
Plug and Play Encryption

Donald Beaver *

IBM/Transarc

Abs t rac t . We present a novel protocol for secret key exchange that is
provably secure against attacks by an adversary that is free to attack
zero, one, or both parties in an adaptive fashion, at any time. This high
degree of robustness enables larger, multiparty interactions (including
multiparty secure computations) to substitute our protocol for secure
private channels in a simple, plug-and-play fashion, without simulta-
neously limiting security analysis to attacks by static adversaries, /.e.
adversaries whose corruption choices are fixed in advance.
No reliance on the assistance of third parties or on erasing partial compu-
tations is required. In addition to providing order-of-magnitude speedups
over alternative approaches, the simplicity of our protocols lends itself
to simple demonstrations of security. We present constructions that are
based on a novel and counterintuitive use of the Diffie-Hellman key ex-
change protocol; our methods extend to other standard cryptographic
assumptions as well.

1 I n t r o d u c t i o n

Historically, the pressing theme of cryptology has been to convey a private mes-
sage securely, as though an absolutely secure private channel were available. En-
cryption schemes of ever increasing robustness have been proposed, from private-
key methods that assume an initially-secure exchange, to public-key schemes that
enable key exchange over public lines without prior communication [DH76]. Al-
though not always explicit, one goal is common to all such efforts: to be able
to plug in a replacement for an absolutely secure channel without compromis-
ing security, i.e. while maintaining the level of security of the original (even if
imaginary) channel.

The construction of large systems is guided by several natural motivations
for pursuing a component-based approach. First, the design and construction
of large systems is simplified, as is the analysis of their properties. Second, the
ability to replace costly or idealized components reduces the overall costs of
implementing a system. Third, the system flexibly accommodates advances in
quality and technology - as well as newly uncovered disadvantages or flaws.
The goal of component-based design is thus not merely aesthetic: functionality,
utility, affordability, and flexibility tend to decrease as complexity increases.

*Transarc Corp., Pittsburgh, PA 15219; 412-338-4365; beaver@transarc.com,
h t tp ://www. t ransa rc , com/-beaver.

76

Security is no exception. Yet security analyses often make implicit assump-
tions about the context in which a component is used, at the risk of compromising
overall security.

In particular, when a cryptosystem is analyzed in isolation, e.g. as a system
involving just two parties and an eavesdropper, many constraints that apply to
its use in a larger system are easily overlooked, or misleadingly treated as moot.
Even if the result is not catastrophic failure, there is a price: the deceptively
simple verification of security in isolation provides no formal guarantee about
security after installation.

The goal of this work is to provide plug-and-play encryption systems that are
robust, sufficiently efficient and (most importantly) sufficiently analyzed to merit
simple installation in large-scale network interactions, whether tightly coupled
(as in multiparty computations) or loosely (as on internets). In either case, we
demand and achieve privacy in the face of adaptive attacks.

Adap t i ve At tacks . One subtle sticking point that has received relatively little
attention is the distinction between static and adaptive attacks. An adversary
mounting a static attack is required to choose which players it wants to corrupt
before the protocol begins (although its later behavior, viz substitution of mes-
sages, can be freely adapted). Adaptive attacks permit the adversary to choose
whom to corrupt (typically, up to some limit) at any time.

Clearly, security against adaptive attacks is the stronger, more realistic, and
more desirable achievement. But analysis of static attacks is simpler, and far
more common. There are indeed apparently good reasons to discard the more
complex (hence more risky) analysis needed to assure adaptive security. For
example, if a sender or receiver is attacked, then any messages are compromised
afortiori, so further analysis seems unnecessary. Worse, if a sender is attacked,
then what happens when the receiver is attacked later should be moot, since any
messages are likewise already compromised.

Unfortunately, this sort of reasoning takes place in a cryptographic vacuum:
there exists nothing apart from sender, receiver, and eavesdropper. It does not
extend to situations in which there are multiple parties employing multiple cryp-
tosystems along with diverse other protocols and interactions. In such a setting,
the behavior of the network is not made moot by the failure of two parties, hence
an overall analysis does depend on the behavior of a component protocol when
one or both of its participants are overrun.

Thus - subtly - the security of a system that has been verified only against
static attacks may remain in question if it is plugged into a large-scale interaction
in which attackers pick and choose victims at will.

While obvious when stated thus, this simple observation is easily overlooked
when the simpler component (cryptosystem, zero-knowledge proof, etc.) is ana-
lyzed outside the context of the larger system.

The natural questions, then, are whether the static analysis is sufficient any-
way (it is not), whether existing cryptosystems can hope to enjoy a demon-
stration of security in dynamic, adversarial environments (most cannot), and
whether there are alternatives that can indeed be shown robust (there are).

77

Obstacles to Adaptive Secur i ty . The primary technical difficulty in develop-
ing cryptosystems that can be proven secure against adaptive attacks is the fact
that most cryptosystems bind the sender and receiver to the cleartext message,
even though the cleartext itself may be hard to calculate from the ciphertext
alone.

An adversary (and anyone else) can simply observe E(m, r) over a public
line (where m is the cleartext and r represents random bits). Not only are the
sender and receiver unable to later pretend that another message m ~ was sent,
but the adversary can expect to discover a message m and list of random bits r
that is consistent with the string E(m, r), if it decides to corrupt the sender or
receiver later on.

This concern arises even in the simple application of key-exchange protocols.
Consider Diffie-Hellman key exchange (DH), in which Alice sends some ga mod p,
Bob responds with some gb mod p, and the two use K = gab = (ga)b -- (gb)a mod
p as their secret key [DH76].2

Unless computing discrete logarithms is feasible, an eavesdropper will likely
find it hard to compute gab. But it is impossible to supply a different a ~, b ~ and
ga'b' that are consistent with the public values ga and gb. Thus, it is impossible
to pretend later that a value other than gab was used as the key, if the value of
a or b is obtained (e.g. via corruption of one of the parties). Messages encrypted
with gab (or some derivative) are private but immutable.

S i m u l a t i o n . This property, although apparently just technical, is critical in
any approach that measures knowledge through Turing tests, i.e. through sim-
ulations [GMR89]. In the domain of computational security, zero-knowledge
approaches are a common standard for demonstrating interactive security
([GMR89, GMW86, B91, Ml~91, B95]). Typically, one must find a simulator
that presents a convincing but faked conversation without having access to the
private information that normally may play a role in generating the actual con-
versation. If the fake conversation is indistinguishable from a real one, then we
may infer that the real one leaks no "knowledge" about the sensitive private
information.

In the case of encryption, this reduces to being able to simulate a ciphertext
(or a key-exchange conversation) without having access to the messages and se-
cret bits held by the sender and receiver. The static case is simple to analyze: if
either party is corrupt, then the simulator is entitled to the secret message m,
and can easily form a valid encryption E(m, r) as necessary; if neither is corrupt,
then the simulator can typically offer up E(0, r) as the fake ciphertext. Because
the key and random bits will never be obtained by the static adversary, distin-
guishing between E(0, r) and E(1, r ') (for example) is tantamount to breaking
a cryptographic assumption [GM84].

It might be argued that this simulation-based approach is unnecessarily bur-
densome for cryptosystems. Yet it is often the case that a larger protocol employs
other convenient modules, such as zero-knowledge proofs or oblivious transfers

2 Here, p is a large prime, g a generator of Z~, and a and b are chosen at random
mod(p - 1) by the respective parties.

78

or bit committals, and as a result demands an overall simulator-based approach.
To facilitate plug-and-play usage of cryptosystems, then, a simulator for the
component cryptosystem is a minimum requirement.

E q u i v o c a t i o n . For encryption systems, the central technical problem lies in
message equivocation. Although a ciphertext may be infeasible to break, it is
also likely to be unequivocal: that is, it may be impossible to make it appear
as the encryption of two different messages. In some sense, this is intuitively
unavoidable, since a receiver must be able to decide on a cleartext interpretation.
But therein lies the central problem:

E q u i v o c a t i o n P a r a d o x . If a ciphertext can be decrypted to more than
one cleartext, then a receiver cannot be sure what message it received.
If a ciphertext cannot be decrypted to more than one cleartext, then a
simulator cannot demonstrate that it is secure.

Advances : P a s t a n d P r e s e n t . Beaver and Haber presented a direct and ef-
ficient cryptosystem that requires each party to erase certain internal records
[BH92]. Without access to these records, a later attacker will not find sufficient
information to determine that a simulated ciphertext is different from an actual
ciphertext. A similar construction has been reported to have been developed by
Feldman (see [CFGN96]).

Although it is good security practice to erase keys as soon as possible, it is
certainly preferable to avoid basing security on such demands. Canetti, Feige,
Goldreich, and Naor broke through this barrier with an ingenious method that
requires no erasing [CFGN96].

Neither of these methods is fully satisfactory: one requires erasing and careful
attention regarding automatic backups, while the other is complex and expensive
in both its design and its verification.

This paper capitalizes on important concepts from each and extends them
to broader and simpler techniques, achieving quasi-practical (as opposed to
carefully-managed or merely theoretic) performance.

Using an unusual twist on Diffie-Hellman key exchange, we present a novel
method for adaptively-secure key exchange:

T h e o r e m 1. There exists a non-erasing implementation of secret key exchange,
using expected O(1) invocations of D~jfie-Hellman key exchange per bzt, tha~ zs
secure against adaptive 2-adversaries, if the Dijfie-Hellman Assumption holds.

In comparison, the protocol of [BH92] is more efficient but requires erasing,
while the protocol of [CFGN96] achieved the same goal already but with O(k)
invocations per key bit of a similar underlying primitive, where k is a security
parameter.

We employ DH-based solutions for the purpose of exposition. These results
generalize naturally to factoring, discrete logarithm, and, if the cost of involving
network computations is permissible, to any one-way trapdoor permutation (as
in [CFGN96]).

79

These results also provide the most efficient open-channel replacements avail-
able for the private channels used in the information-theoretically secure mul-
tiparty computation protocols of Ben-Or, Goldwasser and Wigderson [BGW88]
and Chaum, Cr~peau, and Damgard [CCD88].

Notably, the proof of security against adaptive attacks is radically simpli-
fied, as well. This is particularly important in light of the apparent increase in
complexity (and hence risk) of extending formal analysis from static to adaptive
scenarios. That is, even though one might expect to encounter more complicated
analyses and therefore enjoy less confidence in the results, we demonstrate that
this is unnecessary.

F u r t h e r Remarks : C o m m i t m e n t and Deniabil i ty. We have avoided the
term "non-committing" [CFGN96] because of certain ambiguities. In particular,
all of the above results are "committing" in the sense that an honest sender
cannot later pretend that an alternate message was sent. That is, these cryp-
tosystems are non-committing for the simulator, and they are non-committing
in that they do not immediately serve as a bit commitment scheme as a typical
cryptosystem does. These caveats said, our cryptosystem shares the same such
properties as [CFGN96].

The protocol presented here is committing yet "equivocable" : real ciphertexts
are unequivocal ~nd bind an honest sender to the cleartext, but they can be made
to appear equivocal using specially-crafted facsimiles.

In separate work, the methodology presented here has been extended to be
non-committalin a different sense, viz an honest sender and receiver can convince
outside inspectors that an arbitrary alternative cleartext was sent [B96], enabling
them thus to deny that a particular cleartext was sent. The solution presented
in [B96] uses a more complicated and less efficient mechanism, and it obscures
the primary solution presented here. Moreover, this paper presents a full proof
of security.

2 F o r m a l i t i e s

At tacks: Sta t ic or Adapt ive . An adversary is a probabilistic poly-time TM
(PPTM) that issues two sorts of messages: "corrupt i," "send m from i to j." It
receives two sorts of responses: "view of i," "receive m from j to i."

A s ta t ic t - adversa ry is an adversary who issues up to t corrupt requests
before the protocol starts. An adap t ive t -adversa ry may issue up to t such
requests at any time.

Encryption. The specification protocol for secure channels is a two-party
protocol consisting of (A,/3), in which A inputs a bit m which is transferred
securely to/3. An eavesdropper knows only that a bit was sent, or that one or
the other party decided to abort.

To simplify analysis, we consider an implementation network that provides
authenticated, service-undeniable, point-to-point connections. Our protocols can
otherwise be extended, though such strengthenings are uninstructive, here. The
traffic over the lines is public, of course.

80

S i m u l a t i o n - b a s e d secur i ty . In the adaptive case, there is a single inter-
face/simulator, Z, who receives requests from and delivers responses to the at-
tacker, .4, creating an environment for ,4 as though ,4 were attacking a given
implementation. 2: is itself an attacker acting within the specification proto-
col, which is run with players i following the specification's programs on inputs
zi. When .4 corrupts player i, Z issues a corruption request and is given ~'s
information. 3 2: responds to ,4 with a facsimile of the "view of i" response that
A expects. 2: receives all of.A's "send m" requests and provides .4 with facsimiles
of "receive m" responses. Finally, A (or 2: on A's behalf) writes its output, y~t.

In the case of secure channels, let A, with auxiliary input x~t, attack a given
implementation in which Alice holds input m. The execution induces a distribu-
tion (A(m), B,.A(z~4)) on output triples, (YA, YB, YA).

Let 2:(.A(z~)) attack the specification (described above). The execution in-
duces a distribution (r 2:(.A(z~))) on output triples, (YA, Y[~, yz).

An extra, "security" parameter k may be considered. This provides a se-
quence of distributions on output triples in each scenario. Let ~ denote com-
putational indistinguishability, a notion whose formal definition is omitted for
reasons of space (cf. [GMR89]).

An e n c r y p t i o n s cheme secure aga in s t a d a p t i v e t - adve r sa r i e s is a (two-
party) protocol such that, for any adaptive t-adversary ,4, there is a PPTM
simulator 2: such that for any m, (A(m), B, A(z~t)) ~ (fl(m), 1~, 2:(.A(x.4))). 4

N o t a t i o n . Let $(S) denote the uniformly random distribution over finite set S.
For a prime p, let Z; = { 1 , 2 , . . . , p - 1} and Zp-1 = {0, 1 , 2 , . . . , p - 2 } .

A s s u m p t i o n s . Let p - 1 = 2 / , where p and p' are prime. Let 9 be a generator
of Z~, and define g = 9 2 mod p. Then g generates a subgroup (g) (of quadratic
residues mod p). Define the Di f f i e -He l lman d i s t r i b u t i o n Dp as the triple of
random variables (A, B, C) obtained through

a ~ $(Zp-1), b *-- $(Zp-1), A ~ ga mod p, B ~-- gb mod p, C ~-- gab mod p.

The Dec is ion Di f l l e -He l lman A s s u m p t i o n (DDHA) can be described as fol-
lows:

(DDHA) Let p be a prime and g a subgroup generator selected as
described above. Then Dp is computationally indistinguishable from
($(@), $((g)), $((g))).

Note that without the precaution of moving to a subgroup, typical Diffie-Hellman
triples can be distinguished from three random elements. The quadratic resid-
uosity of gab can be deduced from that of ga and gb, hence a random element
would be distinguishable from gab.

3 ~ is a player in the specification protocol and is unaware of messages being passed in
a given implementation. In particular, ~ knows only its input x~ and the messages it
sends and receives over channels supported in the specification.

4 A multiparty implementation is also possible; the formalities are similar.

81

3 Adaptively Secure Key Exchange

The novel idea (and surprising twist) behind our protocols is two-fold: although
Alice and Bob engage in a classical, statically-secure key exchange protocol, they
(1) sometimes garble their strings and (2) always reveal the secret key!

More specifically, Alice and Bob perform two parallel DH exchanges (indexed
0 and 1, say). They independently choose to garble computations and strings on
precisely one index. Bob responds not only with (possibly garbled) gb but with
the (possibly garbled) key in each exchange.

If they chose identical indices to garble, then the key will be recognizably
correct in the ungarbled instance. This provides them with a common secret bit:
the index of the ungarbled instance. Of course, if they chose opposite indices,
then they detect garbage on both instances and try again (sequentially or in
parallel).

An eavesdropper, Eve, learns only whether Alice and Bob made the same
guess in a given at tempt , but not what that guess was. It remains to determine
whether the details ensure three constraints: (1) Eve cannot tell the difference
between garbage and a valid exchange; (2) Alice and Bob can agree on which
index is garbled; and critically, (3) a simulator can construct conversations that
can later be made consistent with (valid,garble) or (garble,valid) as needed.

3.1 C r e a t i n g G a r b a g e

The "garbling" of the Diffie-Hellman protocol occurs in one of two ways. Instead
of choosing an exponent e and computing r = g e a player can choose r E (g)
directly without knowing its discrete logarithm. Naturally, that player will be
unable to calculate or verify the final DH key, gab, but this is unimportant to
Alice and Bob. (It is extremely important to the proof of security, however!)
Second, a player can garble gab by likewise choosing a uniformly random residue
whose discrete logarithm is unknown.

Fig. 1 describes the full protocol for a single a t tempt to transmit a one-bit
message, m. Alice and Bob each conclude either fail or succeed:re . Clearly,
they can trivially establish a one-time pad bit instead by using m = 0.

Note that we have no need of implicit zero-knowledge proofs of behavior or
knowledge, or even simple verification beyond parsability: a corrupt Alice or Bob
is fully permit ted to learn all available logarithms and to force the agreed-upon
bit to be anything they like.

If Alice's choice, c, matches Bob's choice, d, then the relevant variables de-
scribe a normal execution of Diffie-Hellman key exchange. In particular, the

b a Diffie-Hellman key would be x c = Yc = ze. Thus, Alice can simply check whether
ya = zr If they are equal, Alice knows c = d and uses c to mask m.

5 We are concerned only with sharing a single, equivocal random bit, thus revealing
the value zd is not an issue. Alternatively, the key can be hashed or used to encrypt
a known or redundant message in order to detect whether the chosen index "makes
sense" or whether it is garbled.

82

Send-Bit-Attempt(m)
0. Public: prime p, subgroup generator g 3.1. A:
1.1. A: c ~ $({0, 1}), a ~ $(Zp-1),

�9 c , - g" m o d p, X l - c ~ $((g))
1.2. A--B: zo,xl
2.1. B: d ~ $({0,1}), b *-- $(Zp-1), 3.2. A--B:

vd , - g~ moO p, w - d ~ $((g)) , 4.1. B:
za ~ xba mod p, z l -a *--- $((g))

2.2. B--A: yo, yl,zo,zl

if y~ = za, then s *--- 0
else s *-- 1
i f s = 0 , then f ~ - - m @ c
else f ~ 0
(s, f)
if s = 0 , then

m,- - f@d
conclude succeed:m

else conclude f a i l

Fig. 1. Three-pass attempt to transmit one bit, m.

If, however, their choices differ, then Bob has chosen both Yc and zc as r andom
residues, thus with high probability, y~ # z~. Alice therefore informs Bob of
failure.

I t may seem possible to utilize even the failed a t tempts , since Alice could nev-
ertheless calculate d = 1 - c and use d as a one-time pad bit. This unfortunately
disables equivocation by the simulator.

3 .2 T h r e e P a s s e s o r F o u r ?

To establish a 1-bit shared secret key (or exchange a 1-bit message) with high
probability, it suffices to use k parallel a t tempts . To establish a k-bit shared
secret key, 3k parallel a t t empts clearly suffice.

(Note that , unlike the case of parallel zero-knowledge, we do not face the
issue of mutual ly antagonistic parties a t tempt ing to withold information f rom
one another. Even if one of the parties is malicious, there are no challenges which
a simulator needs to overcome, despite lacking a secret proof (or message): here,
the simulator would have all knowledge, including any desired m, and it trivially
simulates an honest party.)

Sending a k-bit message requires a touch more thought, however. Clearly, a
fourth pass will suffice. The fourth pass could be avoided by using k invocations
of 1-message-bit exchange, resulting in O(k 2) at tempts . Instead, applying the
linear codes of Sipser and Spielman [SiSp94], a k-bit message can be t ransmi t ted
in 3 passes using only O(k) at tempts .

4 P r o o f o f S e c u r i t y

The motivation for our counterintuitive disposal of DH is to enable a s imulator
to produce a fake conversation that can be explained as representing either a 0
or a 1, without yet knowing which explanation will be required. Normally, this is
impossible, since a s tandard key exchange will uniquely define a secret. (Indeed,
even this protocol commits an honest Alice and Bob to the secret bit.)

83

Interface-No-Corruption
O. 2" ~ A: prime p, subgroup generator g (2.1 cont.)
1.1. Internal: ao .-" $ (Zp-1) , .1 - - $ (Z p - 1)

xo *-- gao mod p, zl *- g*x mod p
1.2.:T-* A: "A--.*B: z0,xi"
2.1. Internal: s ,-- $({0, 1})

b0 - $({0 ,1}) , b, - - $({0, 1})
y0 - - gbo m o d p , yl ~ gb, mod p
if s = 0 then

2:0 *-- gaobo rood p,
zl *'.- gaxba rood p

(~ont.)

else
e ~ - $({0, 11),

d - - l - c ,
b - - ha,

bd zd ,--- Ye rood p,
Zl--d - - $((g))

2.2.2" ~ A: "B"*A: yo, y l , zo , z l "
3.1. Internal:if s = 0 then f *-- $({0, 1}I

else f *-- 0
3.2. Z ~ A: "A- *B: (s, f)"

Fig. 2. Single-attempt interface/simulator, without corruption.

The simulator uses clean garbage, however. I t constructs a conversation con-
taining two valid DH exchanges, for which it knows all discrete logarithms. It
can later pretend tha t both parties chose index c by witholding the discrete
logs for exchange 1 - c. Even though the resulting conversation is information-
theoretically distinct from a real conversation distribution, a poly-bounded judge
cannot detect the difference without breaking DDHA.

Our solution expands the intuition implicit in [CFGN96], in which the re-
ceiver is helped to avoid learning full information. Here, we arrange for both

sender and receiver to avoid learning full information.

To prove security against adaptive adversaries, we present an interface that ,
when at tacking an interaction between Alice and Bob over an absolutely secure
channel, provides an adversary .4 with a fake view that is computat ional ly in-
distinguishable from a real one. In the past, the great difficulty lay in patching
a par t ia l ly-commit ted view to accommodate mi = 0 or mi = 1 flexibly, particu-
larly when one or both parties may be corrupted much later on.

For the moment , let us focus on a single execution of S e n d - B i t - A t t e m p t . We
first describe the action of the interface 77 when A makes no corruption requests.
Unlike Alice and Bob, Z "cheats" by discovering both keys. Instead of sett ing
Z l -c and Yl -d to random values with unknown discrete logs, as an honest Alice
or Bob would do, 77 knowingly selects their logarithms at random. In doing so, 77
retains the ability to "open" z0 or Zl consistently with c = 0 or c = 1. Moreover,

log, yl-~ See Fig. 2 for details. 77 does not garble z l - e , but improperly uses z l _ a .

The key is tha t the logarithms o f the critical values are never explicit ly rep-
resented anywhere in the n e t w o r k - not even as a shared secret. Thus even an
adversary who gains both Alice's and Bob's complete, unerased internal histories
cannot calculate the discrete logs or even distinguish the critical residues f rom
random values. (Naturally, a computa t ional ly -unbounded adversary will be able
to distinguish Z 's fake view from a real-life view.)

84

In sum, Z generates three fake messages:

(X0, Xl), (Y0, Yl, Z0, Zl), (8, f)
logg x~

where, if s = 0, then zi ~- Yi
Let us call z l -d , Yl-d, and Zl-d "critical variables." In an execution of the

Send-Hessage protocol in which Alice's message is generated honestly, the crit-
ical variables are uniformly random and independent of all other variables. The
significant and sole difference between an actual transcript and Z's generated ver-
sion is that in Z's version, when s = 1, the critical variables are not independent -

logg y l - a
although they are individually uniformly random. Specifically, zl-~ - z l_ d
- which is a relationship that does not hold when honest Alice generates the
three values. This relationship is, however, infeasible to detect.

4.1 Corruption Requests

We now turn to how the interface handles corruption requests. There are four
cases, depending on when .A makes its first corruption request.

Case O: A makes its first corruption request before any messages are sent.
Case 1: .A makes its first corruption request after Alice sends her message, but
before Bob sends his message.
Case 2:,4 makes its first corruption request after Alice and Bob have each sent
one message.
Case 3: ,4 makes its first corruption request after Alice and Bob have sent all
their messages.

When the first corruption request is made, 2; will "patch" the views of both
players, hand over the view of the corrupted player to .A, and then assume the
role of the uncorrupted player based on the patched view. Note that the message
bit m plays no role until Alice's second message to Bob.

P a t c h i n g fake views. We turn first to how 2; patches the fake views. For clar-
ity, the handling of auxiliary inputs (such as histories from previous protocols)
is left implicit.

We further subdivide the cases into 0A, 0B, 1A, 1B, 2A, 2B, 3A and 3B,
according to whether ./! selects Alice or Bob to corrupt first.
Case O.A: :2 obtains _~'s input m from corrupting A in the specification protocol
and reports it to .A.
Case O.B: Nothing to patch.

Case 1.A: I obtains .4's input m from the specification protocol. Z performs
c +-- $({0,1}); a *--- ad. Z patches A's view with m, c, a, (x0, Xl) and reports it
to ,4. I patches B's view with (x0, xl).
Case 1.B: I patches B's view with (z0, xl).

Case 2.A: I obtains A's input m from the specification protocol. Z performs
c *-- $({0,1}); a +--- ad; d *-- $({0,1}); b ~-- bd. 7. patches A's view with

85

m , c, a, (zO, Xl) , (yo ,Y l , zo, z l) , and reports it to ,4. 27 patches B's view with
(z0, xl), d, be, (Y0, Yl, z0, zl).
Case 2 .B: 27 performs c *-- $({0,1}); a ~-- ad; d ~-- $({0,1}); b ~ bd. 27

patches A's view with c, a, (x0, xl),(y0,Yl,Z0, Zl). 27 patches B's view with
(z0, xl), d, be, (Y0, Yl, z0, Zl) and reports it to ,4.

Case 3 .A : Z obtains A's input m from the specification protocol. At this point, 27
has irrevocably decided whether this at tempt will succeed (s = 0) or fail (s = 1).

If s = 0, perform the following: c *-- m ~ f ; a *-- ac; d ~-- c; b *-- bd.

If s = 1, 27 has already chosen values for c, ac, d, and bd.

27 patches A's view with e, a, (x0, zl) , (Y0, Yl, z0, Zl), (s, f) , and reports it to
,4.27 patches B's view with (z0, xl), d, be, (Y0, Yl, z0, zl), (s, f) .
Case 3 .B: 27 obtains message bit m from the secure channel (after honest A sends
it to now-corrupt /)). As in case 3.A., 77 has irrevocably decided whether this
at tempt will succeed (s = 0) or fail (s = 1).

If s = 0, perform the following: c ~-- m @ f ; a ~-- a~; d *-- c; b ~-- bd.

If s = 1, 77 has already chosen values for c, ac, d, and bd.

27 patches A's view with c, a, (z0, zl) , (Y0, Yl, z0, zl), (s, f) . 27 patches B's
view with (x0, Xl), d, be, (Y0, Yl, z0, zl), (s, f) , and reports it to ,4.

A s s u m i n g t h e ro le o f t h e r e m a i n i n g , h o n e s t p layer . Generally speaking,
2; merely runs an internal copy of Alice or Bob, having set Alice's or Bob's state
according to the given view. Should ,4 then corrupt the remaining honest player,
2: simply hands over the current view. If the remaining honest player is Bob, this
procedure is straightforward, since Bob has no special input.

If the honest player is Alice, however, 27 plays Alice's role without knowing
m, at least until step 3 of Send-Bi t -At tempt . Since Alice's computations do
not depend on m until then, this presents no problem. Once 27 has received ,4's
message to honest Alice on behalf of corrupt Bob, Z waits for corrupt /) to
receive m along the secure channel. It then resumes its internal simulation of
honest Alice.

D e c i d i n g w h a t to send . If Alice is corrupted before she sends her second
message, or equivalently, before A has sent the message m, then Z must decide
what to send on the secure channel on behalf of the now-corrupt A. In this case,
27 did not yet commit a fake second message to `4; that is, 27 obtains Alice's
message (s, f) from ,4.2: then continues to run the honest, internal copy of Bob,
deriving Bob's effective result, either f a i l or succeed:m. In the former case, 27
does not send a bit (or append a bit to a longer secure message, in the context
of a k-bit protocol). In the latter case, 27 sends the bit (resp., appends the bit m
to the secure message from corrupt A).

Syntactic er ro r s . The response of an honest player to a syntactic error (mes-
sages that cannot be parsed, etc.) is to abort the protocol (rasp., place the ideal
secure channel in a publicly aborted state). The necessary refinements to the
preceding discussion are obvious, tedious, and omitted.

86

4 .2 R e d u c t i o n t o D D H A

By inspection, the distribution that Z hands to .4 is identical to that obtained
in an actual execution, except for the lack of independence among the critical
variables, when transmission is successful. It remains to show that this lack
of independence is unnoticeable to ,4. In particular, if it were detectable (to
polynomial-bounded observers), then DDHA would fail.

Note that when Alice or Bob is corrupted before Alice sends her second mes-
sage, the critical variables raise no concerns: they are either properly independent
(because they follow honest Alice's program) or generated by an ,4-controlled
Alice. In particular, the results obtained when Alice or Bob is corrupt by the
t ime Alice sends her second message are identical whether obtained through the
protocol or through Z. The interesting case occurs when neither Alice nor Bob
is corrupt at the time Alice sends her message - that is to say, at the t ime Z
supplies Alice's second message to `4.

Suppose that the implementation were insecure, namely that there were a
poly-time machine D that distinguishes (A, B, `4) from (/l, t}, 2:(,4)) with success
probability 1/2 + k -c, for some fixed m G {0, 1), c > 0 and infinitely many k.
Call any such k "vulnerable."

We describe an algorithm, Break, that violates the DDHA. The input to
Break consists of three values (in addition to g and p):

g~, g/~, 7"

Let distribution ~0 generate these as follows: a *-- $(Zp-1); /3 ~-- $(Zp-1);
7 *-- g~/~. In contrast, distribution $1 applies the following: a ~ $(Zp-1);
/~ +-- $(Zp-1); 7 +-- $((g)). Our goal is to distinguish ~0 from ~z, thereby vi-
olating the DDHA.

Observe particularly that in our earlier construction, I needs to know all
four values a0, hi, b0, and hi, because it does not know what m will be, but it
may have to equivocate later on. The converse is also true: knowing the result
f a i l or succeed:m, one does not need to know all four logarithms in order to
duplicate the behavior of Z. The Break routine takes advantage of this fact.

Intuitively, Z must stick with the s and f it selected without knowing m, and
(when s = 0) it later adapts d to its discovery of m, so that d = m ~ f . On the
other hand, Break can select d and s, and when s = 0, knowing m already, it
calculates f = m ~ d instead of choosing f independently at random.

In more detail, Break runs an internal execution of the specification protocol,
permitt ing a built-in interface Zb,k to interact with `4. Break supplies its input
(sampled from 60 or ~1) to Ibrk. Break knows m and can therefore operate
internal copies of _~ and /~ as well. Depending on the distribution given to
Break, the final distribution is identical to either (0) an attack by .4 assisted by
Z against the specification protocol, or (1) an attack by .4 on the Send-Message
protocol. Once Break has obtained the final results, it passes them to an internal
copy of distinguisher D and simply reports whatever D reports.

The built-in interface 2Ybrk follows the general outline of Z's program, except
that 27b,k commits to d and s without knowing the discrete logarithms of all the

87

Zb~k(g ~ , ga, "r)
0. Given:

1.1. Internal:

1.2. Z --* A:
2.1. Internal:

prime p, subgroup generator g
c *- $({0, I}),

a, - $(Zp-l),
zc ~ ga, mod p,
zl-c ~ g~ mod p

s *- $({0, I})

if s ---- 0 then

bd w--- $(Zp-1),
yd *-- gbd mod p,
Zd *-- ga,d~., mod p,
Yl--d *"- ga m o d p,
Zl -d ,--- 7 m o d p

(2.1 cont.) else
d * - - l - c ,
bd 4-- $(Zp-l),
yd *'- gb~ rood p,
Zd 4-- gC~bd rood p,
Y l - - d *-" $((g)) ,

2.2. T--,.A: "B--*A: yo,yl,zo, z1"
3.1. Internal: if s = 0 then

f *-- c~)m,
else

f.--O
3.2. :Z----* A: "A-*B: (s,f)"

Fig. 3. Behavior of 27~k, used as a subrout ine to violate DDHA.

values. It does not get caught trying to equivocate, because it already knows m.
Fig. 3 describes the details.

Fig. 4 illustrates the results induced by Zbrk. If 7 = gaO, these tables corre-
spond to the results of 27. If 3' is chosen independently at random, these tables
correspond to the results of executing Send-Bi t -At tempt .

The following two observations are straightforward. If (ga, g#, 7) ~-- 60, then

(A(rn, k), B(k), 27br~(g ~, gP, 7; ,4(k), k, m)) = (/i(m, k), B(k), Z(A(k), k)).

I f (g~, gP, 7) ~ 61, then

(A(m, k), [~(k),I.b,.k(g", ga, 7; A(k), k, m)) = (A(m, k), B(k), A(k)).
By the construction of Break,

Break(60) = D((A(m, k), .B(k), 27(A(k), k)))

Break(61) = D((A(m, k), B(k), A(k))).

Thus , IBreak(60) -- ~ r e a k (8 l) l > 1/2 + k -~ a t all vulnerable k, contradicting
DDHA as desired.

4.3 Ful l K e y E x c h a n g e

When establishing a k-bit key K using 3k parallel attempts, we randomly select
i *-- $ ({1 , . . . , 3k}) and use the above Break routine in the i ~h parallel iteration.
We generate the portions of Alice's second message in the locations 1..(i - 1)
using I . We generate the portions of Alice's second message in the locations
(i + 1)..3k according to Send-Bi t -At tempt .

Through standard arguments, we conclude that our algorithm distinguishes
60 from 61 with advantage 1/2 + (k-e /3k) at all vulnerable k. This suffices to
contradict the DDHA, extending the proof to k-bit exchanges.

88

genera] t r ansc r ip t

x0 Xl

Y0 z0]Yl zl 0 =0;:=0go/0 o
gbo gaobo .y ~[

s = l , c = O , d = l s = l ,
Ig ~176 Ilg ~, Ilg ~
$ $ bl Cxbl b 0 ab 0

I((g)) ((g))llg g Jig g

--1, d- -1 t gaZ
gbZ galbl

= l , d = 0 I
gaZ
*((g)) *((gl)

Fig. 4. Results of 2:brk.

5 C o n c l u d i n g R e m a r k s

Although it appears that Alice could calculate and use d in all cases (a mismatch
informs her that d = 1 - c), this simple optimization fails for technical reasons.
It is not hard to show that Z's fake encryptions must contain two DH triples as

a c before, but in this case they are easily unveiled by detecting whether Zl-d = Yl-d"

Genera l iza t ions . To use other intractability assumptions, such as RSA or fac-
toring, a suitable key-exchange construction suffices. In particular, the dense se-
cure public-key cryptosystems of DeSantis and Persiano are appropriate [DP92].

When third parties are available, one-way trapdoor permutations suffice. Un-
like [CFGN96], bo~h Alice and Bob obtain one of two composed trapdoors; in-
stead of applying large-scale permutations of multiple encryptions, they then
detect a matched choice in the simple manner suggested here.

C o m m i t t a l and Equivocabi l i ty . We identify two key properties useful for
analyzing and designing encryption systems robust enough for plug-and-play
usage:

1. Equivocability: the ability to make convincing fake ciphertexts that are equiv-
ocal, even if the real ciphertexts are not.

2. Selective Ignorance: arranging for a party to avoid learning full information.

The results of [BH921 apply the first approach, destroying sufficient informa-
tion to allow ciphertexts to be made consistent with different cleartexts. Note
that the real ciphertexts are ultimately equivocal; the cryptosystem cannot be
used indirectly as a committal.

The methods in [CFGN96] identified and applied the second approach as
well. In their protocol, a clever if costly interaction enables the sender to obtain
partial information from the receiver and/or third parties. The lack of full in-
formation permits a simulator to create equivocal fake ciphertexts, even though
real ciphertexts are unequivocal. Certain roots can be seen in DeSantis' and
Persiano's work on non-interactive zero-knowledge proofs [DP92].

89

The current work applies this principle one step further, arranging for both
the sender and receiver to avoid learning certain information. The result is far
greater simplicity and efficiency.

As is the case with [CFGN96] but not [BH92], the approach presented here
binds the parties (not the simulator) to the cleartext message. Through a slightly
more expensive and involved generalization, the parties can enjoy the ability to
pretend to outside inspectors that an arbitrary alternative cleartext was sent
[B96], enabling them to deny having sent their actual messages.

R e f e r e n c e s

[B91]

[B95]

[B96]

[BH92]

[BGWS8]

[CFGN96]

[CCD88]

[DP92]

[DH76]

[0M84]

[OMR89]

[GMW86]

[MR91]

[RSA78]

[SiSp94]

D. Beaver. "Foundations of Secure Interactive Computing." Advances in
Cryptology- Crypto '91 Proceedings, Springer-Verlag LNCS 576, 1992, 377-
391.
D. Beaver. "Adaptive Zero Knowledge and Computational Equivocation."
Proceedings of the 28 th STOC, ACM, 1996, 629-638.
D. Beaver. "Plausible Deniability." Advances in Cryptology- Pragocrypt '96
Proceedings, CTU Publishing House, 1996, 272-288.
D. Beaver, S. I-Iaber. "Cryptographic Protocols Provably Secure Against
Dynamic Adversaries." Advances in Gryptology - Eurocrypt '92 Proceedings,
Springer-Verlag LNCS 658, 1993, 307-323.
M. Ben-Or, S. Goldwasser, A. Wigderson. "Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation." Proceedings of the
20 th STOC~ ACM, 1988, 1-10.
R. Canetti, U. Feige, O. Goldreich, M. Naor. "Adaptively Secure Multiparty
Computation." Proceedings of the 28 th S T O C , ACM, 1996, 639-648.
D. Chaum, C. Cr~peau, I. Damgs "Multiparty Unconditionally Secure
Protocols." Proceedings of the 20 th S T O C , ACM, 1988, 11-19.
A. DeSantis, G. Persiano. "Zero-Knowledge Proofs of Knowledge Without
Interaction." Proceedings of the 33 ra FOGS, IEEE, 1992, 427-436.
W. Diffie, M. Hellman. "New Directions in Cryptography." IEEE Transac-
tions on Information Theory IT-22, November 1976, 644-654.
S. Goldwasser, S. Micali. "Probabilistic Encryption." J. Comput. Systems
Sci. 28, 1984, 270-299.
S. Goldwasser, S. Micali, C. Rackoff. "The Knowledge Complexity of Inter-
active Proof Systems." SIAM J. on Computing 18:1, 1989, 186-208.
O. Goldreich, S. Micali, A. Wigderson. "Proofs that Yield Nothing but Their
Validity and a Methodology of Cryptographic Protocol Design." Proceedings
of the 27 th FOCS, IEEE, 1986, 174-187.
S. Micali, P. Rogaway. "Secure Computation." Advances in Cryptology-
Crypto '91 Proceedings, Springer-Verlag LNCS 576, 1992, 392-404.
R. Rivest, A. Shamir, L. Adleman. "A Method for Obtaining Digital Signa-
tures and Public Key Cryptosystems." Communications of the ACM 21:2,
1978, 120-126.
M. Sipser, D. Spielman. "Expander Codes." Proceedings of the 35 th FOCS,
IEEE, 1994, 566-576.

