
A Key Recovery Attack on Discrete Log-based
Schemes Using a Prime Order Subgroup*

Chae Hoon Lira 1 and Pil Joong Lee 2

1 Information and Communications Research Center, Future Systems, Inc., 372-2,
Yang Jae-Dong, Seo Cho-Gu, Seoul, 137-130, KOREA

E-mail: chlim@future.co.kr
2 Dept. of Electronic and Electrical Engineering, Pohang University of Science and

Technology (POSTECH), Pohang, 790-784, KOREA
E-mail: pjl@postech.ac.kr

A b s t r a c t . Consider the well-known oracle attack: somehow one gets a
certain computation result as a function of a secret key from the secret
key owner and tries to extract some information on the secret key. This
attacking scenario is well understood in the cryptographic community.
However. there are many protocols based on the discrete logarithm prob-
lem that turn out to leak many of the secret key bits from this oracle
attack, unless suitable checkings are carried out. In this paper we present
a key recovery attack on various discrete log-based schemes working in
a prime order subgroup. Our attack may reveal part of, or the whole
secret key in most Diffie-Hellman-type key exchange protocols and some
applications of E1Gamal encryption and signature schemes.

1 I n t r o d u c t i o n

Many cryptographic protocols have been developed based on the discrete loga-
r i thm problem. The main objective of developers is to design a protocol tha t is
as difficult to break as the underlying discrete logarithm problem under some
reasonable assumptions. On the other hand, the goal of attackers is to find a way
to extract the secret key involved or to pretend to be a legitimate user without
knowing the secret key. Though provable security guarantees that there is no
efficient a t tack on the protocol, it should be carefully interpreted for practical
security; the most impor tant would be to use secure parameters and follow the
assumed conditions or requirements as closely as possible. As an illustrative ex-
ample, we refer to two recent papers on E1Gamal-type signature schemes; one
regarding security proof by Pointcheval and Stern [34] and the other regarding
signature forgery by Bleichenbacher [4] (see also Stern [39] for further discussions
on their apparent contradiction).

The purpose of this paper is to point out the insecurity of various discrete
log-based schemes using a prime order subgroup. More specifically, we present a

* This work was done while the first author was in POSTECH Information Research
Laboratories, POSTECH, Pohang, Korea and the second author was in NEC Re-
search Institute, Princeton, N J, during his sabbatical leave.

250

key recovery at tack on these protocols, which can find all or part of the secret key
bits. Our at tack is closely related to the choice of parameters and the checking
of protocol variables. Thus, as is usual, our attack, once identified, can be easily
prevented by adding suitable checking steps or by using 'secure' parameters.
Here 'secure' means that the parameters are secure against our attack. And this
also implies tha t the usual parameters commonly used in the literature are not
secure against our attack. The presented at tack demonstrates the importance of
checking protocol variables in designing discrete log-based schemes.

PohIig-Hellman Decomposit ion and Pollard's Methods : The discrete logarithm
problem over Z~ can be broken down into a number of small such sub-problems
defined over small order subgroups of Zp (Pohlig:Hellman decomposition [33]).
Then these sub-problems can be solved using Pollard's rho and lambda methods
[35] and the resulting partial logarithms can be combined using the Chinese
Remainder Theorem (CRT) to give the pursued discrete logarithm.

For simplicity, suppose that p - 1 = 1-In=1 qi (ql prime). Let a be a generator of
Z~. Given y = a = rood p, we can reduce the problem of finding x rood p - 1 to the

=' rood p for following sub-problems: find ~i = x mod qi from Yi = y(p-1)/q, = ai
each i, where ai = a (p-1)/q' (an element of order qi). Each such sub-problem can
be solved using Pollard's rho method (see [40] for linear speedup with multiple
processors). Once xi 's are found for all i, they can be combined using the CRT to
yield the logarithm x rood p - 1. Pollard's rho method can compute a logarithm
in a subgroup of prime order q in time O(v~) , while Pollard's lambda method
can compute a logarithm that is known to lie within some restricted interval of
width w in time O(v/-w). Thus, both methods have similar square-root running
time for a given size of an unknown exponent. In particular, the lambda method
is very useful for computing a logarithm in a prime order subgroup when part
of the logarithm is known. (For details, see van Oorschot and Wiener [41].)

The At tack ing Scenario : In this paper we pay our attention to DL-based schemes
using a prime order subgroup. Thus, as is usual, we assume that a prime p is
chosen at random such that p - 1 has a large prime factor q. Let g be an element
of order q and ord(fl) denote the order of fl rood p. Then, for a given y such
that y = g~ mod p, it is completely infeasible under current technology to find
x using Pollard's rho method, if we take for example Iql = 160, since it requires
about 280 operations. Our observation is that if we could obtain z = 7 ~ rood
p somehow by attacking a protocol, where "y = l i f t / (a product of distinct
smooth order elements rood p), then we could find x modulo ord(7) using the
Pohlig-Hellman decomposition. Here we assume that (p - 1)/q may have many
small prime factors, which is usually the case for a randomly chosen prime p.
And finally the remaining part of x could be found from the public key y using
Pollard's lambda method. A special case of the at tack is to find x rood oral(t3),
given z = f([3 = mod p) for any function f . In this case, one can find j = x mod
ord(fl) by checking that z = f(flJ rood p) for j = 0 , 1 , . . . ,ord(f l) - 1, where we
assume that the range of f is large enough compared to fl, so that the probability

251

of collisions occurring under f is negligible, which is usually the case in most
instances of our attack.

The main problem in the above attacking scenario is how to obtain a Pohlig-
Hellman decomposition for the secret key. This should be impossible in well-
designed protocols. However, we could find many DL-based schemes susceptible
to the above at tack in the literature. Most Diffie-Hellman type key exchange
protocols are vulnerable to the above attack. Other examples include shared de-
cryption of E1Gamal encryption, shared verification of E1Gamal signatures and
undeniable signatures. Our at tack was possible in all these schemes, since the in-
volved parties do not check relevant protocol variables. Though there are several
papers pointing out the importance of checking 'public parameters and proto-
col variables (e.g., see [4,42,1,41,2]) in DH key exchange and digital signature
schemes, no literature addresses such an explicit at tack revealing the involved
secret. Our at tack may find the whole secret key in many cases.

R e l a t e d W o r k : Previous work most relevant to our attack is the middleperson
attack on the original Diffie-Hellman key exchange protocol [16] (see [41,2]).
Two parties A and B agree on a prime p and a generator a of Z~, exchange
random exponentials, rA = tx kA mod p and r s = a ks mod p, and then compute
a shared secret K = r~ A = r~t s = a ~ak8 rood p. Suppose that p - 1 = q w with
w smooth. An attacker may replace r A and r s with r~ rood p and r~ rood p
respectively. Then the shared key becomes K = (aq) kAks rood p, which can also
be computed by the attacker since he can find ki rood w from ri. This at tack
can be easily prevented by authenticating the random exchange, as in the STS
[17] and SKEME [21] protocols3

The above attack motivates the use of a prime order subgroup, which also
substantially increases the efficiency in computation and parameter generation
(see [41,2] for further discussions). Thus most DL-based schemes have been de-
signed using a prime order subgroup since its first invention by Schnorr [38].
However, this paper will show potential weaknesses in such a setting. Our attack
on key exchange protocols is quite similar to the above attack, except tha t our
target protocols use a prime order subgroup and that our objective is to find
the long-term secret key of the involved party (usually by the other legitimate
party). Our at tack can be applied to any protocol involving a DH shared secret.

The rest of this paper is organized as follows: We present in Sec.2 a key
recovery at tack on DH-type key exchange protocols and in Sec.3 a similar at tack
on other DL-based schemes such as E1Gamal encryption and signatures. Sec.4
deals with the generation of secure primes and public key certificates as possible
countermeasures to minimize security loss by our attack. And we conclude in
Sec.5.

1 It is very important to authenticate the exchanged random messages themselves,
rather than the shared secret computed from them. For example, the modified STS
protocol by Boyd and Max) [5] may be vulnerable to the middleperson attack, since
it only authenticates the hashed version of the shared secret.

252

2 Extracting Secret Keys in Key Exchange Protocols

One of the well-known design principles for public key protocols states that
a message received should not be assumed to have a particular form unless
it can be checked [1]. In particular, it is very dangerous to apply one's secret
to a number received from the other. However, this principle is hard to apply
to Diflie-Hellman-type key exchange protocols. This has given rise to a lot of
a t tacks or weaknesses under a variety of at tacking scenarios. Most at tacks aim
at finding a session key (e.g., see [10,43]) or causing authentication failure (e.g.,
see [27]). In this section we present a key recovery a t tack tha t can be applied to
many DH-type key exchange protocols published in the li terature 2 unless proper
precautions are taken additionally.

2.1 Basic Diffie-Hellman Key Exchange

We first consider the case where a user A successfully obtained a certificate on the
public key YA = flg=a mod p with fl of small order mod p. This is possible unless
a certification authori ty checks tha t yq -- 1 mod p before issuing a certificate
for YA. The CA usually requires tha t each user prove knowledge of a secret key
corresponding to the public key to be certified, since otherwise there exist some
protocols tha t can be at tacked with a faked public key (e.g., see [27]). However,
even in this case it may still be possible to register a public key of the form
YA = ~gmA rood p if it is not checked tha t y~ --- 1 mod p.

For example, suppose tha t for registration the CA requires a user 's digital
signature on the certificate message which contains all necessary information for
certification, including the public key, as defined by X.509. In this case it is easy
for A to generate a valid signature corresponding to the public key YA = flgmA
rood p when ord(f l) is small. For example, suppose tha t Schnorr's signature
scheme [38] is used for this purpose. Given message m, A can find r ' e (0, ord(fl)]
such tha t r ' = h(f l r ' g k mod p, m) mod ord(f l) in about ord(f l) steps, where
k ER Zq and h denotes a secure hash function. Thus A can generate a signature

{r ,s} on m by computing r = h(f lWg ~ mod p, m) and s = k - x r mod q. I t
is easy to see tha t the resulting {r, s} is a valid signature on m with the public
key YA = flg=A mod p. On the other hand, suppose that Schnorr's identification
scheme is used instead. Then A can pass the protocol with probabili ty 1 /ord(f l)
on average, irrespective of the size of a challenge by B (A similar observation
has been made before by Burmester [9]). Therefore, it is essential tha t the CA
should first check tha t y~ --- 1 mod p.

2 Diffie-Hellman-type key exchange protocols can be divided into two broad classes.
The first is to exchange random exponentials and then authenticate the exchange
using a separate authentication mechanism. The STS and SKEME protocols belong
to this class. Such protocols seem to be the most robust against various attacks,
including our one. Most other protocols involve the fixed secret/public key pair for
key exchange and (possibly} authentication. Our attack can be applied to most of
such protocols.

253

We now present a key recovery attack under the assumption that an attacking
user i has a public key Yi = f~g*~ rood p. This attack will demonstrate the
importance of the checking step in the certification process. We first consider
the zero-message DH key exchange with fixed keys (e.g., used in [22]) 3 : Two
users A and B share a session key K by computing K = h(y~ A mod p,d) =
h(y~ ~ mod p,d) , where d is t ime/date information. In this protocol, suppose
that user B with public key YB = g*B rood p uses a session key computed by
K = h(Y~A n rood p, d) to send a message m to user A with public key Y A = f l g~A

modp. Then, when receiving {c = E g (m) , d} from B, A can extract Iord(fl)l bits
of B's secret key by an exhaustive search. For this, A computes Kj = h(y~ A �9 flJ
rood p, d) for 0 ~ j < ord(fl), decrypts c with each K i and checks that the result
is a meaningful message. If a meaningful message is found for some j , then A
has found j = x s rood ord(fl).

User A may repeat this attack by updating his public key with fl of a different
order and combine the resulting partial secrets using the Chinese Remainder
Theorem. This will give about t bits of x s if t is the bit-length of small prime
factors of p - 1 that can be used for this attack. Now the remaining (Iq l - t) bits
of x s can be found in about 2 (Iqj-*)/2 steps using Shanks' method or Pollard's
lambda method (see [41] for further discussions). Note that if ord(fl) is small,
say of 20 bits, A has little difficulty in reading the ciphertext directed to him.
Also note that this attack can be applied to any protocol if the protocol reveals
an equation involving the fixed DH key g=A *s mod p.

As another example, let us consider the following non-interactive, symmetric
protocol (modified from Protocol 2 in [27]).

1. A computes rA = gkA rood p with kA ER Zq, KA1 = y~A rood p, eA =
h (K A I , r A , A , B) and SA = k A -- x A e A mod q. A then sends { r A , S A } t o B.

k s 2. B computes rB = gkB mod p with k s En Zq, K m = YA mod p, eB =
h (K B I , r B , B , A) and SB = kB - - xBeB mod q. B then sends { r B , s S } to A.

~A h(KA2, rB, B , A), and checks that 3. A computes K A 2 = r B mod p and e s =

g~Sy~S = r s mod p. If the check succeeds, A computes the session key
KA = h(KA1KA2 mod p). Otherwise, A stops the protocol with failure.

4. B computes KB2 = r~ s mod p and e A ---- h (K B 2 , r A , A , B) , and checks that
g~Ay~AA = r A rood p. If the check succeeds, B computes the session key
K s = h(KB1KB2 rood p). Otherwise, B stops the protocol with failure.

Suppose that A has a valid public key YA : flg=A rood p. Then A can find
j = kB mod ord(fl) by checking that g,By~S = rB mod p with eB = h(r~Afl 1
rood p, rB, B, A) for all possible values of j . This gives [ord(fl)l bits of information
on the secret key xB, since xB = (ss + kB)e~ 1 rood q, and thus the effective
secret bits of zB is reduced to (Iq[- [ord(fl)[) bits. The reason why our at tack can

s The SKIP protocol [3] being widely implemented in the industry for IP layer security
also employs this scheme to get a long-term shared secret, which is used as a key-
encrypting key. However, the SKIP documentationrecommands to use a safe prime
p, i.e., a prime p such that (p - 1)/2 is also prime. Thus our attack on this protocol
only discloses one bit of the secret, the parity bit.

254

apply to this protocol is that the same random secret ki is used for authentication
and session key computation. This shows that a robust protocol should avoid
using the same secret (even if it is a one-time random number) for two different
purposes [1]. In this respect the approach taken in the STS [17] and SKEME
[21] seems to be a better way to design key exchange protocols.

2.2 Authenticated Key Exchange

The attack presented above can be easily prevented by a proper precaution in
the certificate issuing process. We now extend our attack to the case where each
user has a correct public key. As an example, we consider the following key
exchange protocol, which is an authenticated version of the MTI (Matsumoto-
Takashima-Imai) protocol [26]. This protocol, with slight changes, is widely stud-
ied in the literature (e.g., see [27,20]) and is also being standardized in ISO/IEC
JTC1/SC27 [44].

1. A randomly picks kA ~. Zq, computes rA ---- gkA mod p and sends r A to B.
2. B randomly picks kB E Zq, computes rB = gk8 mod p, K s = y~sr~tB rood

p and e s = h(KB , rB , rA , B , A) , and sends {rB,eS} to A.
3. A computes KA ---- y~A rs=a mod p and e~ = h(KA, rB, rA, B, A), and checks

that e s = e~. If e s r e~, then A stops the protocol with failure. (Optional)
Otherwise, A computes eA = h (K A , r A , r B , A , B) and sends eA to B.

4. (Optional) B computes e~ = h (K s , r A , r s , A, B) and checks that eA = e~.
If eA r e~, then B stops the protocol with failure.

The session key K can be derived from the shared secret, for example, as
K = h(KA) = h (Ks) . The critical point relevant to our attack is the key
authentication based on the shared secret KA = K s . That is, B applies his
secret key to the number received from A and returns e s as a function of the
(assumed) session key KB. Suppose that A sends r A = flg~A rood p in step 1.

As ms ~__ r~aykAt~ms mod p and Then an honest user B will compute KB = YA rA
return e s computed with this K s . Once receiving { r s , e s } , A may abort the
protocol if a response is required. Since A can compute the first exponential in

kB agA mod p, it can find j = xB mod ord(fl) in O(21ord(#)l) steps KB, YA -'-" rB
=Ay~Aflj for all by checking the equality es = h (K s , r s , rA, B, A) with K s = r s

possible values of j (i.e., j = 0, 1 , . . . , ord(fl) - 1).
The above attack may be repeated using different smooth order elements for

which it is feasible to do the exhaustive search. Thus if p - 1 has several prime
factors of small size (say, less than 40 bits), then it would be possible to find the
whole secret in reasonable time. We note that the attack can be mounted against
any authenticated key exchange protocol as long as authentication is performed
using the shared secret (note that such authentication is possible only if each
user's secret key is involved in the computation of the shared secret). This implies
that almost all key exchange protocols providing explicit authentication without
using a separate authentication channel (e.g., as in STS [17] or SKEME [21])
may be vulnerable to our attack.

255

Our at tack can also be applied to key exchange protocols with implicit au-
thentication, since the agreed upon session key will be used anyway in later
communications. For example, suppose that user A mounted the at tack in the
original MTI protocol, where each user exchanges random exponential ri and
computes the session key as above. Now, if user B first uses the resulting session
key for message authentication (or key authentication), A obtains a known equa-
tion involving the session key computed by B. Then the situation, in view of our
attack, is the same as in the above authenticated protocol. On the other hand,
if B sends a ciphertext for an unknown message, then A can find the intended
partial secret by decrypting the ciphertext with all possible values of the session
key that B is supposed to compute and then finding a meaningful message. Note
that usual known-key attacks assume knowledge of the whole shared secret from
which the session key is derived (e.g., see [43,10]), but in our at tack it is sufficient
to obtain any function of the shared secret (even a ciphertext suffices).

We next show that some key exchange protocols using a signature scheme
for authentication may also be vulnerable to our attack. For example, consider
the following protocol (developed from Protocol 4 in [23]):

1. A picks a random integer kA E Zq, computes ra = g k , mod p and sends r A

to B.
2. B picks a random integer k s E Zq, computes r s = gka mod p. B also

computes KB = rkA ~ m o d p , e s = h (K s , r B , r and s s = k s - x B e s
mod q, and sends { r s , s s } to A.

kA 3. A computes K A = r s mod p, e s = h (K A , r B , r A , B , A) and checks that
g"ByeBS = r S mod p. If the check fails, then A stops the protocol with
failure. (Optional) Otherwise, A computes eA = h (K A , r A , r B , A , B) and
SA = k A -- XAeA mod q, and sends sA to B.

4. (Optional) B computes eA = h (K s , r A , r S , A , B) and checks that g~Ay~AA =
rA mod p. If it does not hold, then B stops the protocol with failure.

This protocol uses a digital signature on the shared secret K a = KB =
gkAkB rood p (for a honest run) to authenticate each other. However, the same
random number is used for authentication and session key computation (as in
the last example in Sec.2.1). This fact can be exploited by A to extract partial
information on the secret key xB . As before, A sends rA = flg~A mod p and
does the exhaustive search for kB mod ord(fl) using the verification equation

gSSy h(KA'~s'~A's'A) = rB mod p with K A = r~Afl k~ mod p. This reduces the
effective secret bits of x s to (I q l - I~ bits. Note, however, that repetition
of the at tack with fl of a different order does not help to find further bits of the
secret in this case, since a different kB is used each time and ord(f l) does not
divide q.

The at tack described in this section can be easily prevented by checking that
r iq = 1 mod p for each random exponential exchanged before raising it to the
secret key. However, this considerably increases the computational load. A bet ter
solution would be to choose a prime p such that (p - 1)/2q has prime factors at
least larger than q (see Sec.4). Such a p only leaks the parity bit of the secret

256

key by our at tack. Note tha t no key exchange protocol can protect the pari ty
bit of the involved secret if the order of the received number is not checked as
explained above, since there always exist an element of order 2 (i.e., p- l) . This
is also true for the following one-way key exchange protocol useful for email
applications: A computes rA ~ - gka rood p with random kA E Zq and the session

key K = h (y ~ A rood p, rA ,d) , encrypts a message m as c = E K (m) and sends
{rA, d,c} to B, where d is a t imestamp. B can then compute K = h(r~ B mod
p, r A , d) and decrypt c. In this protocol A may send rA = _gk~ rood p. If B
does not respond or claims a garbage mail, then A knows that xB is odd. This
a t tack may be repeated t times, revealing the last t bits of xB, if 2tip - 1.

3 Extract ing Secret Keys in O t h e r D L - b a s e d S c h e m e s

There are many other discrete logarithm-based protocols which may be suscep-
tible to our at tack. In this section we present several such examples which we
found in the literature. They include threshold cryptosystems based on E1Gamal
encryption [15], anonymous channels used in electronic voting schemes [30,36]
and undeniable signatures [12,8,29].

3.1 Shared Decryption of EIGamal Encryption

E1Gamal encryption of message m for user A consists of { e l , C2}, where C 1 = gk
rood p with k ER Zq and c~ = m y ~ mod p [18]. The receiver A can decrypt the
ciphertext {Cl,C2} by computing m = c2c~ -=A rood p. In some group-oriented
applications we may need to encrypt the message in such a way tha t only an
authorized subset of receivers can decrypt the ciphertext. This can be done using
E1Gamal encryption and Shamir 's secret sharing scheme [37].

As an example, we consider a prime field implementat ion of the threshold
cryptosys tem proposed by Desmedt and Frankel [15]. Let G be a group of n mem-
bers and y a = gXa mod p be a public key of the group. We want to encrypt a mes-
sage m so tha t any subset of t or more members in G can read the message. For
this, in the system setup phase a t rusted authori ty picks a random polynomial f
of degree t - I in Zq such tha t f (0) = xG, i.e., f (z) = a t _ l z t-1 + . . . + axz + xG
with aj ER Zq, computes secret shares xGi = f (i) mod q for i = 1 , 2 , . - . , n
and securely sends xai to each member i of G. (See [24] for a more flexible
scheme not requiring such pre-distribution of secret shares.) Now, suppose tha t
a ciphertext {cl ,c2},where cl = g~ rood p and c2 = rny~ rood p, is received and
tha t a subset H of t members in G agreed to decrypt the ciphertext. Then each

member j E H computes w i = c~ b~zar rood p, where b i = l'IieH,i@i ~ 7 - / rood q,
and sends wj to a combiner (e.g., one designated member) . The combiner then
computes w = 1-IiEH w i mod p, which should be c~ -~a rood p if all members in-
volved worked correctly. Therefore, the message m can be recovered by m = c2w
mod p.

I t is easy to see tha t our a t tack can be successful for the above scheme, if
each shareholder does not check tha t c~ = 1 mod p. In this case, our a t tack can

257

extract much more secret key bits at a time. Let 7 = I I fli (a product of smooth
order elements). The at tacker sends a ciphertext {cl,c2} such tha t Cl = 7g k

q (Tq)--bjzG~ rood q mod p, once obtaining mod p and c2 = m y ~ mod p. Since wi =
wj, he can easily compute the logarithm (- b i x o i mod q) mod ord(7) using a
Pohlig-Hellman decomposition. The remaining par t of - b j z G j mod q can be

(-b~) -1
found from the value yy = gZGj ~_. wj mod p. This reveals the secret share
of a shareholder j . If wj ' s are t ransmit ted through a secure channel, the at tacker
need to collude with the combiner.

Note the efficiency of the above attack. Unlike in key exchange protocols,
where the at tacker can only obtain a function of the shared secret (e.g., a hash
value), in the above scheme the at tacker has direct access to the shared secret
itself (i.e., a value exponentiated with the secret key). This allows the at tacker
to get a Pohlig-Hellman decomposition for the secret key. Since now Pollard's p-
method can be used to solve the decomposed problems, it would be quite feasible
to use a fl of order about 80 bits. Thus, for a random prime p such tha t qlP - 1
and [q[= 160, the a t tack could reveal the whole secret key in most cases.

Anonymous channels proposed by Park et al.[30] uses a special case of the
threshold cryptosys tem described above, i.e., the case of t = n. The anonymous
channel is primarily used to protect the secrecy of votes in electronic voting
schemes. Later Pf i tzmann [32] developed successful at tacks on these channels.
To defeat such at tacks, Sako and Kilian [36] used a prime order subgroup in
their election scheme, instead of the full multiplicative group Z~ originally used
in [30]. However, in this case our a t tack can be applied again. To see this, we
briefly describe the modified version in [36].

Each MIX Mi (1 < i < n) has a secret key xl ER Zq and publishes its public
key yl = g~' mod p. Let wj = 1-[~'=i+~ Y~ rood p for j < n and w , = 1. For each

ciphertext Co -- {c0,1,c0,2} = {g~,mw~o}, each MIX M~ for i = 1 , 2 , . . . ,n - 1
= { C i - l , l g ,C,-1,2W i Ci_l,1} with transforms the el-1 posted by Mi-1 into Ci ~' �9 ~' -= '

random ri E Zq and posts the Ci on the public board in alphabetical order
(all computat ions are done in mod p). In [36] this is done in two phases: in

=~ mod p and in the second phase it posts the first phase Mi posts zi = Ci_l, 1
{Ci_l , lg~ ' ,c i_ l ,2w~' /z i} . In each phase Mi also proves the correctness of the
computat ion. Now the final MIX Mn can recover m by computing Cn_l,2C~_~,l
mod p.

As is clear, this protocol is vulnerable to our attack. A voter V can submit
a faked vote C0 = {7c0,1 mod p, c0,2 } and then find x~ mod ord(7) from z~ as
before. Therefore, it is essential tha t each MIX Mi should verify that c a = 1 i--1,1
mod p before beginning its processing.

3.2 U n d e n i a b l e S i g n a t u r e s

Our attack can also be applied to some digital signature applications. The most
obvious case is to produce an undeniable signature on message m E Zq as m ~
mod p without checking that mq = 1 mod p, where x is the signer's secret key.
We could find several other examples in the literature.

258

As a first example, we consider the validator issuing protocol by Chaum and
Pedersen (see Sec.4 in [13]). The purpose of this protocol is that a center Z
issues a validator to a 'wallet with observer ' (cohsisting of a computer C and
a t amper -proof module T embedded inside C). The validator is an unlinkable
certificate for the public key YT = g =r of T. In some steps of the protocol the
computer C blinds Y T as m = y ~ mod p with random k and sends it to the
center Z, who then returns z0 = m ~z rood p. Obviously, if C sends m = "rY~
mod p with 7 = 11 ill, it can find z z mod ord(7) from z0 q = (Tq) ~z mod p using
the Pohlig-Hellman method. Note tha t C can still obtain the desired signature
by computing z07 -~z mod p after finding z z rood ord(7). The same a t tack can
be applied to its privacy enhanced version [14] if the signer does not check tha t
m q = 1 rood p. The authors may omit this checking step in the thought tha t C
can only obtain an undeniable signature for a random message, but this omission
enables a fatal a t tack as shown above.

In Brands 's electronic cash scheme using a wallet with observers [6] (see [7]
for more details), each user computes I = g1' mod p with u ER Zq and sends
it to the bank, which generates a signature z = (I92) ~ mod p (gl, g2 generators
of a subgroup of order q). In this case the user must prove to the bank that
he knows u since I corresponds to the account number of the user (see also
[11]). Thus our a t tack is not applicable here. However, as noted in Sec.2.1, it is
essential to check I q = 1 rood p at the begining "of the proof if a Schnorr-type
identification scheme is used for this purpose (this is the case in [7]). Otherwise,
the user can pass the proof with I =/~g1' rood p in success probabili ty 1 / o r d (f l) .

The successful pass will be fatal in this system: Not only the user can mount
our a t tack to find partial information on the secret x, but also he can spend the
same coin multiple times without being identified.

Another possibility for the a t tack exists in the confirmation protocol of un-
deniable signatures [12,8] and designated confirmer signatures [29]. For example,
consider the convertible undeniable signature scheme by Boyar et al.[8]. 4 In this
scheme the signer S possesses two secret/public key pairs, {x ER Z q , V = g ~

mod p} and {z ER Zq, u = g z rood p}. The signature on message ra is a triple
{t, r, s}, where t = gk, mod p, r = gk2 rood p a n d s = k ~ 1 (h (m) t z k l - xr) mod
q (k l , k 2 E a Zq). Thus the signature { t , r , s } is valid iff (th(m)t) z ~-y~r s rood p.
The confirmation protocol between S and V is as follows:

1. S and V computes w = t h(m)t rood p and v = y r r S mod p from the signature
(t,r,s}.

2. V computes a challenge c h = w a g b mod p with a, b ER Zq and sends c h to
S.

3. S computes hi = c h . gC rood p with c ER Zq and h2 = h~ rood p, and sends
{hi ,h2} to V.

4. V reveals a and b to S.

4 This scheme is taken as an example only to illustrate our attack, not to show that it
is insecure. Michels et al. [28] have already shown that this scheme could be broken
when used as a totally convertible signature scheme. We would like to thank one of
anonymous referees for pointing out this attack.

259

5. S checks tha t ch = w~g b mod p. if it holds true, then S reveals c to V.
Otherwise, S stops the protocol.

6. V checks tha t hx = wag b+e mod p and h2 = vau b+c mod p.

This protocol is complete, sound and proven zero-knowledge. However, sup-
pose tha t the verifier V sends, as a challenge in step 2, any value of order q
multiplied by small order elements, say ch = ~/gb mod p. Then the received
value h2 in step 3 satisfies h~ = (Tq)" mod p, from which the verifier can find z
rood ord(7) . This shows tha t the confirmation protocol cannot be zero-knowledge
against a dishonest verifier, unless the prover checks that chq = 1 mod p in step
3. In a variant by Pedersen [31], S computes hi , h2 as hi = (ch) c mod p with
c ER Zq and h2 = h~ rood p. This variant is also vulnerable to our at tack, since
one can still obtain the equation h~ = (h~) z mod p by sending ch = 7g b mod p
(here note tha t ord(h~) = ord(7)).

The above a t tack suggests tha t a prime p should be chosen as p = 2q + 1
(q prime) if an undeniable signature is computed as m = mod p and if the above
protocol is to be used for confirmation, as in Chaum's undeniable signature [12].5
On the other hand, Jakobsson and Yung [19] proposed an oblivious decision
proof protocol for proving validity/invalidity of undeniable signatures, where
the prover does not have to know whether the signature in question is valid or
not. Thus the protocol does not necessarily require the message m to be in Zq.
They choose the system parameters for use in Chaum's scheme as: p = ql + 1
(p,q prime, l integer), g an element of order q and {x ER Z q , y : g= mod p} as
the secret /public key pair of the signer. However, careful examination shows tha t
their oblivious protocol with such parameters is also vulnerable to our at tack.
This protocol cannot be repaired by simply adding checking steps as noted above.
To avoid our at tack, we have to choose p as p = 2q + 1 (q prime). Or we may
use the full multiplicative group Z~ as the underlying group.

We note tha t the signer or the confirmer(s) must verify the validity of a
signature before executing the confirmation protocol if distinct protocols are
used for confirmation and disavowal, e Otherwise, the verifier may change the
first component t of the signature as t ' = 7t mod p and requests S to confirm its
validity by sending { t ' , r , s}. Then V will be able to obtain 7 z rood p at the end
of the protocol, since the check in step 5 will succeed if V sends ch = (w')ag b
mod p with w' = (tl) t'h(m) mod p in step 2. If the secret z is distributed into a set
of designated confirmers [31,29], an authorized subset of confirmers should run
a shared verification protocol to validate the signature. Then there may exist

5 Note that it is infeasible to generate m as an element of order q for any meaningful
message or its hash value if q is chosen small compared to p. Thus there is no way
to detect our attack unless p is chosen as p = 2q + 1. Alternatively, we may choose
g as a generator of Z~. Then our attack will be useless; the public key itself already
reveals the smooth part of the secret key.

8 There is another weakness when the validity of a signature is not verified before
confirmation, as described in Appendix A in [19]: If a verifier who does not have a
valid signature for m is allowed to participate in the confirmation protocol, then the
verifier can easily obtain a valid signature for m.

260

another possibility for the combiner to mount a similar a t tack to find secret
shares of confirmers as in the shared decryption of E1Gamal ciphertexts (see
Sec.3.1), unless each confirmer checks tha t wq = 1 mod p.

4 Generating and Registering Public Parameters

The presented a t tack shows that it is essential in discrete log-based schemes using
a pr ime order subgroup to check the order of received numbers before applying
the secret key. However, such explicit checking requires additional exponentia-
tion. As a be t te r countermeasure, we recommend to use a secure prime, i.e., a
pr ime p such tha t (/9 - 1)/2q is also prime or each prime factor of (p - 1)/2q is
larger than q. (see also [25] for a method of generating primes which can substan-
tially reduce the modular reduction t ime and storage usage). Such a prime can
be generated much faster than, and seems as strong against any known at tack
as, a safe prime (i.e., a prime of the form p = 2q + 1).

To generate a prime p such tha t p = 2qpl + 1, we first choose a random prime
pl of length IPl - [ql - 1 and then find a desired prime p by testing p = 2qpl + 1
for primali ty with random primes q's of size Iql. Thus we need to generate a
number of q's to find a p (e.g., about 710 for a 1024-bit prime p, considering the
density of primes, 1 / In x). However, this does not require much time, since the
size of q is quite small compared to that of p (usually Iql = 160 and]Pl = 768 or
1024).

I t is much cheaper to generate a prime p such that p = 2qplp2 �9 .p,, + 1,
where pi's are primes almost equal to q. We first determine the number n from
the inequality I = IPi] '~' (IP]- Iq l - 1)In > Iql" Then we generate a pool of primes
for p~'s. Suppose tha t the pool contains m primes of size I. Then we have (m)
candidates for p. Considering the density of primes, we can make this number
large enough to guarantee tha t there are enough possibilities for a prime p to be
found with this prime pool. For example, for a 1024-bit prime p and a 160-bit
prime q we may choose l ~ 173, n = 5 and m = 15. This choice of parameters
gives about 3000 candidates for p. Thus testing this many candidates will produce
a pr ime p with very high probability.

There are other advantages in our proposed prime generating methods. They
give a complete factorization of p - 1, which may be useful if we need to find a
primitive element mod p.7 Furthermore, since p - 1 contains many prime factors
of similar size, we may use different subgroups of prime order for different appli-
cations (e.g., one for ordinary signatures, one for undeniable signatures and one
for key exchange, etc.). This will prevent any potential weakness from the misuse
of key parameters�9 Of course, using the same prime p in different primitives may
not be desirable in view of security against most discrete logarithm algorithms,
such as the index calculus method and the number field sieve. However, this
gives us efficiency in storage and communication.

7 Note that there is no known algorithm to find a primitive element rood p without
knowing the factorization of p - 1. The simplest is to check the order of elements
successively (say, 2, 3, 5,-- -) using the prime factors of p - 1.

261

The attacks presented in this paper and in Menezes et a1.[27] show that the
CA must check for knowledge of a secret key corresponding to the public key be-
fore issuing a certificate. In particular, the CA and each user must first check the
order of the received base g and public key y. If such an interactive proof is hard
to carry out in some environments, we propose to use the following certification
procedure, which seems to preclude any known weakness even without such a
proof. The basic idea is to allow the CA to also contribute to the randomness
of a user's secret key. On receiving a user's part of a public key y~ = g=' mod p,
the CA computes the actual public key y as y = (y,),~gb mod p, where a = P--lc q

and b, c ER Zq. The CA now generates a certificate for y and sends {a mod q, b},
along with the certificate, to the user. On receiving {a, b}, the user checks that
a ~ 0 mod q, computes the actual secret key z as x = x~a + b mod q and finally
checks tha t the certified public key y is equal to his own computation g= mod p.

The exponent a makes vanish any component of y~ which does not belong
to the subgroup of order q. This prevents users.from registering an improper
form of public keys. The multiplicative factor gb mod p makes it impossible
for a user to register a public key as a power of other user's public key. This
prevents the at tack presented in [27]. Furthermore, users' secret keys can be made
more pseudorandom by the CA's contribution if the CA is equipped with a true
random generator or uses a cryptographically strong pseudorandom generator (in
this case we assume that the CA sends {a rood q, b} through a secure channel).
This may be advantageous since most users may not be so careful in choosing
their secrets.

5 C o n c l u s i o n

We have demonstrated that many discrete logarithm protocols may be insecure
against a key recovery at tack unless suitable checking steps are added. The
presented at tack may reveal part of, in many cases the whole, secret key of
a victim in a reasonable time for many DL-based schemes published in the
literature. The at tack exploits small order subgroups in Zp to compute part of
the secret key in a protocol working in a subgroup of prime order q. This is
possible since in most schemes a prime p is chosen at random such that qlP - 1.
Therefore, our at tack can be easily prevented if relevant protocol variables are
properly checked, that is, if each party checks that received numbers belong
to the underlying subgroup of prime order. However, such explicit checkings
substantially decrease efficiency. Thus a bet ter alternative would be to minimize
possible leakage of secret key bits by using a secure prime, a prime p such that
all prime factors of (p - 1)/2q are larger than q. Such a prime only leaks one bit
of the secret by our attack.

R e f e r e n c e s

1. R.Anderson and R.Needham, Robustness principles for public key protocols, In
Advances in Cryptology - CR YPTO'95, LNCS 963, Springer-Verlag, 1995, pp.236-
247.

262

2. R.Anderson and S.Vaudenay, Minding your p's and q's, In Advances in Cryptology
- A S I A C R Y P T ' 9 6 , LNCS 1163, Springer-Verlag, 1996, pp.15-25.

3. A.Aziz, T.Markson and H.Prafullchandra, Simple key-management for Internet
protocols (SKIP), draft-ietf-ipsec-skip-OT.tzt, Aug. 1996. (see also the SKIP home
page h t t p : / / s k i p . i n c o g . c o m / f o r more information.)

4. D.Bleichenbacher, Generating E1Gamal signatures without knowing the secret, In
Advances in Cryptology - EUROCRYPT'96 , LNCS 1070, Springer-Verlag, 1996,
pp.10-18.

5. C.Boyd and W.Mao, Design and analysis of key exchange protocols via secure
channel identification, In Advances in Cryptology - ASIA CR YPT'9~, LNCS 917,
Springer-Verlag, 1995, pp.171-181.

6. S.Brands, Untraceable off-line cash in wallet with observers, In Advances in Cryp-
tology - CRYPTO'93, LNCS 773, Springer-Verlag, 1994, pp.302-318.

7. S.Brands, An efficient off-line electronic cash system based on the representation
problem, Technical Report CS-R93~3, CWI, Amsterdam, 1993.

8. J.Boyar, D.Chaum, I.Damgard and T.Pedersen, Convertible undeniable signa-
tures, In Advances in Cryptology - CRYPTO'90, LNCS 537, Springer-Verlag, 1991,
pp.189-205.

9. M.Burmester, A remark on the efficiency of identification schemes, In Advances in
Cryptology - EUROCRYPT'90 , LNCS 473, Springer-Verlag, 1991, pp.493-495.

10. M.Burmester, On the risk of opening distributed keys, In Advances in Cryptology
- CRYPTO'9~, LNCS 839, Springer-Verlag, 1994, pp.308-317.

11. A.Chan, Y.Frankel and Y.Tsiounis, Mis-representation of identities in E-cash
schemes and how to prevent it, In Advances in Cryptology - AS IACRYPT '96 ,
LNCS 1163, Springer-Verlag, 1996, pp.276-285.

12. D.Chaum, Zero-knowledge undeniable signatures, In Advances in Cryptology - EU-
ROCRYPT '90 , LNCS 473, Springer-Verlag, 1991, pp.458-464.

13. D.Chaum and T.Pedersen, Wallet databases with observers, In Advances in Cryp-
tology - CRYPTO'9Z, LNCS 740, Springer-Verlag, 1993, pp.89-105.

14. R.Cramer and T.Pedersen, Improved privacy in wallets with observers, In Advances
in Cryptology - EUROCRYPT'93 , LNCS 765, Springer-Verlag, 1994, pp.329-343.

15. Y.Desmedt and Y.Frankel, Threshold cryptosystems, In Advances in Cryptology -
CRYPTO'89, LNCS 435, Springer-Verlag, 1990, pp.307-315.

16. W.Diffie and M.E.Hellman, New directions in cryptography, IEEE Trans. Info.
Theory, 22(6), 1976, pp.644-654.

17. W.Diffie, P.van Oorschot and M.Wiener, Authentication and authenticated key
exchange, Designs, Codes and Cryptography, 2, 1992, pp.107-125.

18. T.E1Gamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Trans. Inform. Theory, IT-31, '1985, pp.469-472.

19. M.Jakobsson and M.Yung, Proving without knowing: on oblivious, agnostic and
blindfolded provers, In Advances in Cryptology - CRYPTO'96, LNCS 1109,
Springer-Verlag, 1996, pp.186-200.

20. M.Just and S.Vaudenay, Authenticated multi-party key agreement, In Advances in
Cryptology - ASIA CRYPT'96, LNCS 1163, Springer-Verlag, 1996, pp.36-49.

21. H.Krawczyk, SKEME: A versatile secure key exchange mechanisms for Internet,
In Proc. of 1996 Syrup. on Network and Distributed Systems Security.

22. A.K.Lenstra, P.Winkler and Y.Yacobi, A key escrow system with warrant bounds,
In Advances in Cryptology - CRYPTO'95, LNCS 963, Springer-Verlag, 1995,
pp.197-207.

23. C.H.Lim and P.J.Lee, Several practical protocols for authentication and key ex-
change, Information Processing Letters, 53, 1995, pp.91-96.

263

24. C.H.Lim and P.J.Lee, Directed signatures and application to threshold cryptosys-
terns, In Pre-Proc. of 1996 Cambridge Workshop on Security Protocols, The Isaac
Newton Institute, Cambridge, April 1996.

25. C.H.Lim and P.J.Lee, Generating efficient primes for discrete log cryptosystems,
submitted for publication (also presented at ASIACRYPT'96 Rump Session).

26. T.Matsumoto, Y.Takashima and H.Imai, On seeking smart public-key distribution
systems, The Transactions of the [EICE of Japan, E69, 1986, pp.99-106.

27. A.J.Menezes, M.Qu and S.A.Vanstone, Some new key agreement protocols pro-
viding implicit authentication, In Proc. SAC'95, Carleton Univ., Ottawa, Ontario,
May 1995, pp.22-32.

28. M.Michels, H.Petersen and P.Horster, Breaking and repairing a convertible unde-
niable signature scheme, Proc. of 3rd A CM Conference on Computer and Commu-
nications Security, Mar. 1996.

29. T.Okamoto, Designated confirmer signatures and public-key encryption are equiv-
alent, In Advances in Cryptoloyy - CRYPTO'94, LNCS 839, Springer-Verlag, 1995,
pp.61-74.

30. C.S.Park, K.Itoh and K.Kurosawa, Efficient anonymous channel and all/nothing
election scheme, In Advances in Cryptology - EUROCRYPT'93 , LNCS 765,
Springer-Verlag, 1994, pp.248-259.

31. T.Pedersen, Distributed provers with applications to undeniable signatures, In
Advances in Cryptology - EUROCRYPT'91 , LNCS 547, Springer-Verlag, 1991,
pp.221-242.

32. B.Pfitzmann, Breaking an efficient anonymous channel, In Advances in Cryptology
- EUROCRYPT '94 , LNCS 950, Springer-Verlag, 1995, pp.332-340.

33. S.C.Pohlig and M.E.Hellman, An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance, IEEE Trans. Inform. Theory, IT-24
(1), 1978, pp.106-110.

34. D.Pointcheval and J.Stern, Security proofs for signature schemes, In Advances in
Cryptology - EUROCRYPT'96 , LNCS 1070, Springer-Verlag, 1996, pp.387-398.

35. J.M.Pollard, Monte Carlo methods for index computation (rood p), Math. Comp.,
32(143), 1978, pp.918-924.

36. K.Sako and J.Kilian, Receipt-free mix-type voting scheme, In Advances in Cryp-
tology - EUROCRYPT '95 , LNCS 921, Springer-Verlag, 1995, pp.pp.393-403.

37. A.Shamir, How to share a secret, Commun. ACM, 22, 1979, pp.612-613.
38. C.P.Schnorr, Efficient identification and signatures for smart cards, In Advances

in Cryptology - CRYPTO'89, LNCS 435, Springer-Verlag, 1990, pp.235-251.
39. J.Stern, The validation of cryptographic algorithms, In Advances in Cryptology -

A S I A C R Y P T ' 9 6 , LNCS 1163, Springer-Verlag, 1996, pp.301-310.
40. P.C.van Oorschot and M.J.Wiener, Parallel collision search with applications to

hash functions and discrete logarithms, In Proc." 2nd A CM Conference on Com-
puter and Communications Security, Falrfax, Virginia, Nov. 1994, pp.210-218.

41. P.C.van Oorsehot and M.J.Wiener, On Diffie-Hellman key agreement with short
exponents, In Advances in Cryptology - EUROCRYPT'96 , LNCS 1070, Springer-
Verlag, 1996, pp.332-343.

42. S.Vaudenay, Hidden collisions on DSS, In Advances in Cryptology - CRYPTO'96,
LNCS 1109, Springer-Verlag, 1996, pp.83-88.

43. Y.Yacobi, A key distribution paradox, In Advances in Cryptology - CRYPTO'90,
LNCS 537, Springer-Verlag, 1991, pp.268-273.

44. ISO/IEC JTC1/SC27, Information technology - Security techniques - Key man-
agement - Part 3: Mechanisms using asymmetric techniques.

