
Fast and Secure Hash ing Based on Codes

Lars Knudsen and Bar t Preneel*

Katholieke Universiteit Leuven, Dept. Electrical Engineering-ESAT,
KardinaaJ Mercierlaan 94, B-3001 Heverlee, Belgium
{ lars. knudsen,bar~, prenee I } @esat. kuleuven, ac. be

Abst rac t . This paper considers hash functions based on block ciphers.
It presents a new attazk on the compression function of the 128-bit hash
function MDC-4 using DES with a complexity far less that one would
expect, and proposes new constructions of fast and secure compression
functions based on error-correcting codes and m-bit block ciphers with an
m-bit key. This leads to simple and practical hash function constructions
based on block ciphers such as DES, where the key size is slightly smaller
than the block size, IDEA, where the key size is twice the block size
and to MD4--like hash functions. Under reasonable assumptions about
the underlying block cipher, we obtain collision resistant compression
functions. Finally we provide examples of hashing constructions based on
both DES and IDEA more efficient than previous proposals and discuss
applications of our approach for MD4-1ike hash functions.

1 I n t r o d u c t i o n

Cryptographic hash functions map a string of arbi t rary size to a short string of
fixed length, typically 128 or 160 bits. Hash functions are used in cryptographic
applications such as digital signatures, password protection schemes, and con-
ventional message authentication. For these applications one requires that it is
hard to find an input corresponding to a given hash result (preimage resistance)
or a second input with the same hash result as a given input (2nd preimage
resistance). Moreover, many applications also require that it is hard to find two
inputs with the same hash result (collision resistance). For the remainder of this
paper we consider hash functions satisfying these three properties.

All important hash functions are iterated hash functions based on an easily
computable compression function h(-, -) f rom two binary sequences of respective
lengths m and l to a binary sequence of length m. The message M is split
into blocks Mi of I bits, M = (M1,M2, . . . ,Mn) . If the length of M is not a
multiple of l, M is padded using an unambiguous padding rule. The hash result
Hash(IV, M) = H = Ht is obtained by comput ing iteratively

Hi = h (g i - l , M O i = 1,2,. . . , t , (1)

F.W.O. postdoctoral researcher, sponsored by the Fund for Scientific Research, Flan-
ders (Belgium).

486

where H0 = I V is a specified initial value. Collision attacks, 2nd preimage
attacks, and preimage attacks can be applied to both the compression function
and the hash function. For the remainder of this paper we make no distinction
between the latter two attacks and refer to both of them as preimage attacks.

It is possible to relate the security of Hash(.) to that of h(-,-) in several
models [2, 12, 15, 17]. To do this, one needs to append an additional block at
the end of the input string containing its length, known as MD-strengthening
(after Merkle [15] and Damg~rd [2]), leading to the following result.

T h e o r e m 1 . Let Hash(.) be an iterated hash function with MD-strengthening.
Then preimage and collision attacks on Hash(., .) (where an attacker can choose
I V freely) have roughly the same complezity as the corresponding attacks on
h(., .).

Theorem 1 gives a lower bound on the security of Hash(IV, -). Most practical
hash functions do not have a collision resistant compression function and do not
treat the two inputs of the compression function in the same way; exceptions are
the DES based hash functions of Merkle [15] and those of the authors [11]. As
an example, collisions for the compression function of MD5 have been presented
in [3, 61.

We consider hash functions based on block ciphers with block length m bits
and key length k bits. For convenience we will assume that k is an integer
multiple of m. Such a block cipher defines, for each k-bit key, a permutation
on m-bit strings. The advantage of constructing hash functions based on block
ciphers is the minimization of the design and implementation effort. Moreover,
the security of the block cipher can, to a certain extent, be transferred to hash
functions. One difference is that the block cipher has to satisfy certain properties
even if the key is known (see for example [19]). The main disadvantage of the
block cipher approach is that customized hash functions are likely to be more
efficient. However, Dobbertin's attacks [4, 6] on specific hash functions such as
MD4 [21] and MD5 [22] have shown that this efficiency can come at a high cost,
which makes the block cipher constructions more attractive.

We define the hash rate of a hash function based on an m-bit block cipher
as the number of m-bit message blocks processed per encryption or decryption.
The complezity of an attack is the total number of operations, i.e., encryptions
or decryptions, required for an attacker to succeed with a high probability.

The first secure constructions for a hash function based on a block cipher
were the scheme by Matyas, Meyer, and Oseas [14], which has been specified in
ISO/IEC 10118 [9], and its dual, widely known as the Davies-Meyer scheme. ~-
Both schemes are single block length hash functions giving a hash result of only
m bits with hash rate 1. A classification of these schemes has been presented
by Preneel et al. in [18]. Using a birthday attack collisions for such a scheme
can be found in about 2 'n/2 operations and a preimage in about 2 'n operations.
However, since most block ciphers have a block length of m = 64 bits, collisions
can be found in only 2 z2 operations and hash functions with a larger hash result

2 The real inventors are probably S.M. Matya.s and C.H. Meyer.

487

are needed. The aim of double block length hash functions is first of all to achieve
a security level against collision attacks of at least 2 m encryptions. For all con-
structions with rate 1 of a large class the authors have shown that collisions (for
H) can be found in no more than 23m/4 operations [11]. Using DES the best
known constructions are MDC-2 of rate 1/2 [1, 9], and MDC-4 of rate 1/4 [1];
for both a collision attack is believed to require at least 2 'n operations. Another
important class of constructions are those of Merkle [15]. In [12], Lai and Massey
have proposed two constructions for hash functions based on their block cipher
IDEA (with m = 64 and k = 128): Abreast-DM and Tandem-DM have hash
rate 1/2 and a claimed security level against collision attacks of 2 'n operations.

However, for all these constructions, except for those of Merkle, there is no
proof of security and for MDC-2 and MDC-4 collision for the compression func-
tion can be found faster than by a brute force attack. Moreover, for block ciphers
with m = 64 (e.g., DES and IDEA), the double block constructions do not pro-
vide an acceptable security level against parallel brute force collision attacks: it
follows from [20, 23] that a security level of at least 2T5... 2 s~ encryptions is re-
quired, which is not offered by any of the current proposals. In [11] we developed
a new framework for constructing hash functions based on m-bit block ciphers
with m-bit keys using linear codes over GF(22). Constructions were shown for
which finding a collision requires at least 2 q'*/2 encryptions (with q _> 2), and
finding a preimage requires at least 2 qrn encryptions at the cost of more internal
memory. For q = 2, the constructions are more efficient than existing proposals
with the same security level.

In this paper we first show that collisions for the compression function of
MDC-4 can be found in time 23m/4. For DES some key bits have to be fixed to
avoid weak keys and the complementation property, hence the complexity of our
attack is only 241, which is quite feasible today. Since the hash rate of MDC-4
is 1/4, i.e., only one block is processed per four encryptions, one should expect
a higher level of security for the compression function. Second we generalize the
approach of [11]. We propose a method for constructing hash functions based
on block ciphers with larger keys and working on smaller blocks. More precisely,
we consider m-bit block ciphers with tin-bit keys, t _> 1, using linear codes over
GF(2"), s > 2. Our constructions result in more efficient hash functions than
those of [11]. Using DES and IDEA we show that it is possible to obtain hash
rates close to 1 respectively 2 with a high security level against collision attacks.

In the following EK (X) and DK (Y) denote the encryption and decryption
of the m-bit plaintext X respectively ciphertext Y under the tm-bit key K. It
will be assumed that the block cipher has no weaknesses, i.e., that in attacks on
the hash functions based on the block cipher, no short-cut attacks on the block
cipher will help an attacker.

The remainder of this paper is organized as follows. In w we analyze the
compression function of MDC-4. Our new constructions are presented in w and
in w we provide examples of efficient constructions using DES, IDEA, and the
MD4-1ike functions, hereafter denoted the MDx family.

488

2 The Compress ion Funct ion of MDC-4

MDC-2 and MDC-4 [1] are hash functions based on a block cipher; they are also
known as the Meyer-Schilling hash functions after the authors of the first pa-
per describing these schemes [16]. MDC-2 is included in ISO/IEC 10118 Part 2,
standardizing a hash function based on a block cipher [9]. MDC-2 can be de-
scribed as follows, where h(X, Y) = Ex(Y) ~ Y and EK(.) denotes encryption
with an m-bit block cipher with key K:

Tli = h(u(g l i_ l) ,X i) = LTli [[RTli

T2i -" h(v(H2i-1),Xi) = LT2i II RT2i

Hli = LTl i II RT2i
H2i = LT2i II R T l i .

The variables H10 and H20 are initialized with the values IV1 and IV2 respec-
tively, and the hash result is equal to the concatenation of Hlt and H2t. The
rate of this scheme is equal to 1/2. The ISO/IEC standard does not specify
any particular block cipher; it also requires the specification of two mappings
u, v from the ciphertext space to the key space such that u(IV1) ~ v(1V~). For
DES, u and v omit the parity bits and fix the second and third bit to 10 and
01 respectively, to preclude attacks based on (semi-)weak keys. The compression
function of MDC-2 is certainly not collision resistant: for any fixed choice of
Xi, one can find collisions for both Hli and H2i independently with a simple
birthday attack requiring about 2 r'*/2 operations.

One iteration of MDC-4 [1] is defined as a concatenation of two MDC-2 steps,
where the plaintexts in the second step are equal to H2i-1 and Hli- l:

Tli = h(u(Hli-1), Xi) = LTli [[RTli

T2i = h(v(H2i-x),Xi) = LT2i [[RT2i

Uli = LTli [[RT2i

U2i = LT2i II RTI

V l i = h(u(Uli), H2i-x) = LVli II RVX~

V2i = h(v(U2i), Hli_l) = LV2i II RV2~

Hli = LVli II Rv2i

H2~ = LV2, II RVX~.

The rate of MDC-4 is equal to 1/4. It is clear that the "exchange" of Hl i_ l and
H2i_l in the second step does not improve the algorithm: after the exchange of
right halves, Uli and U2i are symmetric with respect to Hli-1 and H2i_l.

Finding a collision for the compression function is harder than in the case of
MDC-2. On the other hand, collisions for the compression function of MDC-2
with different values of Xi and with the same value of (Hli-1, H2i_1) will also
yield collisions for MDC-4. but generally this property does not hold for other

489

collisions for the basic function like pseudo-collisions, i.e., collisions where all the
inputs to the compression function are varied.

In the following we will show a collision attack on the compression function
with a complexity smaller than a brute-force attack:

1. Choose a random value of A'i and of H2i-1 (with i = 1 this can be the
specified initial value).

2. Calculate Tli for 23m/4 values of Hli_ l . One expects to find an m/2-bit
string S such that for a set of 2 m/4 values the relevant bits of LTi are equal
to S (in fact for 50% of the strings S there will be 2 m/4 cases or more).

3. Compute V2i for the 2 m/4 inputs in this set. The probability of obtaining a
collision for V2i is equal to (2"14) 2/2 'n+l = 2 -m/2+l.

4. If no match is obtained, one chooses a new value for S; one can avoid re-
computing Tli if one stores 2 'n/4 �9 2 m/2 = 2 a'n/4 m-bit quantities.

The expected effort to find a collision for the compression function of MDC-
4 is 23m/4 encryptions and the storage of 23'n/4 m-bit quantities. The keys of
MDC-4 using DES are effectively only 54 bits long [1]. In that case the collision
attack requires about 241 DES encryptions and a storage of 23~ 5 54-bit quantities
(about 10 Gigabyte).

3 Constructions with Linear Codes

In this section we present new constructions for collision resistant hash functions
based on an m-bit block cipher and linear codes. These constructions extend a
simple hash mode which is believed to be secure to a multiple hash mode. As
the simple hash mode we will use the Davies-Meyer hash function:

hi(Mi, Hi- l) -- EM,(Hi-1) �9 Hi-1. (2)

Any of the 12 secure single block length hash functions described in [18] can be
used. The advantage of using the Davies-Meyer hash function is that it is defined
for block ciphers with different block and key sizes. The following assumption is
standard in cry. ptography today.

A s s u m p t i o n 1 Let EK(.) be an m-bit block cipher with a tin-bit key K for an
integert > O. Define the compression function h to be the Davies-Meyer function
(2). Then finding collisions for h requires about 2 "*/2 encryptions (of an m-bit
block), and finding a preimage for h requires about 2 m encrgptions.

Defin i t ion2 (Mul t ip le Dav ies -Meyer) . Let EK (.) be an m-bit block cipher
with a tin-bit key K for integer t > 0. Let hi, h2, . . . hn be different instantiations
of the Davies-Meyer function, that is, hi (Xi, Yi) = Ex, (Y~) q~ u obtained by
fixing [log 2 n] key (or plaintext) bits to different values, where the Xi's are tm-
bit string and the]e]'s are m-bit strings. The compression function of a multiple
Davies-Meyer scheme takes r m-bit input blocks, which are expanded by an
affine mapping to the n pairs (Xi. Y/). The output is the concatenation of the

490

outputs of the function hl , hn. The output of the compression function shall
depend on all r input blocks, in other words, the matrix of the affine mapping
has full rank.

A subfunction hi(Xi,Yi) is called active, if in a collision or preimage attack
the input blocks forming (Xi,]]) are different. Two subfunctions hi(Xi, Yi) and
hj(Xj,u can be attacked independently, if one can vary one (or more) input
blocks to the compression function, such that the arguments (Xi, Yi) of hi vary,
while the arguments (Xj, ~'~) of hj do not.

We make the following assumption, which is a slightly improved version of
the assumption in [11].

A s s u m p t i o n 2 Assume that a collision or preimage for the compression func-
tion of a multiple Davies-Meyer scheme has been found, that is, simultaneously
for hi, h2, . . . hn. Let N be the number of active subfunctions and let N - v be
the maximum number of the N subfunctions that can be attacked independently.
Then it is assumed that obtaining this collision or preimage must have required
at least 2 vm/2 respectively 2 vm encryptions.

Note that in an attempt to find collisions or preimages for a multiple Davies-
Meyer scheme it will always be possible to fix some input blocks and thereby fix
the outputs. Let N denote the number of active subfunctions. What Assump-
tion 2 says is, that if N - v of these N functions can be attacked independently
(separately), then there e.xists no better attack than a brute force attack on the
remaining v subfunctions. Note that in the overall complexity of the collision
(or the preimage) attack we do not consider the complexity of the attack on the
N - v functions, which makes our assumption strong and plausible.

3.1 The new constructions

The following theorem shows how hash functions based on block ciphers can be
constructed using non-binary linear error correcting codes. It extends the main
theorem of [11].

T h e o r e m 3. I f there exists an [n, k, d] code over GF(2 t+x) of length n, dimen-
szon k, and minimum distance d, with (t + 1)k > n, for t > 1 and m >> log 2 n,
then there exists a parallel hash function based on an m-bit block cipher with a
tin-bit key for which finding a collision for the compression function requires at
least 2 (d-1)m[2 encryptions and finding a preimage requires at least 2 (a-Urn en-
cryptions provided that Assumption $ holds. The hash function has an internal
memory of n . m bits, and a rate o f (t + 1) ~ - 1.

Proof: The compression function consists of n different functions hi with
1 < i < n, see Definition 2. The input to the compression function consists of
(t + 1)k m-bit blocks: the n variables H~_ x through H"i_x (the output of the
n functions of the previous iteration) and r message blocks M/x through M[,
with r = (t + 1)k - n > 0. In the following, every individual bit of these m-bit

491

blocks is treated in the same way. The bits of (t + 1) consecutive input blocks
are concatenated yielding k elements of GF(2t+I) . These elements are encoded
using the [n, k, d] code, resulting in n elements of GF(2t+I). Each of these ele-
ments represents the (t + 1)-bit inputs to one of the n functions, that is, one bit
represents the plaintext block input and the remaining t bits represent the key
input to the block cipher. The individual input bits are obtained by representing
the elements of GF(2 TM) as a vector space over GF(2) . This construction guar-
antees that the conditions for Assumption 2 are satisfied for the value v = d - 1.
It follows from the minimum distance of the code that at least d subfunctions
are active in a collision. Also, k is the max imum number of subfunctions, which
can be attacked independently. But since n - k > d - 1 by the Singleton bound
[13, p. 33] the result follows. �9

The existence of efficient constructions for d = 3 and d = 4 follows from the
existence of perfect Hamming codes over GF(2 t) (see e.g., [13]) with parameters
n = (q ' - l) / (q - 1) , k = n - s , d = 3 for a prime power q, and from the
existence of triply extended MDS (maximum distance separable) codes [13, Ch.
11, Th. 10] with parameters n = qS + 2, k = qs _ 1, d = 4 for an even prime
power q.

C o r o l l a r y 4 . Provided that Assumption 2 holds, there exist parallel hash func-
tions based on an m-bit block cipher with a tin-bit key of rate close to t for which
finding a collision (a preimage) takes at least 2 '~ (2 2m} operations respectively
at least 2 3r"/2 (2 3rn) operations.

Proof : From Theorem 3 it follows that there exist hash functions with rates
(t + 1)k/n - 1. But since for Hamming codes n/k --* 1 for large values of n, the
result follows. �9

This result implies that at the cost of a larger internal memory, using DES
one can obtain hash functions of rate 1, and using IDEA one can obtain hash
functions of rate 2. For comparison MDC-2 and MDC-4 have rates 1/2 respec-
tively 1/4, and Abreast-DM and Tandem-DM developed for IDEA [12] have
rates 1/2.

In [11] we gave an example of a hash function based on an m-bit block cipher
with an m-bit key using the code [8, 5, 3] over GF(22). The code is obtained by
shortening the Hamming code [21, 18, 3]. The hash function has rate 1/4 and an
internal memory of 8 �9 m bits. In the following we show that one can improve
this result.

The idea is to divide the m-bit words into smaller blocks and to use codes
over bigger fields. As an example, assume we have a block cipher with m-bit
blocks and m-bit keys for even m. In Theorem 3 codes over GF(22) are used,
where the two bits of the code words represent the plalntext respectively the
key inputs to the block ciphers. An alternative method is to divide all m-bit
blocks into blocks of m/2 bits and use codes over GF(24). The advantage of this
approach, which will be illustrated later, is tha t better bounds exist for such
codes. This leads to the following generalization.

492

T h e o r e m 5. Let m be a multiple orb, i.e., m = b.mb. I f there exists an In, k, d]
code over GF(2 b(t+l)) of length n, dimension k, and minimum distance d, with
(t + 1)k > n, and m >> log 2 n, then there exists a parallel hash function based
on an m-bzt block cipher with a tin-bit key for which finding a collision for
the compression function requires at least 2 (d-1)m/~" encryptions provided that
Assumption 2 holds. The hash function has an internal memory of n �9 m bits,
has a rate of (t + 1)-~ -- 1 and works on mb-b,t blocks.

Proof: Similar to that of Theorem 3. �9

As an example, we can construct a hash function based on an m-bit block
cipher with an m-bit key by using the code [8, 6, 3] over GF(24), which is obtained
by shortening the Hamming code [17, 15, 3]. The hash function has rate 1/2 and
an internal memory of 8- m bits, and is thus twice as fast as the example using
the code [8, 5, 3] mentioned above. With m = 64 this construction operates on
32-bit words. One can extend this approach to construct hash functions with
codes over GF(2S), i.e., operating on 16-bit words, for example by shortening
the [257,255, 3] Hamming code (s = 2). However, since a [17, 15, 3] over GF(24)
exists, the construction over GF(2 s) is only more efficient for n > 17. Using an
In, k, d]-code requires n- m bits of internal memory, which make the constructions
less attractive for larger n. Moreover, the codes obtained from splitting the blocks
into smaller words result in a more complex implementation.

Notes:

1. Apart from the simple security proof and the relatively high rates, the
schemes have the advantage that the n encryptions can be carried out in
parallel.

2. The disadvantages of the schemes are the increased amount of internal mem-
ory and the cost of the code implementation (mainly some exclusive ors).

3. For the preimage attack, the security bounds assume that the entropy of the
unknown part of the input is at least (d - 1)m bits.

As for (3), it is clear that if D < (d - 1)m bits are unknown to the attacker, a
brute force preimage attack can be done in about 2 ~ encryptions.

3.2 Output transformation

The constructions presented above have the following problems:

1. since every output bit does not depend on all input bits of the compression
function, it is relatively easy to find many inputs for which several output
blocks of the compression function are equal,

2. the number of output blocks is typically much larger than the security level
suggests.

The solution is to apply an output transformation to the outputs of the com-
pression function. This transformation can be slow, since it has to be applied
only once. Therefore there are many possible constructions.

493

First we present an approach tha t does not affect the provable security of
the compression functions. One encrypts the n ou tpu t blocks of the compression
function using the block cipher with a fixed key, such that all output blocks of
the encryption depend on all input blocks in a complicated way. Subsequently,
the n blocks concatenated with the n encrypted blocks are hashed using the
following construction. Denote with nmi n the smallest possible value of n for a
given value of d, such that Theorem 5 holds. Compress the 2n blocks to nmi n
blocks using the new construction with nmi n parallel blocks (if nmi n < n, this
hash function will have a lower rate than the original one). This approach solves
the first problem and partly the second problem. However, if a further reduction
to less than nmi n blocks is required, o ther approaches are necessary.

We present next a generic approach for all values of n, which can be used
instead of or in conjunction with the first approach. First one constructs from the
m-bit block cipher a large, strong block cipher with block length n. m bits. This
block cipher can be slow, since it is applied only once. Subsequently, the n (nmin)
blocks from the compression function are input to a Davies-Meyer construction
where the block cipher key is r andomly chosen and fixed (and part of the hash
function description). Under Assumpt ion 1 this is a secure hash function. The
output can be truncated to any s blocks, where s > d - 1.

We give here an example of such a construction. One iteration consists of
the following two steps. First, pe rmute the blocks, such that block i becomes
block i + 1 and the last block becomes the first block. Second, encrypt the input
blocks using the small block cipher in CBC mode. More precisely, denote the
output of the compression function with H 1 , . . . , H '~. Let K, for i = 1 , . . . , n be
n randomly chosen and fixed keys, and let C i = H i for i = 1, . . . , n. Repeat the
following procedure r times:

C 0 ~ C n

C i = C i-1 f o r i - - 1 ,n ,

C' = E K , (C i ~ C i -1) for i = 1 , . . . , n

(Here we use the same n keys in every i terat ion. Alternatively, different keys can
be used in all rounds. Also the block pe rmuta t ion in the first iteration can be
omitted.) After one iteration the last block will depend on all input blocks and in
general, block / depends on / input blocks. After two iterations all blocks depend
on all input blocks. However, two rounds are insufficient to make a strong block
cipher. Therefore we recommend tha t this block cipher is used with at least
r = n rounds. Finally, the result of the ou tpu t transformation is defined as the
concatenation of the blocks H i ~ C i for i - 1 , n. If the output is truncated
we recommend that the final ou tpu t is formed from the blocks with the highest
indices. With r rounds the output t ransformat ion requires r 2 encryptions of the
small block cipher.

In the next section we give some practical examples.

494

4 S o m e P r a c t i c a l E x a m p l e s

This section contains some examples of new constructions for different parame-
ters of the underlying block cipher. We will use the notation (m, k) for an m-bit
block cipher with a k-bit key. In the examples to come we use Hamming codes
with d - 3 and MDS codes with d - 4. The existence of the latter codes follows
from [13, Ch. 11, Th. 10].

4.1 U s i n g an (m , m) - b l o c k c i p h e r

Table 1. Rates and complexities of previous proposals for (m, m)-block ciphers.

Scheme

MDC-2
MDC-4
Merkle

Rate

1/2
1/4
0.27

Collision h
2m/2
23,',14

2'"

Collision H

2 ~

2 m

Reference

[1]
[1]
[15]

Table 2. Comparison of constructions based on codes over GF(22) a~d over GF(24)
for (m, m)-block ciphers.

OF(22) aF(2 *) Collision
Code Rate Code Rate

[5, 3, 3]
[8, 5, 3]

[12, 9, 3]

[9, 5, 41
,, [16, 12, 4]

1/5
1/4
1/2

1/9
1/2

[6, 4, 3]
[s, 6, 3]

[12,10, 3]

[9, 6, 4]
[16,13, 4]

1/4
1/2
2/3

1/3
5/8

> 2 ,~
> 2 "~
_> 2 "~

2 3m/2

23"q2

Note that the 2 rn complexities of MDC-2 and MDC-4 are the best known
attacks against the hash function, while against Merkle's scheme and the schemes
of Table 2 the 2 m complexi ty is against the compression functions and is a lower
bound for the complexity of an a t tack on the hash function.

In the following we show an implementat ion of the construction using the
code [9, 6, 4]. We define GF(24) as the extension field GF(2)[z]/(~c 4 + z + 1).
There are many generator matr ices for a [9, 6, 4] linear code over GF(24). We have
searched for a generator ma t r ix which leads to a simple and efficient compression
function, as explained below. The generator matr ix has the following form:

" 1 0 0 0 0 0 1 1 1"
0 1 0 0 0 0 1 a ~
0 0 1 0 0 0 1 # ~ (3)
0 0 0 1 0 0 a l #
0 0 0 0 1 0 a f l l
0 0 0 0 0 1 # 1 ~

495

Here 0 and 1 are the additive and multiplicative neutral elements in GF(2 4) and
c~ = z, and 13 = x 3 +z- '+ 1. The motivation for the choice of the generator matrix
is as follows. In an implementation of the compression functions the elements
of GF(2 4) are represented as elements of a vector space over GF(2). Clearly,
multiplications with 0 and 1 are the easiest to implement. A closer analysis shows
that multiplication with ~ and/3 in the above example can be implemented with
one respectively two exclusive-ors. An exhaustive search for the matrix with
the easiest implementation is clearly not feasible, but by restricting ourselves to
using the elements 0, 1, ~, and 13 we obtain a solution close to the optimal one.

Let f i (X , Y) be different instantiations of the function E x (Y) (9 Y , let XL
and XR denote the leftmost respectively rightmost m / 2 bits of X and let I[
denote concatenation of m / 2 bit blocks. Furthermore, let G1, . . . , G 9 be the 9
input blocks coming from the compression function in the previous iteration and
let M 1, M 2, M 3 be the 3 message block inputs. This results in the following
compression function:

g 1 = fl (G 1 , G 2)

H 2 = f2 (G 3, G 4)

H 3 = f3 (G s, G 6)

g 4 = f 4 (V r, G s)
H 5 = f s (a 9, M 1)

H 6 = f6 (M 2,)k/3)

H 7 = fT(GIeGa.GS~(G~IIG~)~(G~IIM~.).(M~RIIM~),
G2 eG4 ~G6 0(G[~GSRIIGrL)~(G~ ~ M~IIG9L)e(MIIIM~ ~:f~R))

H s = f s (G I (9 G r (g M 2 3 4 6 6 r (GRIIGL) (9 (GzRIIGR) (9 (Mb~IIM~),
4 3 3 ~. s t G 9 H G g m M t u G2(gGS(gM3(9(GR(9GLI]GL)v~G (gt LH R w LRJI

g 9 fg(GI(gG9(9(G4L1~HG4R) ~ .5 6 s s 2 3 = (GnIIGL) (9 (GLRIIGR) (9 (g~ [[M~,),
G~(gM~(gG3(9(G~(gG~IIG~)(9Gr(9(M~(gM.~IIM/.)),3 2

where Gt = (G~IIG h (9 G~+I (9 Gh+X) and XLa = XL (9 XR.
As an output transformation we suggest to first hash the 9 blocks to 7 blocks

via the compression function using the code [7, 4, 4] (nmi n = 7 for d = 4) and
then to hash the 7 blocks to 3 blocks using the output transformation with 7
rounds described in the previous section.

4.2 Using an (rn, 2rn)-block c iphe r

The only known hash functions based on an (m, 2m)-block cipher with a 2m-bit
hash result are the Abreast-DM and the Tandem-DM from [12]. The compression
functions of both hash functions process an m-bit block using two encryptions,
i.e., with rate 1/2. Let Hi and Gi denote the intermediate hash values. The
Abreast-DM is defined as follows

Hi = Hi -1 (9 Ec ,_~ .M,(Hi -1)

Gi = Gi -1 �9 EM,,H,_, (Gi-1),

496

where G is the bitwise complemented value of G. The Tandem-DM is defined as
follows

[~i = EG,_t,M, (H i - t)

Hi = |[~ ~ Hi-1

Gi = Gi- t ~ EM,,w,(Gi-I).

Table 3 lists the rates and complexities of the best known attacks on the two
constructions. However, as already indicated before, there e.-6st more efficient

Table 3. Rates and complexities of previous proposal for (m, 2m)-block ciphers [12].

Scheme Rate Collision h Collision H
Abreast-DM 1/2 2 '~ 2 "~ i
Tandem-DM 1/2 2 'n 2"*

constructions with a higher security level. Table 4 lists the rates and complexities
of such constructions. As before, it is possible divide the m-bit blocks into smaller
subblocks. E.g., the blocks can be divided into halves and expanded with a code
over GF(26), such as [65, 63.3].

Table 4. Rates and complexities of our proposals for (m, 2m)-block ciphers using codes
over GF(23).

Code
[4,2.3]
[6, 4, 3]
[9, 7.3]
[5,2.4]
[7,4,4]

[10, 7, 4]

Rate Collision

1/2 >_ 2 m

1 _> 2"
4/3 > 2 m

1/5 > 2 3'n/2
5/7 >_ 2 3m/2

11 /10 >_ '2 3m12

4.3 T h e M D x f a m i l y

Both MD4 [21] and MD5 [22] can be viewed as a Davies-Meyer construction with
an underlying m-bit block cipher with a 4m-bit "key." From this perspective,
both constructions have rate 4.

However, Dobbert in 's at tacks [4, 6] on MD4 and MD5 show that the compres-
sion functions are not collision resistant, and his attack on the extended MD4
[5] shows that for MD4 even two dependent runs of the compression function are

497

not collision resistant. However, it seems unlikely that Dobbertin's attacks ex-
tend to compression functions consisting of two or more instantiations of MD5.
We can apply our methods to construct parallel MD5 hash functions based on
linear codes over GF(25). In Table 5 we list possible constructions.

Table 5. Rates and complexities of our proposals for the MDx family using codes over
GF(25).

Scheme Rate Scheme Rate Scheme Rate
MD4 4 [5, 3, 3] 2 [5, 2, 4] 1
MD5 4 [10, 8, 3] 3 [10, 7, 4] 2.5

[20, lS, 3] 3.5 [20, 17, 4] 3.25

Since the assumption for our constructions, i.e., that the basic components
are secure, does not hold for MD4 and MD5, we do not specify explicit bounds for
the complexities of collision at tacks on the compression functions. However, we
conjecture that for the constructions using MD5 and codes of minimum distance
4, a collision attack is infeasible. The at tack requires a simultaneous collision for
at least 3 different instantiations with dependent inputs.

5 Conclusion

We have demonstrated that finding collisions of the compression function of
MDC-4 takes 241 operations when used with DES. This casts some doubts on
the security of MDC-4. We have presented a new method for construction of
hash functions based on block ciphers such as DES which is faster and more
secure than existing proposals. Also, our me tho d extends to block ciphers such
as IDEA where the block size and key size are different. For large values of
the internal memory, constructions using IDEA exist with rates close to two,
which is a factor of four faster than existing proposals. Finally, we discussed the
applications of our result to the MDx family. We show constructions using MD5,
almost as fast as MD5, but (conjectured} much more secure than MD5 itself.

References

1. B.O. Brachtl. D. Coppersmith, M.M. Hyden. S.M. Matyas, C.H. Meyer, J. Oseas,
S. Pilpel, M. Schilling, "Data Authentication Using Modification Detection Codes
Based on a Public One Way Encryption Function," U.S. Patent Number 4,908,861,
March 13, 1990.

2. I.B. Daangs "A design principle for hash functions," Advances in Cryptology,
Proc. Crypto'89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 416-427.

3. B. den Boer, A. Bosselaers, "Collisions for the compression function of MD5," Ad-
vances in Cryptology, Proc. Eurocrypt'93, LNCS 765, T. Helleseth, Ed., Springer-
Verlag, 1994, pp. 293-304.

4. H. Dobbertin, "Cryptanalysis of MD4," Fast Software Encryption, LNCS 1039,
D. Gollmann, Ed., Springer-Verlag, 1996. pp. 53-69.

498

5. H. Dobbertin, "Extended MD4 Compress is not Collision-free," Unpublished, Oc-
tober 1995.

6. H. Dobbertin, "Cryptaaaalysis of MD5 compress," Presented at the rump session
of Eurocrypt'96, May 1996.

7. FIPS 46, "Data Encryption Standard, " Federal Information Processing Standard
(FIPS), Publication 46. National Bureau of Standards, U.S. Department of Com-
merce, Washington D.C., January 1977.

8. W. Hohl, X. Lal, T. Meier, C. Waldvogel, "Security of iterated hash functions
based on block ciphers." Advances in Cryptology, Proc. Crypto'93, LNCS 773,
D. Stinson, Ed., Springer-Verlag, 1994, pp. 379-390.

9. ISO/IEC 10118, "Information technology - Security techniques - Hash-functions,
Part I: General and Part 2: Hash-functions using an n-bit block cipher algorithm,"
1994.

10. L.R. Knudsen, X. Lal, "New attacks on all double block length hash functions of
hash rate 1, including the parallel-DM," Advances in Cryptology, Proc. Euro-
crypt'94, LNCS 959, A. De Sa~utis, Ed., Springer-Verlag, 1995, pp. 410-418.

11. L.R. Knudsen, B. Preneel, "Hash functions based on block ciphers and quater-
nary codes," Advances in Cryptology, Proc. Asiacrypt'96, LNCS 1163, K. Kim,
T. Matsumoto, Eds., Springer-Verlag, 1996, pp. 77-90.

12. X. Lai, "On the Design and Security of Block Ciphers," ETH Series in Information
Processing, Vol. 1, J.L. Massey, Ed., Hartung-Gorre Verlag, Konstanz, 1992.

13. F.J. MacWilliams, N.J.A. Sloane, "The Theory of Error.Correcting Codes," North-
Holland Publishing Company, Amsterdam, 1978.

14. S.M. Matyas, C.H. Meyer, J. Oseas, "Generating strong one-way functions with
cryptographic algorithm," I B M Techn. Disclosure Bull., Vol. 27, No. 10A, 1985,
pp. 5658-5659.

15. R. Merlde, "One way hash functions and DES," Advances in Cryptology, Proc.
Crypto'89, LNCS 435, G. Brassaxd, Ed., Springer-Verlag, 1990, pp. 428-446.

16. C.H. Meyer, M. Schilling, "Secure program load with Maztipulation Detection
Code," Proc. Securicom 1988, pp. 111-130.

17. M. Naor, M. Yung, "Universal one-way hash functions and their cryptographic
applications," Proc. 2Ist A C M Symposium on the Theory of Computing, ACM,
1989, pp. 387-394.

18. B. Preneel, R. Govaerts, J. Vandewalle, "Hash functions based on block ciphers:
a synthetic approach," Advances in Cryptology, Proc. Crypto'93, LNCS 773,
D. Stinson, Ed., Springer-Verlag, 1994, pp. 368-378.

19. V. Rijmen, B. Preneel, "Improved characteristics for differential cryptanalysis of
hash functions based on block ciphers," Fast Software Encryption, LNCS 1008,
B. Preneel, Ed., Springer-Verlag, 1995, pp. 242-248.

20. J.-J. Quisquater, J.-P. DelescaiUe, "How easy is collision search? Application to
DES," Advances in Cryptology, Proc. Eurocrypt'89, LNCS ~3~, J.-:I. Quisquater,
:J. Vandewalle, Eds., Springer-Verlag, 1990, pp. 429-434.

21. R.L. Rivest, "The MD4 message digest algorithm," Advances in Cryptology, Proc.
Crypto'90, LNCS 537. S. Vanstone, Ed., Springer-Verlag, 1991, pp. 303-311.

22. R.L. Rivest, "The MD5 message-digest algorithm," Request for Comments (RFC)
1321, Internet Activities Board, Internet Privacy Task Force, April 1992.

23. P.C. van Oorschot, M.J. Wiener, "Parallel collision search with application to hash
functions and discrete logarithms," Proc. 2nd A CM Conference on Computer and
Communications Security, ACM, 1994, pp. 210-218.

