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Abs t rac t .  We present a new one way function based on the difficulty of 
finding shortest vectors in lattices. This new function consists of expo- 
nentiation of an ideal in an order of a number field and multiplication by 
an algebraic number which can both be performed in polynomial time. 
The best known algorithm for inverting this function is exponential in 
the degree of the lattices involved. 
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1 I n t r o d u c t i o n  

In the past 20 years several number theoretic problems have been identified on 
whose difficulty the security of cryptographic protocols can be based. Prominent  
examples are the factoring problem for integers [RSA78] and the discrete loga- 
r i thm problem in the multiplicative group of a finite field [Od185], in the class 
group of an order of a quadratic field [BW88], and on an elliptic curve curve 
over a finite field [Kob87]. There is, however, no guarantee that  those problems 
remain difficult to solve in the future. On the contrary, as the experience with 
the factoring problem for integers shows unexpected breakthroughs are always 
possible. It  is therefore important  to design cryptographic schemes in such a way 
that  the underlying mathematical  problem can easily be replaced with another 
one. It  is also important  to search for mathematical  problems on which secure 
one way functions can be based. 

In this paper we show how to use ideal arithmetic in number fields to design 
a cryptographic one way function NF-EXP with the following properties: 

- -  NF-EXP carl be computed in polynomial time. 
- Inverting NF-EXP is at least as hard as factoring integers. 
- The  only method currently known for inverting NF-EXP requires computing 

shortest vectors in lattices whose dimension is the degree of the number field. 
This currently requires exponential t ime in the degree of the number field. 
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This papers generalizes ideas which have been introduced in [BW90] for or- 
ders of quadratic number fields. However, for quadratic fields, or more generally 
for number fields of fixed degree NF-EXP Can be inverted in subexponential time 
(see [Buc88]). The new idea in this paper is to introduce the problem of com- 
puting shortest vectors in lattices of growing dimension as the basis for crypto- 
graphic security. This is done by considering number fields of growing degree. 
The problem of computing shortest vectors in lattices is known to be very dif- 
ficult. It does not play a role in any of the schemes based on factoring, finite 
fields, quadratic number fields, and curves over finite fields. We therefore be- 
lieve that the new one way function has some potential in future cryptographic 
applications. 

The paper is organized as follows: In a first section, we present the necessary 
concepts from algebraic number fields. Then, we explain NF-P.XP and show how 
to compute it efficiently. In Section 3, we sketch how to invert NF-EXP and show 
its difficulty. Finally, we present an example. 

2 A l g e b r a i c  n u m b e r  f i e l d s  

In this section we briefly introduce the reader to algebraic number fields, orders, 
fractional ideals, and the arithmetic in those structures. For more details see 
[BS96]. 

By an algebraic number field we mean an extension field of the field Q of 
rational numbers which, as a Q-vector space, is finite dimensional. The dimension 
is called the degree of the number field. Let F be an algebraic number field of 
degree n. Then there is a monic irreducible polynomial f E ~[X] such that 
F is isomorphic to the residue class field Q[x]J(f) where (f)  denotes the ideal 
generated by f in Q Ix]. We call f a generating polynomial of F.  In the sequel we 
will assume that the number field F is represented by a generating polynomial 
f and that F = Q[x]/(f). 

The elements of F are residue classes, i.e. they are of the form g -{- (f)  with 
g E Q Ix]. Any such residue class has a unique representative of degree less than 
n. We assume that the residue classes are represented by those representatives. 
They can be obtained from any representative by division with remainder by 
f .  Addition, subtraction, and multiplication of elements of F can be effected 
by the addition, subtraction, and multiplication of the representing polynomials 
followed by a division with remainder by f .  If g + (f)  is a non zero element of 
f then its inverse can be computed as follows. Using the extended Euclidean 
algorithm a polynomial h is computed with gh - 1 rood (f). Then h + (f)  is 
the inverse of g + (f). Addition, subtraction, multiplication and inversion can 
obviously be performed in polynomial time. 

Let a E F. Then the map F --~ F, ~ ~-~ a~ is an endomorphism of the Q- 
vector space F.  The trace of a is the trace of this endomorphism. It is denoted 
by trace(a). The norm of a is the the determinant of this endomorphism. It is 
denoted by norm(a). 
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Next we introduce orders and ideals thereof. An order (9 in F is a subring of 
F containing the element 1 which admits a 2Z-basis (Wl , . . . ,  wn). We represent 
(9 by such a 2Z-basis, where the basis elements are represented as described 
above. The discriminant of (9 is A = det((trace(wiwj)l<ij<n). The generating 
polynomial and the 2Z-basis of (9 can always be chosen in such a way that  
(log [AI)~ bits are necessary to store them. We will assume that  this is done. 

An integral (9-ideal is an additive subgroup I of (9 which is an (9-module. 
This means that  (9I = {wa : w E (9, a E I}  C I. The norm of I is the index of 
I in (9. It  is denoted by N(I). If I is an integral (9-ideal then any subset of F of 
the form (1/d)I ,  where d is a non zero integer, is called a fractional (9-ideal. Its 
norm is N(I ) /d  n. If I and J are fractional (9-ideals then their product 

I . J = {  Z a ~ [ S c I x J f i n i t e }  
(a,fl)eS 

is again a fractional (9-ideal. The set 2: of all fractional ideals of (9 forms a 
commutative semi-group. The quotient of I and J 

I :  J =  { a E F [ a J  C I }  

is a fractional (9-ideal. A fractional (9-ideal I is called invertible if 1((9 : I) = (9. 
The invertible O-ideals form an Abelian group ft .  The set 7 ) = {c~(9 I c~ E ~'*} 
of principal ideals is a subgroup of this group. Two fractional invertible (9-ideals 
I and J are called equivalent if there is an c~ E F with J = aI.  Equivalence of 
ideals is an equivalence relation which is compatible with ideal multiplication. 
The equivalence class of I is called the ideal class of I and is denoted by [/]. The  
set of ideal classes Cl((9) = f l / P  forms a finite Abelian group and is called the 
class group of (9. 

We explain ideal arithmetic. A fractional (9-ideal I is represented by a 2Z- 
basis ( a l , . . . ,  an)  where ai  E F ,  1 < i < n. As we have explained above, those 
elements are represented by polynomials of degree less than n. We will now 
assume that  such a polynomial g(x) = glx "-1 + . . .  + gn-lX + g ,  is represented 
by the coefficient vector ( g l , . . . ,  gn)- Then the ideal I can be viewed as a lattice 
in Q n. If I and J are fractional (9-ideals with bases ( a l , . . . ,  an) and (13x,..., 13n), 
respectively, then (ad3jh_<i,j_<, is a generating system of the product  I J  as a 
lattice in Qn. Using Hermite normal form computation [Coh95, 65fl], a basis 
thereof can be found in polynomial time. 

We explain module reduction. For this purpose we need yet another  inter- 
pretat ion of a fractional (9-ideal as an n-dimensional lattice. Let p(1) , . . . ,  p(n) 
be the complex zeros of the generating polynomial ] .  For a = g + ( ] )  6 F the 
numbers a(i) = g(p(i)), 1 < i < n are the conjugates of a.  There are positive 
integers r l ,  r2 with r l  + 2r2 = n such that  p(i) E 1~ for 1 < i < r l ,  p(1) r R for 
r l  < i < n and p(i) = p(i+r2) for r l  < i _< r l  + r2. Define the map 

~o: F--~R n 

a ~ (c~(I),..., a (n), Re a (n+1), Im a(n+x),..., Re a (n+~), Im a(n+~2)). 
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If I is a fractional O-ideal then ~o(I) is an n-dimensional lattice of determinant 
2-r2N(I)~/[A].  Let c E 1%, c _> 1. An O-ideal I is called c-reduced f f the  fractional 
O-ideal O : I contains the element 1 and 

{(i e o :  S l vi = 1 , . . . ,  n I(i(01 < 1/c) = { 0 } .  

If I is c-reduced then I is integral and N(I) _< c n ~ / ~ .  It follows that  ( l o g c +  
log lAD ~ bits are sufficient to store I .  A c-reduced ideal can be computed 
as follows. Determine O : I.  In O : I find a number (i such that  the length 
of the shortest non zero vector in the lattice ~0(O : I)  is at least as large as 
[[~((i)[I/c. Then ( i I  is c-reduced. It follows that  1-reduced ideals can be computed 
using the shortest vector algorithm of [Kan87] in time n ~ (log IA]) ~ Also, 
if we use LLL-reduction [Coh95, 83tt] then we obtain 2n-reduced ideals in time 
n ~ (log [A[) ~ . 

3 T h e  o n e  w a y  f u n c t i o n  NF-EXP 

Let F be an algebraic number field of degree n over Q. Let O be an order in F 
and let I be an O-ideal. Recall that  Z denotes the group of fractional O-ideals. 
We define the following function parameterized by (.9 and I: 

NF-EXP : F* x 1%1 -~ Z 

((i, k) ~ (iI k 

There is a problem in using NF-EXP for cryptographic purposes: If we use a ~ -  
basis to represent the ideal ( i i  k then the number of bits needed to represent (iIk 
is f2(k). Hence, we cannot even write down NF-EXP((I, k) in polynomial time. 
One solution is to restrict the set of arguments of NF-EXP such that  the restricted 
function can be computed in polynomial time. This can be done in such a way 
that  we get a compact representation of ( i l  k without affecting the security of 
NF-EXP. 

We can for example choose ((i, k) such that  (iIk is 2n-reduced. More pre- 
cisely: We choose k E {1 , . . . ,  IAI}. Using fast exponentiation techniques we can 
compute a 2'~-reduced ideal J in [/]k and a number (i E F with J -- (iIk. The 
reduced ideal J is not uniquely determined. In fact, there are in general many 
such reduced ideals. Using techniques of [Buc88] and [Thi95] it is possible to 
choose (i in such a way that  J could be any of all 2n-reduced ideals in its ideal 
class. Note that  all those computations can be carried out in polynomial time 
since 2n-reduction can be performed in polynomial time. 

Using the same idea, one can obtain a compact representation of (iIk for 
general (i and k as follows: Compute fl E F such that  J = f l ( i I  k is 2n-reduced 
and I]Logfl[[ is minimal, where 

Log((i) = (log I(i(1) 1,..., log I(i (r1+r2-1) D- 

This is again done by fast exponentiation. Then represent (lIk by J and a suitable 
approximation of Logfl. Using the results of [Thi95] it can be shown that  this 
representation has polynomial length and can be computed in polynomial time. 



389 

In practice, we could for example choose a series of number fields of growing 
degree generated by a sparse polynomials of small discriminant, since the com- 
plexity of computing NF-EXP depends on the discriminant and on the number 
of non-zero coefficients of the generating polynomial. A careful analysis together 
with experiments in practice have to be done. 

Using the arguments of [BBM+92] it follows that  the one way function 
NF-EXP can be used to implement many cryptographic protocols, e.g. a Diffie- 
Hellman key exchange or a E1Gamal signature scheme. 

4 Inver t ing  NF-EXP 

It has been shown in [BW88] that  there is a polynomial t ime reduction of the 
factorization problem for integers to inverting NF-EXP for imaginary quadratic 
orders. 

Now we sketch an algorithm for inverting NF-EXP. We use the same notation 
as in the previous section. The problem of inverting NF-EXP will be called the 
NF-DL-problem: Given two ideals I and J of an Order (3 in a number field F 
find a E F and k E l~l such that  J = a I  ~. Solving the NF-DL-problem is closely 
related to computing the unit group and the class group of the order O. An 
algorithm computing these groups is described in [Buc88]. We will now explain 
how this algorithm can be modified to solve NF-DL. We will see that  the running 
t ime of this algorithm which is the fastest we can currently obtain is exponential 
in the degree. 

Suppose that  I and J are fractional O-ideals and that  we wish to solve the 
NF-DL-problem 

J = a I  k. 

Without  loss of generality we assume that  I and J are invertible O-ideals. If they 
are not, then one can compute the so-called order of multipliers in polynomial 
time, where both ideals are invertible. First we determine an exponent k which 
is a solution of the equation 

[J] = [/]~. 

For this purpose we choose a factor base F B  which contains finitely many invert- 
ible prime ideals of (3 and also the ideals I and J.  Then we determine exponent 
vectors v = ( v p ) p e f B  E 7],, ]FB[ with 

I I  [P]*P = [O]. 
PEFB 

Those vectors v are called relations on FB.  The set of all relations on F B  is 
an [FB[-dimensional 2~-lattice. If a generating system of this lattice is known, 
then the exponent k can be determined by means of linear algebra. This has been 
explained in [BD90]. The relations on FB are found by the method from [Buc88]. 
The basic idea is as follows. A random exponent vector e E { 1 , . . . ,  [Zl[}lFBI is 
chosen. Then a reduced ideal K in the class [r~peFB Re(P)] is computed. If K 

can be factored over F B ,  i.e. if K = I'IPeFB pI(P)  for some f E 2Z IFBI then 
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v -- e - f is a relation on F B .  To guarantee that  the decomposition is successful 
with a sufficient probability we use 1-reduction as in [Buc88]. This means that  
we have to compute shortest vectors in n-dimensional lattices. Using the best 
known algorithm [Kan87] for this problem this requires exponential t ime in n. 

Once k is known we must find a.  Note that  J I  -k  = aO.  Since we know k 
this means that  we have to find a generator of the principal ideal J I  -k .  More 
generally let L be a principal ideal and suppose that  we want to find a generator 
of L. This generator can again be found by means of linear algebra. With  each 
relation v on F B  tha t  we have computed we have also obtained a number a = 
a(v) E F such that HPEFB pvp = aO. Now we choose again random vectors 
e E { 1 , . . . ,  [A]}IFBI. Then we compute ~ E F and a reduced O-ideal K such 
tha t  ,yK = L YIPeFB pep.  If K can be factored over FB, i.e. if K = I - IpefB PIP 

for some f E ~IFBI then L = 7 1-IpeFB pep- fp .  Then w = e - f is a relation 
on F B .  Use linear algebra to write w as an integer linear combination on the 
generators of the relation lattice, i.e. w = ~ '~wvv.  Then L = 71-I~ a(v) w'). So 
we have found a generator for L. 

A careful analysis of this algorithm together with experiments has to be done 
to evaluate the practical security of NF-EXP. 

5 T w o  s m a l l  e x a m p l e s  

We present computations for the one way function NF-EXP in the order O of the 
equation f ( x )  = x 4 + 989. Elements of the number field F = Q[x]/ ( f (x ) )  are 
multiplied as described above; this is realized using a multiplication table of size 
4 x 4 x 4, where there are 16 non-zero entries of which 10 equal to  1 and 6 equal 
to -989.  A polynomial yielding such a sparse multiplication table is of special 
interest for practical purposes, since multiplication of number field elements is 
a basic operation in the evaluation of NF-EXP. 

We start  with the (prime) ideal I given by the matr ix  

01  ' 
0 0  

where the columns are the coefficient vectors representing the ideal basis ele- 
ments. Now we choose k = 200; exponentiation of I by k yields a representation 
of I k as a matr ix with entries in the first row having more than 160 digits. Re- 
ducing this matr ix  using LLL with a large parameter  (see [Coh95, 83it]) induces 
an ideal J having a matr ix representation 

li4~ 737  / 1474 0 

Oo 
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and a number a given by the coefficient vector 

(90081550627454263171422562919513727, 

-50384113427755050501559848379592542, 

13537457015000821175817479099216537, 

-3548184135796965661440536008930274)/1474 

(we use a common denominator for all vector components) such that we have 

NF-EXPI(a, k) -- J. 

The computation of J and a took 61 ms. 

As claimed in Section 3, we cannot compute a and J from I and k in this way 
in general, since the size of the intermediate results and of a is exponential. We 
explain a fast exponentiation technique which computes only with numbers of 
polynomial length. It is called square, multiply and reduce. It proceeds as follows: 

Let (bz~,..., b0)2 be the binary expansion of k and denote (J, a) +-- reduce(I) 
the computation of an equivalent, reduced ideal together with a number a E F 
such that I = aJ. 

Procedure Square, Multiply and Reduce: 

1. IF bo = 1 THEN E <-- I ELSE E +-- O 

2. S + - I  

3. FOR i ~-- 1 TO Ik 

3.1 S* +- S 2, (S, fl~) +-- reduce(S*) 

3.2 IF b~ = 1 THEN E* +- E .  S, (E,a~) +- reduce(E*) 

This procedure yields a reduced ideal J -- E equivalent to I k and a number 
coded by the a l , . . . ,  ai~, i l l , . .  -,/~th. In our example, J is then represented by 

the matrix 

350 0 275 147~ 
350 150 311: ) 
0 25 
0 0 
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and the c~i and ~i are given by the following table. We mention only those f~i 
for which bi = 1. 

a t :  ( -9 ,1 ,0 ,0) /302 
a2:  (-32398,3816,122,-20)/1665 
a3:  (-8452,71353,-2467,163)/1185 
f13: (1,0,0,0) 
a4 :  (-94051,-51202,-8704,1592)/19489 
a5 :(3078261,-726226,-349243, 171480)/7458 
a 6 :  (-131260,-476600,-52456,8698)/3205 
fi6: (946075,11920,-14675,1180)/10954 
aT: (-46517,868,-661,30)/10 
~7; (127134,12057,-1464,-197)/175 

This computation took 51 ms. 

A measure for the practical hardness of inverting NF-EXP is given by the time 
used to compute the class group of O. The algorithm used can be modified to 
invert NF-EXP, as explained in the last section. Assuming some mathematical 
reasonable conjecture, the class group of O is generated by two ideals and is 
isomorphic to ~ / 2 ~  x 7Z/36~. The computation took 16 seconds. 

Here another example: let f ( x )  = x 6 - 11. Let I be given by 

l i 0  0 0 0 3 1 9 0 0 0 6  
0 19 0 0 12 
0 0 1 9 0  5 
0 0 0 19 10 
0 0 0 0 1 

Choose k = 1000; the matrix representing I k requires more than 14, 000 decimal 
digits, the reduction of this matrix took 97321 ms. Applying the s q u a r e ,  m u l t i p l y  

a n d  r e d u c e  procedure, we get the following representation for I k: an ideal J given 
by 

/i0220i) 0 2 0 0  
0 0 2 0  
0 0 0 2  
0 0 0 0  
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and an number a E Q[x]/(f) given in the short representation explained above: 

121 

122 

123 
& 
124 

125 

Z5 
126 
& 
127 

Z7 
128 
& 
129 
& 

This computation took 

: ( -17 ,99 ,103,16 ,13 , -12) /38  
: ( - 8 3 , 7 3 , - 9 9 , - 1 1 3 , - 5 , - 1 3 ) / 5  
: (2,0,0,0,0,0)  
: (1,0,0,0,0,0)  
: (887, -183,197,27 , -193,37) /38  
: ( -34,524,206, -32,26,24) /43 
: ( 5 9 , 4 6 9 , - 1 7 1 , - 1 1 , - 5 1 , - 4 1 ) / 2  
: ( - 3 1 2 , - 1 3 7 , 8 8 , - 1 5 1 , 7 0 , 9 0 ) / 2  
: (1,0,0,0,0,0)  
: (1,0,0,0,0,0)  
: (1,0,0,0,0,0)  
: ( - 7 , 0 , 3 , 0 , 1 , 0 ) / 3  
: ( 1 ,0 , -1 ,0 ,1 ,0 )  
: ( -6 ,0 ,3 ,0 ,0 ,0 )  
: (1,0,0,0,0,0)  

124 ms. The class group was computed in 27,150 ms. 

6 C o n c l u s i o n s  

We have shown that  the one way function NF-EXP Can in principle be used to 
implement cryptographic primitives such as key exchange and digital signatures. 
We have also argued that  the only known method for inverting N F - E X P  requires 
computing shortest vectors in lattices whose dimension is the degree of the num- 
ber field in which NF-EXP is implemented. This requires exponential time in the 
degree of the number field. 

There are two important open problems: 

- Can the algorithm for inverting NF-EXP be improved? 
- -  C a n  N F - E X P  be efficiently implemented? 

As to the first question it is conceivable tha t  an algorithm for solving NF-DL 
can be designed which uses c-reduction with c > 1. Certainly, c = 2", for which 
the reduction algorithm is polynomial, is not sufficient. But it may be possible 
to use some c which is subexponential in n. To implement such a c-reduction 
one can use the short vector algorithm described in [Sch87]. This algorithm is a 
candidate for a subexponential time reduction procedure. 

To answer the second question much more research has to be done. We sus- 
pect that  for example very efficient implementations are possible for families of 
number fields which are given by very sparse generating polynomials. 
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