Moti Yung
Invited Lecture
On the Foundations of Modern Cryptography46 Oded Goldreich
Cryptographic Primitives
Plug and Play Encryption
Deniable Encryption
Lattice-Based Cryptography
Eliminating Decryption Errors in the Ajtai-Dwork Cryptosystem 105 Oded Goldreich, Shafi Goldwasser, and Shai Halevi
Public-Key Cryptosystems from Lattice Reduction Problems
Digital Signatures
RSA-Based Undeniable Signatures
Security of Blind Digital Signatures
Digital Signcryption or How to Achieve Cost (Signature & Encryption) << Cost (Signature) + Cost (Encryption)16. Yuliang Zheng
How to Sign Digital Streams

Cryptanalysis of Public-Key Cryptosystems (I)	
Merkle-Hellman Revisited: A Cryptanalysis of the Qu-Vanstone Cryptosystem Based on Group Factorizations Phong Nguyen and Jacques Stern	.198
Failure of the McEliece Public-Key Cryptosystem Under Message-Resend and Related-Message Attack Thomas A. Berson	.213
A Multiplicative Attack Using LLL Algorithm on RSA Signatures with Redundancy Jean-François Misarsky	.221
Cryptanalysis of Public-Key Cryptosystems (П)	
On the Security of the KMOV Public Key Cryptosystem Daniel Bleichenbacher	.235
A Key Recovery Attack on Discrete Log-Based Schemes Using a Prime Order Subgroup Chae Hoon Lim and Pil Joong Lee	.249
The Prevalence of Kleptographic Attacks on Discrete-Log Based Cryptosystems	.264
"Pseudo-Random" Number Generation within Cryptographic Algorithms: The DSS Case	.277
Information Theory	
Unconditional Security Against Memory-Bounded Adversaries Christian Cachin and Ueli Maurer	.292
Privacy Amplification Secure Against Active Adversaries	.307
Visual Authentication and Identification	322
Invited Lecture	
Quantum Information Processing: The Good, the Bad and the Ugly Gilles Brassard	337

Elliptic Curve Implementation
Efficient Algorithms for Elliptic Curve Cryptosystems
An Improved Algorithm for Arithmetic on a Family of Elliptic Curves
Number-Theoretic Systems
Fast RSA-Type Cryptosystems Using n-adic Expansion
A One Way Function Based on Ideal Arithmetic in Number Fields385 Johannes Buchmann and Sachar Paulus
Distributed Cryptography
Efficient Anonymous Multicast and Reception
Efficient Group Signature Schemes for Large Groups
Efficient Generation of Shared RSA Keys
Proactive RSA
Hash Functions
Towards Realizing Random Oracles: Hash Functions that Hide All Partial Information
Collision-Resistant Hashing: Towards Making UOWHFs Practical470 Mihir Bellare and Phillip Rogaway
Fast and Secure Hashing Based on Codes
Cryptanalysis of Secret-Key Cryptosystems
Edit Distance Correlation Attack on the Alternating Step Generator 499 Jovan Dj. Golić and Renato Menicocci
Differential Fault Analysis of Secret Key Cryptosystems

Cryptanalysis of the Cellular Message Encryption Algorithm David Wagner, Bruce Schneier, and John Kelsey			thm526
Auth	or Index		539
Erra	tum		540