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A b s t r a c t .  Consider the well-known oracle attack: somehow one gets a 
certain computation result as a function of a secret key from the secret 
key owner and tries to extract some information on the secret key. This 
attacking scenario is well understood in the cryptographic community. 
However. there are many protocols based on the discrete logarithm prob- 
lem that turn out to leak many of the secret key bits from this oracle 
attack, unless suitable checkings are carried out. In this paper we present 
a key recovery attack on various discrete log-based schemes working in 
a prime order subgroup. Our attack may reveal part of, or the whole 
secret key in most Diffie-Hellman-type key exchange protocols and some 
applications of E1Gamal encryption and signature schemes. 

1 I n t r o d u c t i o n  

Many cryptographic protocols have been developed based on the discrete loga- 
r i thm problem. The  main objective of developers is to design a protocol tha t  is 
as difficult to break as the underlying discrete logarithm problem under some 
reasonable assumptions.  On the other hand, the goal of attackers is to find a way 
to extract  the secret key involved or to pretend to be a legitimate user without 
knowing the secret key. Though provable security guarantees that  there is no 
efficient a t tack  on the protocol, it should be carefully interpreted for practical 
security; the most  impor tant  would be to use secure parameters  and follow the 
assumed conditions or requirements as closely as possible. As an illustrative ex- 
ample, we refer to two recent papers on E1Gamal-type signature schemes; one 
regarding security proof by Pointcheval and Stern [34] and the other regarding 
signature forgery by Bleichenbacher [4] (see also Stern [39] for further discussions 
on their  apparent  contradiction). 

The  purpose of this paper  is to point out the insecurity of various discrete 
log-based schemes using a prime order subgroup. More specifically, we present a 
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key recovery at tack on these protocols, which can find all or part  of the secret key 
bits. Our at tack is closely related to the choice of parameters and the checking 
of protocol variables. Thus, as is usual, our attack, once identified, can be easily 
prevented by adding suitable checking steps or by using 'secure' parameters. 
Here 'secure' means that  the parameters are secure against our attack. And this 
also implies tha t  the usual parameters commonly used in the literature are not 
secure against our attack. The presented at tack demonstrates the importance of 
checking protocol variables in designing discrete log-based schemes. 

PohIig-Hellman Decomposit ion and Pollard's Methods : The  discrete logarithm 
problem over Z~ can be broken down into a number of small such sub-problems 
defined over small order subgroups of Zp (Pohlig:Hellman decomposition [33]). 
Then  these sub-problems can be solved using Pollard's rho and lambda methods 
[35] and the resulting partial logarithms can be combined using the Chinese 
Remainder Theorem (CRT) to give the pursued discrete logarithm. 

For simplicity, suppose that  p - 1  = 1-In=1 qi (ql prime). Let a be a generator of 
Z~. Given y = a = rood p, we can reduce the problem of finding x rood p -  1 to the 

=' rood p for following sub-problems: find ~i = x mod qi from Yi = y(p-1)/q, = ai  
each i, where ai  = a (p-1)/q' (an element of order qi). Each such sub-problem can 
be solved using Pollard's rho method (see [40] for linear speedup with multiple 
processors). Once xi 's are found for all i, they can be combined using the CRT to 
yield the logarithm x rood p - 1. Pollard's rho method can compute a logarithm 
in a subgroup of prime order q in time O(v~) ,  while Pollard's lambda method 
can compute a logarithm that  is known to lie within some restricted interval of 
width w in time O(v/-w). Thus, both methods have similar square-root running 
time for a given size of an unknown exponent. In particular, the lambda method 
is very useful for computing a logarithm in a prime order subgroup when part 
of the logarithm is known. (For details, see van Oorschot and Wiener [41].) 

The At tack ing  Scenario : In this paper we pay our attention to DL-based schemes 
using a prime order subgroup. Thus, as is usual, we assume that  a prime p is 
chosen at random such that  p -  1 has a large prime factor q. Let g be an element 
of order q and ord(fl) denote the order of fl rood p. Then, for a given y such 
that  y = g~ mod p, it is completely infeasible under current technology to find 
x using Pollard's rho method, if we take for example Iql = 160, since it requires 
about  280 operations. Our observation is that  if we could obtain z = 7 ~ rood 
p somehow by attacking a protocol, where "y = l i f t /  (a product  of distinct 
smooth order elements rood p), then we could find x modulo ord(7) using the 
Pohlig-Hellman decomposition. Here we assume that  (p - 1)/q may have many 
small prime factors, which is usually the case for a randomly chosen prime p. 
And finally the remaining part  of x could be found from the public key y using 
Pollard's lambda method. A special case of the at tack is to find x rood oral(t3), 
given z = f([3 = mod p) for any function f .  In this case, one can find j = x mod 
ord(fl) by checking that  z = f(flJ rood p) for j = 0 , 1 , . . .  ,ord(f l)  - 1, where we 
assume that  the range of f is large enough compared to fl, so that  the probability 
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of collisions occurring under f is negligible, which is usually the case in most 
instances of our attack. 

The  main problem in the above attacking scenario is how to obtain a Pohlig- 
Hellman decomposition for the secret key. This should be impossible in well- 
designed protocols. However, we could find many DL-based schemes susceptible 
to the above at tack in the literature. Most Diffie-Hellman type key exchange 
protocols are vulnerable to the above attack. Other examples include shared de- 
cryption of E1Gamal encryption, shared verification of E1Gamal signatures and 
undeniable signatures. Our at tack was possible in all these schemes, since the in- 
volved parties do not check relevant protocol variables. Though there are several 
papers pointing out the importance of checking 'public parameters and proto- 
col variables (e.g., see [4,42,1,41,2]) in DH key exchange and digital signature 
schemes, no literature addresses such an explicit at tack revealing the involved 
secret. Our at tack may find the whole secret key in many cases. 

R e l a t e d  W o r k  : Previous work most relevant to our attack is the middleperson 
attack on the original Diffie-Hellman key exchange protocol [16] (see [41,2]). 
Two parties A and B agree on a prime p and a generator a of Z~, exchange 
random exponentials, rA = tx kA mod p and r s  = a ks mod p, and then compute 
a shared secret K = r~  A = r~t s = a ~ak8 rood p. Suppose that  p - 1 = q w  with 
w smooth. An attacker may replace r A and r s  with r~ rood p and r~  rood p 
respectively. Then the shared key becomes K = (aq) kAks rood p, which can also 
be computed by the attacker since he can find ki rood w from ri. This at tack 
can be easily prevented by authenticating the random exchange, as in the STS 
[17] and SKEME [21] protocols3 

The  above attack motivates the use of a prime order subgroup, which also 
substantially increases the efficiency in computation and parameter  generation 
(see [41,2] for further  discussions). Thus most DL-based schemes have been de- 
signed using a prime order subgroup since its first invention by Schnorr [38]. 
However, this paper will show potential weaknesses in such a setting. Our attack 
on key exchange protocols is quite similar to the above attack, except tha t  our 
target  protocols use a prime order subgroup and that  our objective is to find 
the long-term secret key of the involved party (usually by the other legitimate 
party).  Our at tack can be applied to any protocol involving a DH shared secret. 

The  rest of this paper is organized as follows: We present in Sec.2 a key 
recovery at tack on DH-type key exchange protocols and in Sec.3 a similar at tack 
on other DL-based schemes such as E1Gamal encryption and signatures. Sec.4 
deals with the generation of secure primes and public key certificates as possible 
countermeasures to minimize security loss by our attack. And we conclude in 
Sec.5. 

1 It is very important to authenticate the exchanged random messages themselves, 
rather than the shared secret computed from them. For example, the modified STS 
protocol by Boyd and Max) [5] may be vulnerable to the middleperson attack, since 
it only authenticates the hashed version of the shared secret. 
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2 Extracting Secret Keys in Key Exchange Protocols 

One of the well-known design principles for public key protocols states that  
a message received should not be assumed to have a particular form unless 
it can be checked [1]. In particular,  it is very dangerous to apply one's secret 
to a number  received from the other. However, this principle is hard to apply 
to Diflie-Hellman-type key exchange protocols. This has given rise to a lot of 
a t tacks or weaknesses under a variety of at tacking scenarios. Most at tacks aim 
at  finding a session key (e.g., see [10,43]) or causing authentication failure (e.g., 
see [27]). In this section we present a key recovery a t tack tha t  can be applied to 
many  DH-type  key exchange protocols published in the li terature 2 unless proper 
precautions are taken additionally. 

2.1 Basic Diffie-Hellman Key Exchange 

We first consider the case where a user A successfully obtained a certificate on the 
public key YA = flg=a mod p with fl of small order mod p. This is possible unless 
a certification authori ty  checks tha t  yq -- 1 mod  p before issuing a certificate 
for YA. The CA usually requires tha t  each user prove knowledge of a secret key 
corresponding to the public key to be certified, since otherwise there exist some 
protocols tha t  can be at tacked with a faked public key (e.g., see [27]). However, 
even in this case it may still be possible to register a public key of the form 
YA = ~gmA rood p if it is not checked tha t  y~ --- 1 mod p. 

For example,  suppose tha t  for registration the CA requires a user 's  digital 
signature on the certificate message which contains all necessary information for 
certification, including the public key, as defined by X.509. In this case it is easy 
for A to generate a valid signature corresponding to the public key YA = flgmA 
rood p when ord( f l )  is small. For example,  suppose tha t  Schnorr's signature 
scheme [38] is used for this purpose. Given message m,  A can find r '  e (0, ord(fl)]  
such tha t  r '  = h( f l r ' g  k mod p, m) mod ord( f l )  in about  ord( f l )  steps, where 
k ER Zq and h denotes a secure hash function. Thus A can generate a signature 

{r ,s} on m by computing r = h( f lWg ~ mod p, m )  and  s = k -  x r  mod q. I t  
is easy to see tha t  the resulting {r, s} is a valid signature on m with the public 
key YA = flg=A mod p. On the other hand, suppose that  Schnorr's identification 
scheme is used instead. Then A can pass the protocol with probabili ty 1 /ord( f l )  
on average, irrespective of the size of a challenge by B (A similar observation 
has been made before by Burmester  [9]). Therefore, it is essential tha t  the CA 
should first check tha t  y~ --- 1 mod p. 

2 Diffie-Hellman-type key exchange protocols can be divided into two broad classes. 
The first is to exchange random exponentials and then authenticate the exchange 
using a separate authentication mechanism. The STS and SKEME protocols belong 
to this class. Such protocols seem to be the most robust against various attacks, 
including our one. Most other protocols involve the fixed secret/public key pair for 
key exchange and (possibly} authentication. Our attack can be applied to most of 
such protocols. 
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We now present a key recovery attack under the assumption that  an attacking 
user i has a public key Yi = f~g*~ rood p. This attack will demonstrate the 
importance of the checking step in the certification process. We first consider 
the zero-message DH key exchange with fixed keys (e.g., used in [22]) 3 : Two 
users A and B share a session key K by computing K = h(y~ A mod p,d) = 
h(y~ ~ mod p,d) ,  where d is t ime/date  information. In this protocol, suppose 
that  user B with public key YB = g*B rood p uses a session key computed by 
K = h(Y~A n rood p, d) to send a message m to user A with public key Y A  = f l g~A  

modp.  Then,  when receiving {c = E g ( m ) ,  d} from B, A can extract  Iord(fl)l bits 
of B's  secret key by an exhaustive search. For this, A computes Kj  = h(y~ A �9 flJ 
rood p, d) for 0 ~ j < ord(fl), decrypts c with each K i and checks that  the result 
is a meaningful message. If a meaningful message is found for some j ,  then A 
has found j = x s  rood ord(fl). 

User A may repeat  this attack by updating his public key with fl of a different 
order and combine the resulting partial secrets using the Chinese Remainder 
Theorem. This will give about  t bits of x s  if t is the bit-length of small prime 
factors of p -  1 that  can be used for this attack. Now the remaining ( Iq l -  t) bits 
of x s  can be found in about 2 (Iqj-*)/2 steps using Shanks' method or Pollard's 
lambda method (see [41] for further discussions). Note that  if ord(fl) is small, 
say of 20 bits, A has little difficulty in reading the ciphertext directed to him. 
Also note that  this attack can be applied to any protocol if the protocol reveals 
an equation involving the fixed DH key g=A *s mod p. 

As another example, let us consider the following non-interactive, symmetric 
protocol (modified from Protocol 2 in [27]). 

1. A computes rA = gkA rood p with kA ER Zq, KA1 = y~A rood p, eA = 
h ( K A I , r A , A , B )  and SA = k A  -- x A e A  mod q. A then sends { r A , S A }  t o  B. 

k s  2. B computes rB = gkB mod p with k s  En Zq, K m =  YA mod p, eB = 
h ( K B I , r B , B , A )  and SB = kB - - xBeB  mod q. B then sends { r B , s S }  to A. 

~A h(KA2, rB, B ,  A),  and checks that  3. A computes K A 2  = r B mod p and e s  = 

g~Sy~S = r s  mod p. If the check succeeds, A computes the session key 
KA = h(KA1KA2 mod p). Otherwise, A stops the protocol with failure. 

4. B computes KB2 = r~ s mod p and e A  ---- h ( K B 2 , r A , A , B ) ,  and checks that  
g~Ay~AA = r A  rood p. If the check succeeds, B computes the session key 
K s  = h(KB1KB2 rood p). Otherwise, B stops the protocol with failure. 

Suppose that  A has a valid public key YA : flg=A rood p. Then A can find 
j = kB mod ord(fl) by checking that  g,By~S = rB mod p with eB = h(r~Afl 1 
rood p, rB, B, A) for all possible values of j .  This gives [ord(fl)l bits of information 
on the secret key xB, since xB = (ss  + kB)e~ 1 rood q, and thus the effective 
secret bits of zB is reduced to ( Iq[-  [ord(fl)[) bits. The reason why our at tack can 

s The SKIP protocol [3] being widely implemented in the industry for IP layer security 
also employs this scheme to get a long-term shared secret, which is used as a key- 
encrypting key. However, the SKIP documentationrecommands to use a safe prime 
p, i.e., a prime p such that (p - 1)/2 is also prime. Thus our attack on this protocol 
only discloses one bit of the secret, the parity bit. 
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apply to this protocol is that  the same random secret ki is used for authentication 
and session key computation. This shows that  a robust protocol should avoid 
using the same secret (even if it is a one-time random number) for two different 
purposes [1]. In this respect the approach taken in the STS [17] and SKEME 
[21] seems to be a better way to design key exchange protocols. 

2.2 Authenticated Key Exchange 

The attack presented above can be easily prevented by a proper precaution in 
the certificate issuing process. We now extend our attack to the case where each 
user has a correct public key. As an example, we consider the following key 
exchange protocol, which is an authenticated version of the MTI (Matsumoto- 
Takashima-Imai) protocol [26]. This protocol, with slight changes, is widely stud- 
ied in the literature (e.g., see [27,20]) and is also being standardized in ISO/IEC 
JTC1/SC27 [44]. 

1. A randomly picks kA ~. Zq, computes rA ---- gkA mod p and sends r A to B. 
2. B randomly picks kB E Zq, computes rB = gk8 mod p, K s  = y~sr~tB rood 

p and e s  = h(KB , rB , rA ,  B , A ) ,  and sends {rB,eS} to A. 
3. A computes KA ---- y~A rs=a mod p and e~ = h(KA, rB, rA, B, A), and checks 

that  e s  = e~. If e s  r e~, then A stops the protocol with failure. (Optional) 
Otherwise, A computes eA = h ( K A , r A , r B , A , B )  and sends eA to B. 

4. (Optional) B computes e~ = h ( K s , r A , r s ,  A, B)  and checks that  eA = e~. 
If eA r e~, then B stops the protocol with failure. 

The session key K can be derived from the shared secret, for example, as 
K = h(KA) = h (Ks ) .  The critical point relevant to our attack is the key 
authentication based on the shared secret KA = K s .  That  is, B applies his 
secret key to the number received from A and returns e s  as a function of the 
(assumed) session key KB. Suppose that  A sends r A = flg~A rood p in step 1. 

As ms ~__ r~aykAt~ms mod p and Then an honest user B will compute KB = YA rA 
return e s  computed with this K s .  Once receiving { r s , e s } ,  A may abort the 
protocol if a response is required. Since A can compute the first exponential in 

kB agA mod p, it can find j = xB mod ord(fl) in O(21ord(#)l) steps KB, YA -'-" rB 
=Ay~Aflj for all by checking the equality es  = h ( K s ,  r s ,  rA, B, A) with K s  = r s 

possible values of j (i.e., j = 0, 1 , . . . ,  ord(fl) - 1). 
The above attack may be repeated using different smooth order elements for 

which it is feasible to do the exhaustive search. Thus if p -  1 has several prime 
factors of small size (say, less than 40 bits), then it would be possible to find the 
whole secret in reasonable time. We note that  the attack can be mounted against 
any authenticated key exchange protocol as long as authentication is performed 
using the shared secret (note that  such authentication is possible only if each 
user's secret key is involved in the computation of the shared secret). This implies 
that  almost all key exchange protocols providing explicit authentication without 
using a separate authentication channel (e.g., as in STS [17] or SKEME [21]) 
may be vulnerable to our attack. 
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Our at tack can also be applied to key exchange protocols with implicit au- 
thentication, since the agreed upon session key will be used anyway in later 
communications. For example, suppose that  user A mounted the at tack in the 
original MTI  protocol, where each user exchanges random exponential ri and 
computes the session key as above. Now, if user B first uses the resulting session 
key for message authentication (or key authentication), A obtains a known equa- 
tion involving the session key computed by B. Then the situation, in view of our 
attack,  is the same as in the above authenticated protocol. On the other hand, 
if B sends a ciphertext for an unknown message, then A can find the intended 
partial secret by decrypting the ciphertext with all possible values of the session 
key that  B is supposed to compute and then finding a meaningful message. Note 
that  usual known-key attacks assume knowledge of the whole shared secret from 
which the session key is derived (e.g., see [43,10]), but  in our at tack it is sufficient 
to obtain any function of the shared secret (even a ciphertext suffices). 

We next  show that  some key exchange protocols using a signature scheme 
for authentication may also be vulnerable to our attack. For example, consider 
the following protocol (developed from Protocol 4 in [23]): 

1. A picks a random integer kA E Zq, computes ra  = g k ,  mod p and sends r A  

to B. 
2. B picks a random integer k s  E Zq, computes r s  = gka mod p. B also 

computes KB = rkA ~ m o d p ,  e s  = h ( K s , r B , r  and s s  = k s  - x B e s  
mod q, and sends { r s , s s }  to A. 

kA 3. A computes K A  = r s mod p, e s  = h ( K A , r B , r A , B , A )  and checks that  
g"ByeBS = r S  mod p. If the check fails, then A stops the protocol with 
failure. (Optional) Otherwise, A computes eA = h ( K A , r A , r B , A ,  B )  and 
SA = k A  -- XAeA mod q, and sends sA to B. 

4. (Optional) B computes eA = h ( K s ,  r A , r S ,  A ,  B )  and checks that  g~Ay~AA = 
rA mod p. If it does not hold, then B stops the protocol with failure. 

This protocol uses a digital signature on the shared secret K a  = KB = 
gkAkB rood p (for a honest run) to authenticate each other. However, the same 
random number is used for authentication and session key computation (as in 
the last example in Sec.2.1). This fact can be exploited by A to extract  partial 
information on the secret key xB .  As before, A sends rA = flg~A mod p and 
does the exhaustive search for kB mod ord(fl)  using the verification equation 

gSSy h(KA'~s'~A's'A) = rB mod p with K A  = r~Afl k~ mod p. This reduces the 
effective secret bits of x s  to ( I q l -  I~ bits. Note, however, that  repetition 
of the at tack with fl of a different order does not help to find further bits of the 
secret in this case, since a different kB is used each time and ord(f l)  does not 
divide q. 

The  at tack described in this section can be easily prevented by checking that  
r iq = 1 mod p for each random exponential exchanged before raising it to the 
secret key. However, this considerably increases the computational load. A bet ter  
solution would be to choose a prime p such that  (p - 1)/2q has prime factors at 
least larger than q (see Sec.4). Such a p only leaks the parity bit of the secret 
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key by our at tack.  Note tha t  no key exchange protocol can protect  the pari ty 
bit of the involved secret if the order of the received number  is not checked as 
explained above, since there always exist an element of order 2 (i.e., p- l ) .  This 
is also true for the following one-way key exchange protocol useful for email 
applications: A computes rA ~ -  gka rood p with random kA E Zq and the session 

key K = h ( y ~  A rood p, rA ,d ) ,  encrypts a message m as c = E K ( m )  and sends 
{rA, d,c} to B,  where d is a t imestamp.  B can then compute K = h(r~  B mod 
p, r A , d )  and decrypt  c. In this protocol A may send rA = _gk~ rood p. If  B 
does not respond or claims a garbage mail, then A knows that  xB is odd. This 
a t tack  may be repeated t times, revealing the last t bits of xB, if 2tip - 1. 

3 Extract ing  Secret Keys  in O t h e r  D L - b a s e d  S c h e m e s  

There  are many  other discrete logarithm-based protocols which may be suscep- 
tible to our at tack.  In this section we present several such examples which we 
found in the literature. They include threshold cryptosystems based on E1Gamal 
encryption [15], anonymous channels used in electronic voting schemes [30,36] 
and undeniable signatures [12,8,29]. 

3.1 Shared Decryption of EIGamal Encryption 

E1Gamal encryption of message m for user A consists of { e l ,  C2}, where C 1 = gk 
rood p with k ER Zq and c~ = m y ~  mod p [18]. The receiver A can decrypt  the 
ciphertext  {Cl,C2} by computing m = c2c~ -=A rood p. In some group-oriented 
applications we may need to encrypt the message in such a way tha t  only an 
authorized subset of receivers can decrypt  the ciphertext. This can be done using 
E1Gamal encryption and Shamir 's  secret sharing scheme [37]. 

As an example,  we consider a prime field implementat ion of the threshold 
cryptosys tem proposed by Desmedt  and Frankel [15]. Let G be a group of n mem- 
bers and y a  = gXa mod p be a public key of the group. We want to encrypt  a mes- 
sage m so tha t  any subset of t or more members  in G can read the message. For 
this, in the system setup phase a t rusted authori ty picks a random polynomial f 
of degree t - I in Zq such tha t  f (0)  = xG, i.e., f ( z )  = a t _ l z  t-1 + . . .  + axz + xG 
with aj  ER Zq, computes secret shares xGi = f ( i )  mod q for i = 1 , 2 , . - . , n  
and securely sends xai  to each member  i of G.  (See [24] for a more flexible 
scheme not requiring such pre-distribution of secret shares.) Now, suppose tha t  
a ciphertext  {cl ,c2},where cl = g~ rood p and c2 = rny~ rood p, is received and 
tha t  a subset H of t members  in G agreed to decrypt the ciphertext. Then each 

member  j E H computes w i = c~ b~zar rood p, where b i = l'IieH,i@i ~ 7  - /  rood q, 
and sends wj to a combiner (e.g., one designated member) .  The  combiner then 
computes  w = 1-IiEH w i mod p, which should be c~ -~a rood p if all members  in- 
volved worked correctly. Therefore, the message m can be recovered by m = c2w 
mod p. 

I t  is easy to see tha t  our a t tack  can be successful for the above scheme, if 
each shareholder does not check tha t  c~ = 1 mod  p. In this case, our a t tack  can 
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extract  much more secret key bits at  a time. Let 7 = I I  fli (a product  of smooth 
order elements). The  at tacker  sends a ciphertext {cl,c2} such tha t  Cl = 7g k 

q (Tq)--bjzG~ rood q mod p, once obtaining mod  p and c2 = m y ~  mod p. Since wi = 
wj, he can easily compute  the logarithm ( - b i x o  i mod q) mod ord(7)  using a 
Pohlig-Hellman decomposition. The  remaining par t  of - b j z G j  mod  q can be 

( -b~)  -1 
found from the value yy = gZGj ~_. wj  mod p. This reveals the secret share 
of a shareholder j .  If  wj ' s  are t ransmit ted  through a secure channel, the at tacker  
need to collude with the combiner. 

Note the efficiency of the above attack. Unlike in key exchange protocols, 
where the at tacker  can only obtain a function of the shared secret (e.g., a hash 
value), in the above scheme the at tacker has direct access to the shared secret 
itself (i.e., a value exponentiated with the secret key). This allows the at tacker 
to get a Pohlig-Hellman decomposition for the secret key. Since now Pollard's p- 
method  can be used to solve the decomposed problems, it would be quite feasible 
to use a fl of order about  80 bits. Thus,  for a random prime p such tha t  qlP - 1 
and [q[ = 160, the a t tack  could reveal the whole secret key in most  cases. 

Anonymous channels proposed by Park  et al.[30] uses a special case of the 
threshold cryptosys tem described above, i.e., the case of t = n. The anonymous 
channel is primarily used to protect  the secrecy of votes in electronic voting 
schemes. Later  Pf i tzmann [32] developed successful at tacks on these channels. 
To defeat such at tacks,  Sako and Kilian [36] used a prime order subgroup in 
their election scheme, instead of the full multiplicative group Z~ originally used 
in [30]. However, in this case our a t tack can be applied again. To see this, we 
briefly describe the modified version in [36]. 

Each MIX Mi (1 < i < n) has a secret key xl ER Zq and publishes its public 
key yl = g~' mod p. Let wj = 1-[~'=i+~ Y~ rood p for j < n and w ,  = 1. For each 

ciphertext Co -- {c0,1,c0,2} = {g~,mw~o}, each MIX M~ for i = 1 , 2 , . . .  ,n  - 1 
= { C i - l , l g  ,C,-1,2W i Ci_l,1} with transforms the el-1 posted by Mi-1 into Ci ~' �9 ~' -= '  

random ri E Zq and posts the Ci on the public board in alphabetical order 
(all computat ions are done in mod p). In [36] this is done in two phases: in 

=~ mod p and in the second phase it posts the first phase Mi posts zi = Ci_l, 1 
{Ci_l , lg~ ' ,c i_ l ,2w~' /z i} .  In each phase Mi also proves the correctness of the 
computat ion.  Now the final MIX Mn can recover m by computing Cn_l,2C~_~,l 
mod p. 

As is clear, this protocol is vulnerable to our attack. A voter V can submit  
a faked vote C0 = {7c0,1 mod p, c0,2 } and then find x~ mod ord(7) from z~ as 
before. Therefore, it is essential tha t  each MIX Mi should verify that  c a = 1 i--1,1 
mod p before beginning its processing. 

3.2 U n d e n i a b l e  S i g n a t u r e s  

Our attack can also be applied to some digital signature applications. The  most 
obvious case is to produce an undeniable signature on message m E Zq as m ~ 
mod  p without checking that  mq = 1 mod p, where x is the signer's secret key. 
We could find several other examples in the literature. 
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As a first example,  we consider the validator issuing protocol by Chaum and 
Pedersen (see Sec.4 in [13]). The  purpose of this protocol is that  a center Z 
issues a validator to a 'wallet with observer '  (cohsisting of a computer  C and 
a t amper -proof  module T embedded inside C). The validator is an unlinkable 
certificate for the public key YT = g =r of T. In some steps of the protocol the 
computer  C blinds Y T  as m = y ~  mod p with random k and sends it to the 
center Z,  who then returns z0 = m ~z rood p. Obviously, if C sends m = "rY~ 
mod p with 7 = 11 ill, it can find z z  mod ord(7) from z0 q = (Tq) ~z mod p using 
the Pohlig-Hellman method.  Note tha t  C can still obtain the desired signature 
by computing z07 -~z mod p after finding z z  rood ord(7).  The same a t tack can 
be applied to its privacy enhanced version [14] if the signer does not check tha t  
m q = 1 rood p. The  authors may omit  this checking step in the thought  tha t  C 
can only obtain an undeniable signature for a random message, but  this omission 
enables a fatal  a t tack  as shown above. 

In Brands 's  electronic cash scheme using a wallet with observers [6] (see [7] 
for more details), each user computes I = g1' mod p with u ER Zq and sends 
it to the bank,  which generates a signature z = ( I92)  ~ mod p (gl, g2 generators 
of a subgroup of order q). In this case the user must prove to the bank that  
he knows u since I corresponds to the account number  of the user (see also 
[11]). Thus our a t tack  is not applicable here. However, as noted in Sec.2.1, it is 
essential to check I q = 1 rood p at the begining "of the proof if a Schnorr-type 
identification scheme is used for this purpose (this is the case in [7]). Otherwise, 
the user can pass the proof with I =/~g1' rood p in success probabili ty 1 / o r d ( f l ) .  

The successful pass will be fatal in this system: Not only the user can mount  
our a t tack  to find partial  information on the secret x, but  also he can spend the 
same coin multiple times without being identified. 

Another  possibility for the a t tack  exists in the confirmation protocol of un- 
deniable signatures [12,8] and designated confirmer signatures [29]. For example,  
consider the convertible undeniable signature scheme by Boyar et al.[8]. 4 In this 
scheme the signer S possesses two secret/public key pairs, {x ER Z q , V  = g ~ 

mod p} and {z ER Zq, u = g z rood p}. The  signature on message ra is a triple 
{t, r, s}, where t = gk, mod p, r = gk2 rood p a n d  s = k ~  1 ( h ( m ) t z k l  - xr)  mod 
q ( k l , k 2  E a  Zq). Thus the signature { t , r , s }  is valid iff (th(m)t) z ~-y~r s rood p. 
The confirmation protocol between S and V is as follows: 

1. S and V computes  w = t h(m)t  rood p and v = y r r S  mod p from the signature 
(t,r,s}. 

2. V computes a challenge c h  = w a g  b mod p with a, b ER Zq and sends c h  to 
S. 

3. S computes  hi = c h .  gC rood p with c ER Zq and h2 = h~ rood p, and sends 
{hi ,h2} to V. 

4. V reveals a and b to S. 

4 This scheme is taken as an example only to illustrate our attack, not to show that it 
is insecure. Michels et al. [28] have already shown that this scheme could be broken 
when used as a totally convertible signature scheme. We would like to thank one of 
anonymous referees for pointing out this attack. 
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5. S checks tha t  ch = w~g b mod p. if it holds true, then S reveals c to V. 
Otherwise, S stops the protocol. 

6. V checks tha t  hx = wag b+e mod p and h2 = vau b+c mod p. 

This protocol is complete, sound and proven zero-knowledge. However, sup- 
pose tha t  the verifier V sends, as a challenge in step 2, any value of order q 
multiplied by small order elements, say ch = ~/gb mod p. Then the received 
value h2 in step 3 satisfies h~ = (Tq)" mod p, from which the verifier can find z 
rood ord(7) .  This shows tha t  the confirmation protocol cannot  be zero-knowledge 
against a dishonest verifier, unless the prover checks that  chq = 1 mod  p in step 
3. In a variant by Pedersen [31], S computes hi ,  h2 as hi = (ch) c mod p with 
c ER Zq and h2 = h~ rood p. This variant is also vulnerable to our at tack,  since 
one can still obtain the equation h~ = (h~) z mod p by sending ch = 7g b mod p 
(here note tha t  ord(h~) = ord(7)).  

The  above a t tack  suggests tha t  a prime p should be chosen as p = 2q + 1 
(q prime) if an undeniable signature is computed as m = mod p and if the above 
protocol is to be used for confirmation, as in Chaum's  undeniable signature [12].5 
On the other hand, Jakobsson and Yung [19] proposed an oblivious decision 
proof protocol for proving validity/invalidity of undeniable signatures, where 
the prover does not have to know whether the signature in question is valid or 
not. Thus the protocol does not necessarily require the message m to be in Zq. 
They  choose the system parameters  for use in Chaum's  scheme as: p = ql + 1 
(p,q prime, l integer), g an element of order q and {x ER Z q , y  : g= mod p} as 
the secret /public key pair of the signer. However, careful examination shows tha t  
their oblivious protocol with such parameters  is also vulnerable to our at tack.  
This protocol cannot  be repaired by simply adding checking steps as noted above. 
To avoid our at tack,  we have to choose p as p = 2q + 1 (q prime). Or we may 
use the full multiplicative group Z~ as the underlying group. 

We note tha t  the signer or the confirmer(s) must verify the validity of a 
signature before executing the confirmation protocol if distinct protocols are 
used for confirmation and disavowal, e Otherwise, the verifier may change the 
first component  t of the signature as t '  = 7t mod  p and requests S to confirm its 
validity by sending { t ' , r ,  s}. Then V will be able to obtain 7 z rood p at the end 
of the protocol,  since the check in step 5 will succeed if V sends ch = (w')ag b 
mod p with w' = (tl) t'h(m) mod p in step 2. If the secret z is distributed into a set 
of designated confirmers [31,29], an authorized subset of confirmers should run 
a shared verification protocol to validate the signature. Then there may exist 

5 Note that it is infeasible to generate m as an element of order q for any meaningful 
message or its hash value if q is chosen small compared to p. Thus there is no way 
to detect our attack unless p is chosen as p = 2q + 1. Alternatively, we may choose 
g as a generator of Z~. Then our attack will be useless; the public key itself already 
reveals the smooth part of the secret key. 

8 There is another weakness when the validity of a signature is not verified before 
confirmation, as described in Appendix A in [19]: If a verifier who does not have a 
valid signature for m is allowed to participate in the confirmation protocol, then the 
verifier can easily obtain a valid signature for m. 
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another  possibility for the combiner to mount a similar a t tack to find secret 
shares of confirmers as in the shared decryption of E1Gamal ciphertexts (see 
Sec.3.1), unless each confirmer checks tha t  wq = 1 mod  p. 

4 Generating and Registering Public Parameters 

The  presented a t tack  shows that  it is essential in discrete log-based schemes using 
a pr ime order subgroup to check the order of received numbers before applying 
the secret key. However, such explicit checking requires additional exponentia- 
tion. As a be t te r  countermeasure,  we recommend to use a secure prime, i.e., a 
pr ime p such tha t  (/9 - 1)/2q is also prime or each prime factor of (p - 1)/2q is 
larger than  q. (see also [25] for a method of generating primes which can substan- 
tially reduce the modular  reduction t ime and storage usage). Such a prime can 
be generated much faster than,  and seems as strong against any known at tack 
as, a safe prime (i.e., a prime of the form p = 2q + 1). 

To generate a prime p such tha t  p = 2qpl + 1, we first choose a random prime 
pl of length IPl - [ql - 1 and then find a desired prime p by testing p = 2qpl + 1 
for primali ty with random primes q's of size Iql. Thus we need to generate a 
number  of q's to find a p (e.g., about  710 for a 1024-bit prime p, considering the 
density of primes, 1 / In  x). However, this does not require much time, since the 
size of q is quite small compared to that  of p (usually Iql = 160 and ]Pl = 768 or 
1024). 

I t  is much cheaper to generate a prime p such that  p = 2qplp2 �9 .p,, + 1, 
where pi's are primes almost equal to q. We first determine the number  n from 
the inequality I = IPi] '~' (IP]- Iq l -  1)In > Iql" Then we generate a pool of primes 
for p~'s. Suppose tha t  the pool contains m primes of size I. Then we have (m) 
candidates for p. Considering the density of primes, we can make this number  
large enough to guarantee tha t  there are enough possibilities for a prime p to be 
found with this prime pool. For example, for a 1024-bit prime p and a 160-bit 
prime q we may choose l ~ 173, n = 5 and m = 15. This choice of parameters  
gives about  3000 candidates for p. Thus testing this many candidates will produce 
a pr ime p with very high probability. 

There  are other advantages in our proposed prime generating methods.  They 
give a complete factorization of p - 1, which may be useful if we need to find a 
primitive element mod  p.7 Furthermore,  since p - 1 contains many prime factors 
of similar size, we may  use different subgroups of prime order for different appli- 
cations (e.g., one for ordinary signatures, one for undeniable signatures and one 
for key exchange, etc.). This will prevent any potential weakness from the misuse 
of key parameters�9 Of course, using the same prime p in different primitives may 
not be desirable in view of security against most  discrete logarithm algorithms, 
such as the index calculus method and the number  field sieve. However, this 
gives us efficiency in storage and communication. 

7 Note that there is no known algorithm to find a primitive element rood p without 
knowing the factorization of p - 1. The simplest is to check the order of elements 
successively (say, 2, 3, 5,-- -) using the prime factors of p - 1. 
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The attacks presented in this paper and in Menezes et a1.[27] show that  the 
CA must check for knowledge of a secret key corresponding to the public key be- 
fore issuing a certificate. In particular, the CA and each user must first check the 
order of the received base g and public key y. If such an interactive proof is hard 
to carry out in some environments, we propose to use the following certification 
procedure, which seems to preclude any known weakness even without such a 
proof. The basic idea is to allow the CA to also contribute to the randomness 
of a user's secret key. On receiving a user's part  of a public key y~ = g=' mod p, 
the CA computes the actual public key y as y = (y,),~gb mod p, where a = P--lc q 

and b, c ER Zq. The CA now generates a certificate for y and sends {a mod q, b}, 
along with the certificate, to the user. On receiving {a, b}, the user checks that  
a ~ 0 mod q, computes the actual secret key z as x = x~a + b mod q and finally 
checks tha t  the certified public key y is equal to his own computation g= mod p. 

The exponent a makes vanish any component of y~ which does not belong 
to the subgroup of order q. This prevents users.from registering an improper 
form of public keys. The multiplicative factor gb mod p makes it impossible 
for a user to register a public key as a power of other user's public key. This 
prevents the at tack presented in [27]. Furthermore, users' secret keys can be made 
more pseudorandom by the CA's contribution if the CA is equipped with a true 
random generator or uses a cryptographically strong pseudorandom generator (in 
this case we assume that  the CA sends {a rood q, b} through a secure channel). 
This may be advantageous since most users may not be so careful in choosing 
their secrets. 

5 C o n c l u s i o n  

We have demonstrated that  many discrete logarithm protocols may be insecure 
against a key recovery at tack unless suitable checking steps are added. The 
presented at tack may reveal part  of, in many cases the whole, secret key of 
a victim in a reasonable time for many DL-based schemes published in the 
literature. The at tack exploits small order subgroups in Zp to compute part  of 
the secret key in a protocol working in a subgroup of prime order q. This is 
possible since in most schemes a prime p is chosen at random such that  qlP - 1. 
Therefore, our at tack can be easily prevented if relevant protocol variables are 
properly checked, that  is, if each party checks that  received numbers belong 
to the underlying subgroup of prime order. However, such explicit checkings 
substantially decrease efficiency. Thus a bet ter  alternative would be to minimize 
possible leakage of secret key bits by using a secure prime, a prime p such that  
all prime factors of ( p -  1)/2q are larger than q. Such a prime only leaks one bit 
of the secret by our attack. 
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