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Abst rac t .  This paper considers hash functions based on block ciphers. 
It presents a new attazk on the compression function of the 128-bit hash 
function MDC-4 using DES with a complexity far less that one would 
expect, and proposes new constructions of fast and secure compression 
functions based on error-correcting codes and m-bit block ciphers with an 
m-bit key. This leads to simple and practical hash function constructions 
based on block ciphers such as DES, where the key size is slightly smaller 
than the block size, IDEA, where the key size is twice the block size 
and to MD4--like hash functions. Under reasonable assumptions about 
the underlying block cipher, we obtain collision resistant compression 
functions. Finally we provide examples of hashing constructions based on 
both DES and IDEA more efficient than previous proposals and discuss 
applications of our approach for MD4-1ike hash functions. 

1 I n t r o d u c t i o n  

Cryptographic hash functions map a string of arbi t rary size to a short string of 
fixed length, typically 128 or 160 bits. Hash functions are used in cryptographic 
applications such as digital signatures, password protection schemes, and con- 
ventional message authentication.  For these applications one requires that  it is 
hard to find an input corresponding to a given hash result (preimage resistance) 
or a second input with the same hash result as a given input (2nd preimage 
resistance). Moreover, many applications also require that  it is hard to find two 
inputs with the same hash result (collision resistance). For the remainder of this 
paper we consider hash functions satisfying these three properties. 

All important  hash functions are iterated hash functions based on an easily 
computable compression function h(-, -) f rom two binary sequences of respective 
lengths m and l to a binary sequence of length m. The message M is split 
into blocks Mi of I bits, M = (M1,M2, . . . ,Mn) .  If the length of M is not a 
multiple of l, M is padded using an unambiguous padding rule. The hash result 
Hash(IV, M) = H = Ht is obtained by comput ing  iteratively 

Hi = h ( g i - l , M O  i =  1,2,. . . , t ,  (1) 
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where H0 = I V  is a specified initial value. Collision attacks, 2nd preimage 
attacks, and preimage attacks can be applied to both the compression function 
and the hash function. For the remainder of this paper we make no distinction 
between the latter two attacks and refer to both of them as preimage attacks. 

It is possible to relate the security of Hash(.) to that of h(-,-) in several 
models [2, 12, 15, 17]. To do this, one needs to append an additional block at 
the end of the input string containing its length, known as MD-strengthening 
(after Merkle [15] and Damg~rd [2]), leading to the following result. 

T h e o r e m 1 .  Let Hash(.) be an iterated hash function with MD-strengthening. 
Then preimage and collision attacks on Hash(., .) (where an attacker can choose 
I V  freely) have roughly the same complezity as the corresponding attacks on 
h(., .). 

Theorem 1 gives a lower bound on the security of Hash(IV, -). Most practical 
hash functions do not have a collision resistant compression function and do not 
treat the two inputs of the compression function in the same way; exceptions are 
the DES based hash functions of Merkle [15] and those of the authors [11]. As 
an example, collisions for the compression function of MD5 have been presented 
in [3, 61. 

We consider hash functions based on block ciphers with block length m bits 
and key length k bits. For convenience we will assume that k is an integer 
multiple of m. Such a block cipher defines, for each k-bit key, a permutation 
on m-bit strings. The advantage of constructing hash functions based on block 
ciphers is the minimization of the design and implementation effort. Moreover, 
the security of the block cipher can, to a certain extent, be transferred to hash 
functions. One difference is that the block cipher has to satisfy certain properties 
even if the key is known (see for example [19]). The main disadvantage of the 
block cipher approach is that  customized hash functions are likely to be more 
efficient. However, Dobbertin's attacks [4, 6] on specific hash functions such as 
MD4 [21] and MD5 [22] have shown that  this efficiency can come at a high cost, 
which makes the block cipher constructions more attractive. 

We define the hash rate of a hash function based on an m-bit block cipher 
as the number of m-bit message blocks processed per encryption or decryption. 
The complezity of an attack is the total number of operations, i.e., encryptions 
or decryptions, required for an attacker to succeed with a high probability. 

The first secure constructions for a hash function based on a block cipher 
were the scheme by Matyas, Meyer, and Oseas [14], which has been specified in 
ISO/IEC 10118 [9], and its dual, widely known as the Davies-Meyer scheme. ~- 
Both schemes are single block length hash functions giving a hash result of only 
m bits with hash rate 1. A classification of these schemes has been presented 
by Preneel et al. in [18]. Using a birthday attack collisions for such a scheme 
can be found in about 2 'n/2 operations and a preimage in about 2 'n operations. 
However, since most block ciphers have a block length of m = 64 bits, collisions 
can be found in only 2 z2 operations and hash functions with a larger hash result 

2 The real inventors are probably S.M. Matya.s and C.H. Meyer. 
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are needed. The aim of double block length hash functions is first of all to achieve 
a security level against collision attacks of at least 2 m encryptions. For all con- 
structions with rate 1 of a large class the authors have shown that collisions (for 
H) can be found in no more than 23m/4 operations [11]. Using DES the best 
known constructions are MDC-2 of rate 1/2 [1, 9], and MDC-4 of rate 1/4 [1]; 
for both a collision attack is believed to require at least 2 'n operations. Another 
important class of constructions are those of Merkle [15]. In [12], Lai and Massey 
have proposed two constructions for hash functions based on their block cipher 
IDEA (with m = 64 and k = 128): Abreast-DM and Tandem-DM have hash 
rate 1/2 and a claimed security level against collision attacks of 2 'n operations. 

However, for all these constructions, except for those of Merkle, there is no 
proof of security and for MDC-2 and MDC-4 collision for the compression func- 
tion can be found faster than by a brute force attack. Moreover, for block ciphers 
with m = 64 (e.g., DES and IDEA), the double block constructions do not pro- 
vide an acceptable security level against parallel brute force collision attacks: it 
follows from [20, 23] that a security level of at least 2T5... 2 s~ encryptions is re- 
quired, which is not offered by any of the current proposals. In [11] we developed 
a new framework for constructing hash functions based on m-bit block ciphers 
with m-bit keys using linear codes over GF(22). Constructions were shown for 
which finding a collision requires at least 2 q'*/2 encryptions (with q _> 2), and 
finding a preimage requires at least 2 qrn encryptions at the cost of more internal 
memory. For q = 2, the constructions are more efficient than existing proposals 
with the same security level. 

In this paper we first show that  collisions for the compression function of 
MDC-4 can be found in time 23m/4. For DES some key bits have to be fixed to 
avoid weak keys and the complementation property, hence the complexity of our 
attack is only 241, which is quite feasible today. Since the hash rate of MDC-4 
is 1/4, i.e., only one block is processed per four encryptions, one should expect 
a higher level of security for the compression function. Second we generalize the 
approach of [11]. We propose a method for constructing hash functions based 
on block ciphers with larger keys and working on smaller blocks. More precisely, 
we consider m-bit block ciphers with tin-bit keys, t _> 1, using linear codes over 
GF(2"), s > 2. Our constructions result in more efficient hash functions than 
those of [11]. Using DES and IDEA we show that  it is possible to obtain hash 
rates close to 1 respectively 2 with a high security level against collision attacks. 

In the following EK (X) and DK (Y) denote the encryption and decryption 
of the m-bit plaintext X respectively ciphertext Y under the tm-bit key K. It 
will be assumed that the block cipher has no weaknesses, i.e., that in attacks on 
the hash functions based on the block cipher, no short-cut attacks on the block 
cipher will help an attacker. 

The remainder of this paper is organized as follows. In w we analyze the 
compression function of MDC-4. Our new constructions are presented in w and 
in w we provide examples of efficient constructions using DES, IDEA, and the 
MD4-1ike functions, hereafter denoted the MDx family. 
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2 The Compress ion Funct ion of MDC-4 

MDC-2 and MDC-4 [1] are hash functions based on a block cipher; they are also 
known as the Meyer-Schilling hash functions after the authors of the first pa- 
per describing these schemes [16]. MDC-2 is included in ISO/IEC 10118 Part 2, 
standardizing a hash function based on a block cipher [9]. MDC-2 can be de- 
scribed as follows, where h(X, Y) = Ex(Y)  ~ Y and EK(.) denotes encryption 
with an m-bit block cipher with key K: 

Tli  = h(u(g l i_ l ) ,X i )  = LTli [[ RTli 

T2i -" h(v(H2i-1),Xi) = LT2i II RT2i 

Hli = LTl i  II RT2i 
H2i = LT2i II R T l i .  

The variables H10 and H20 are initialized with the values IV1 and IV2 respec- 
tively, and the hash result is equal to the concatenation of Hlt and H2t. The 
rate of this scheme is equal to 1/2. The ISO/IEC standard does not specify 
any particular block cipher; it also requires the specification of two mappings 
u, v from the ciphertext space to the key space such that u(IV1) ~ v(1V~). For 
DES, u and v omit the parity bits and fix the second and third bit to 10 and 
01 respectively, to preclude attacks based on (semi-)weak keys. The compression 
function of MDC-2 is certainly not collision resistant: for any fixed choice of 
Xi, one can find collisions for both Hli  and H2i independently with a simple 
birthday attack requiring about 2 r'*/2 operations. 

One iteration of MDC-4 [1] is defined as a concatenation of two MDC-2 steps, 
where the plaintexts in the second step are equal to H2i-1 and Hli- l:  

Tli  = h(u(Hli-1), Xi) = LTli [[ RTli 

T2i = h(v(H2i-x),Xi) = LT2i [[ RT2i 

Uli = LTli  [[ RT2i 

U2i = LT2i II RTI  

V l i =  h(u(Uli), H2i-x) = LVli II RVX~ 

V2i = h(v(U2i), Hli_l)  = LV2i II RV2~ 

Hli  = LVli  II Rv2i  

H2~ = LV2,  II RVX~. 

The rate of MDC-4 is equal to 1/4. It is clear that the "exchange" of Hl i_ l  and 
H2i_l in the second step does not improve the algorithm: after the exchange of 
right halves, Uli and U2i are symmetric with respect to Hli-1 and H2i_l. 

Finding a collision for the compression function is harder than in the case of 
MDC-2. On the other hand, collisions for the compression function of MDC-2 
with different values of Xi and with the same value of (Hli-1, H2i_1) will also 
yield collisions for MDC-4. but generally this property does not hold for other 
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collisions for the basic function like pseudo-collisions, i.e., collisions where all the 
inputs to the compression function are varied. 

In the following we will show a collision attack on the compression function 
with a complexity smaller than a brute-force attack: 

1. Choose a random value of A'i and of H2i-1 (with i = 1 this can be the 
specified initial value). 

2. Calculate Tli  for 23m/4 values of Hli_ l .  One expects to find an m/2-bit 
string S such that for a set of 2 m/4 values the relevant bits of LTi are equal 
to S (in fact for 50% of the strings S there will be 2 m/4 cases or more). 

3. Compute V2i for the 2 m/4 inputs in this set. The probability of obtaining a 
collision for V2i is equal to (2"14) 2/2 'n+l = 2 -m/2+l. 

4. If no match is obtained, one chooses a new value for S; one can avoid re- 
computing Tli  if one stores 2 'n/4 �9 2 m/2 = 2 a'n/4 m-bit quantities. 

The expected effort to find a collision for the compression function of MDC- 
4 is 23m/4 encryptions and the storage of 23'n/4 m-bit quantities. The keys of 
MDC-4 using DES are effectively only 54 bits long [1]. In that case the collision 
attack requires about 241 DES encryptions and a storage of 23~ 5 54-bit quantities 
(about 10 Gigabyte). 

3 Constructions with  Linear Codes  

In this section we present new constructions for collision resistant hash functions 
based on an m-bit block cipher and linear codes. These constructions extend a 
simple hash mode which is believed to be secure to a multiple hash mode. As 
the simple hash mode we will use the Davies-Meyer hash function: 

hi(Mi, Hi- l )  -- EM,(Hi-1) �9 Hi-1.  (2) 

Any of the 12 secure single block length hash functions described in [18] can be 
used. The advantage of using the Davies-Meyer hash function is that it is defined 
for block ciphers with different block and key sizes. The following assumption is 
standard in cry. ptography today. 

A s s u m p t i o n  1 Let EK(.) be an m-bit block cipher with a tin-bit key K for an 
integert > O. Define the compression function h to be the Davies-Meyer function 
(2). Then finding collisions for h requires about 2 "*/2 encryptions (of an m-bit 
block), and finding a preimage for h requires about 2 m encrgptions. 

Defin i t ion2  (Mul t ip le  Dav ies -Meyer ) .  Let EK (.) be an m-bit block cipher 
with a tin-bit key K for integer t > 0. Let hi,  h2, . . .  hn be different instantiations 
of the Davies-Meyer function, that  is, hi (Xi, Yi) = Ex,  (Y~) q~ u obtained by 
fixing [log 2 n] key (or plaintext) bits to different values, where the Xi's are tm- 
bit string and the ]e]'s are m-bit strings. The compression function of a multiple 
Davies-Meyer scheme takes r m-bit input blocks, which are expanded by an 
affine mapping to the n pairs (Xi. Y/). The output is the concatenation of the 
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outputs of the function hl . . . .  , hn. The output of the compression function shall 
depend on all r input blocks, in other words, the matrix of the affine mapping 
has full rank. 

A subfunction hi(Xi,Yi) is called active, if in a collision or preimage attack 
the input blocks forming (Xi, ]]) are different. Two subfunctions hi(Xi,  Yi) and 
hj(Xj,u can be attacked independently, if one can vary one (or more) input 
blocks to the compression function, such that the arguments (Xi, Yi) of hi vary, 
while the arguments (Xj, ~'~) of hj do not. 

We make the following assumption, which is a slightly improved version of 
the assumption in [11]. 

A s s u m p t i o n  2 Assume that a collision or preimage for the compression func- 
tion of a multiple Davies-Meyer scheme has been found, that is, simultaneously 
for hi, h2, . . .  hn. Let N be the number of active subfunctions and let N - v be 
the maximum number of the N subfunctions that can be attacked independently. 
Then it is assumed that obtaining this collision or preimage must have required 
at least 2 vm/2 respectively 2 vm encryptions. 

Note that in an attempt to find collisions or preimages for a multiple Davies- 
Meyer scheme it will always be possible to fix some input blocks and thereby fix 
the outputs. Let N denote the number of active subfunctions. What Assump- 
tion 2 says is, that if N - v of these N functions can be attacked independently 
(separately), then there e.xists no better attack than a brute force attack on the 
remaining v subfunctions. Note that  in the overall complexity of the collision 
(or the preimage) attack we do not consider the complexity of the attack on the 
N - v functions, which makes our assumption strong and plausible. 

3.1 The new constructions 

The following theorem shows how hash functions based on block ciphers can be 
constructed using non-binary linear error correcting codes. It extends the main 
theorem of [11]. 

T h e o r e m  3. I f  there exists an [n, k, d] code over GF(2 t+x) of length n, dimen- 
szon k, and minimum distance d, with (t + 1)k > n, for t > 1 and m >> log 2 n, 
then there exists a parallel hash function based on an m-bit block cipher with a 
tin-bit key for which finding a collision for the compression function requires at 
least 2 (d-1)m[2 encryptions and finding a preimage requires at least 2 (a-Urn en- 
cryptions provided that Assumption $ holds. The hash function has an internal 
memory of n . m bits, and a rate o f ( t +  1 ) ~ -  1. 

Proof:  The compression function consists of n different functions hi with 
1 < i < n, see Definition 2. The input to the compression function consists of 
(t + 1)k m-bit blocks: the n variables H~_ x through H"i_x (the output of the 
n functions of the previous iteration) and r message blocks M/x through M[, 
with r = (t + 1)k - n > 0. In the following, every individual bit of these m-bit 
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blocks is treated in the same way. The bits of (t + 1) consecutive input blocks 
are concatenated yielding k elements of GF(2t+I) .  These elements are encoded 
using the [n, k, d] code, resulting in n elements of GF(2t+I). Each of these ele- 
ments represents the (t + 1)-bit inputs to one of the n functions, that is, one bit 
represents the plaintext block input and the remaining t bits represent the key 
input to the block cipher. The individual input bits are obtained by representing 
the elements of GF(2 TM) as a vector space over GF(2) .  This construction guar- 
antees that  the conditions for Assumption 2 are satisfied for the value v = d -  1. 
It follows from the minimum distance of the code that  at least d subfunctions 
are active in a collision. Also, k is the max imum number of subfunctions, which 
can be attacked independently. But  since n - k > d -  1 by the Singleton bound 
[13, p. 33] the result follows. �9 

The existence of efficient constructions for d = 3 and d = 4 follows from the 
existence of perfect Hamming codes over GF(2 t) (see e.g., [13]) with parameters 
n = ( q ' - l ) / ( q - 1 ) ,  k = n - s ,  d = 3 for a prime power q, and from the 
existence of triply extended MDS (maximum distance separable) codes [13, Ch. 
11, Th. 10] with parameters n = qS + 2, k = qs _ 1, d = 4 for an even prime 
power q. 

C o r o l l a r y 4 .  Provided that Assumption 2 holds, there exist parallel hash func- 
tions based on an m-bit block cipher with a tin-bit key of rate close to t for which 
finding a collision (a preimage) takes at least 2 '~ (2 2m} operations respectively 
at least 2 3r"/2 (2 3rn) operations. 

Proof :  From Theorem 3 it follows that  there exist hash functions with rates 
(t + 1)k/n - 1. But since for Hamming  codes n/k  --* 1 for large values of n, the 
result follows. �9 

This result implies that  at the cost of a larger internal memory, using DES 
one can obtain hash functions of rate 1, and using IDEA one can obtain hash 
functions of rate 2. For comparison MDC-2 and MDC-4 have rates 1/2 respec- 
tively 1/4, and Abreast-DM and Tandem-DM developed for IDEA [12] have 
rates 1/2. 

In [11] we gave an example of a hash function based on an m-bit block cipher 
with an m-bit key using the code [8, 5, 3] over GF(22). The code is obtained by 
shortening the Hamming code [21, 18, 3]. The hash function has rate 1/4 and an 
internal memory of 8 �9 m bits. In the following we show that  one can improve 
this result. 

The idea is to divide the m-bit words into smaller blocks and to use codes 
over bigger fields. As an example, assume we have a block cipher with m-bit 
blocks and m-bit keys for even m. In Theorem 3 codes over GF(22) are used, 
where the two bits of the code words represent the plalntext respectively the 
key inputs to the block ciphers. An alternative method is to divide all m-bit 
blocks into blocks of m/2  bits and use codes over GF(24). The advantage of this 
approach, which will be illustrated later, is tha t  better bounds exist for such 
codes. This leads to the following generalization. 
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T h e o r e m  5. Let m be a multiple orb, i.e., m = b.mb. I f  there exists an In, k, d] 
code over GF(2 b(t+l)) of length n, dimension k, and minimum distance d, with 
(t + 1)k > n, and m >> log 2 n, then there exists a parallel hash function based 
on an m-bzt block cipher with a tin-bit key for which finding a collision for 
the compression function requires at least 2 (d-1)m/~" encryptions provided that 
Assumption 2 holds. The hash function has an internal memory of n �9 m bits, 
has a rate of (t + 1)-~ -- 1 and works on mb-b,t blocks. 

Proof:  Similar to that  of Theorem 3. �9 

As an example, we can construct a hash function based on an m-bit block 
cipher with an m-bit key by using the code [8, 6, 3] over GF(24), which is obtained 
by shortening the Hamming code [17, 15, 3]. The hash function has rate 1/2 and 
an internal memory of 8- m bits, and is thus twice as fast as the example using 
the code [8, 5, 3] mentioned above. With m = 64 this construction operates on 
32-bit words. One can extend this approach to construct hash functions with 
codes over GF(2S), i.e., operating on 16-bit words, for example by shortening 
the [257,255, 3] Hamming code (s = 2). However, since a [17, 15, 3] over GF(24) 
exists, the construction over GF(2 s) is only more efficient for n > 17. Using an 
In, k, d]-code requires n- m bits of internal memory, which make the constructions 
less attractive for larger n. Moreover, the codes obtained from splitting the blocks 
into smaller words result in a more complex implementation. 

Notes: 

1. Apart from the simple security proof and the relatively high rates, the 
schemes have the advantage that the n encryptions can be carried out in 
parallel. 

2. The disadvantages of the schemes are the increased amount of internal mem- 
ory and the cost of the code implementation (mainly some exclusive ors). 

3. For the preimage attack, the security bounds assume that the entropy of the 
unknown part of the input is at least ( d -  1)m bits. 

As for (3), it is clear that  if D < (d - 1)m bits are unknown to the attacker, a 
brute force preimage attack can be done in about 2 ~ encryptions. 

3.2 Output transformation 

The constructions presented above have the following problems: 

1. since every output bit does not depend on all input bits of the compression 
function, it is relatively easy to find many inputs for which several output 
blocks of the compression function are equal, 

2. the number of output blocks is typically much larger than the security level 
suggests. 

The solution is to apply an output transformation to the outputs of the com- 
pression function. This transformation can be slow, since it has to be applied 
only once. Therefore there are many possible constructions. 
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First we present an approach tha t  does not  affect the provable security of 
the compression functions. One encrypts  the n ou tpu t  blocks of the compression 
function using the block cipher with a fixed key, such that  all output  blocks of 
the encryption depend on all input blocks in a complicated way. Subsequently, 
the n blocks concatenated with the n encrypted  blocks are hashed using the 
following construction. Denote with nmi n the smallest possible value of n for a 
given value of d, such that  Theorem 5 holds. Compress the 2n blocks to nmi n 
blocks using the new construction with nmi n parallel blocks (if nmi n < n, this 
hash function will have a lower rate than  the original one). This approach solves 
the first problem and partly the second problem. However, if a further reduction 
to less than nmi n blocks is required, o ther  approaches are necessary. 

We present next a generic approach for all values of n, which can be used 
instead of or in conjunction with the first approach.  First one constructs from the 
m-bit  block cipher a large, strong block cipher with block length n.  m bits. This 
block cipher can be slow, since it is applied only once. Subsequently, the n (nmin) 
blocks from the compression function are input  to a Davies-Meyer construction 
where the block cipher key is r andomly  chosen and fixed (and part of the hash 
function description). Under Assumpt ion  1 this is a secure hash function. The 
output  can be truncated to any s blocks, where s > d -  1. 

We give here an example of such a construction.  One iteration consists of 
the following two steps. First, pe rmute  the blocks, such that  block i becomes 
block i +  1 and the last block becomes the first block. Second, encrypt the input 
blocks using the small block cipher in CBC mode. More precisely, denote the 
output  of the compression function with H 1 , . . . ,  H '~. Let K, for i = 1 , . . . ,  n be 
n randomly chosen and fixed keys, and let C i = H i for i = 1, . . . ,  n. Repeat the 
following procedure r times: 

C 0 ~ C n 

C i = C  i-1 f o r i - - 1  . . . .  ,n ,  

C'  = E K , ( C  i ~ C  i -1 )  for i =  1 , . . . , n  

(Here we use the same n keys in every i terat ion.  Alternatively, different keys can 
be used in all rounds. Also the block pe rmuta t ion  in the first iteration can be 
omitted.) After one iteration the last block will depend on all input blocks and in 
general, block / depends on / input blocks. After  two iterations all blocks depend 
on all input blocks. However, two rounds are insufficient to make a strong block 
cipher. Therefore we recommend tha t  this block cipher is used with at least 
r = n rounds. Finally, the result of  the ou tpu t  transformation is defined as the 
concatenation of the blocks H i ~ C i for i - 1 . . . .  , n. If the output  is truncated 
we recommend that the final ou tpu t  is formed from the blocks with the highest 
indices. With r rounds the output  t ransformat ion  requires r 2 encryptions of the 
small block cipher. 

In the next section we give some practical  examples. 
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4 S o m e  P r a c t i c a l  E x a m p l e s  

This section contains some examples of  new constructions for different parame- 
ters of the underlying block cipher. We will use the notation (m, k) for an m-bit 
block cipher with a k-bit key. In the examples to come we use Hamming codes 
with d - 3 and MDS codes with d - 4. The  existence of the latter codes follows 
from [13, Ch. 11, Th.  10]. 

4.1 U s i n g  an  ( m ,  m ) - b l o c k  c i p h e r  

Table 1. Rates and complexities of previous proposals for (m, m)-block ciphers. 

Scheme 

MDC-2 
MDC-4 
Merkle 

Rate 

1/2 
1/4 
0.27 

Collision h 
2m/2 
23,',14 

2'" 

Collision H 

2 ~ 

2 m 

Reference 

[1] 
[1] 
[15] 

Table 2. Comparison of constructions based on codes over GF(22) a~d over GF(24) 
for (m, m)-block ciphers. 

OF(22) aF(2  *) Collision 
Code Rate Code Rate 

[5, 3, 3] 
[8, 5, 3] 

[12, 9, 3] 

[9, 5, 41 
,, [16, 12, 4] 

1/5 
1/4 
1/2 

1/9 
1/2 

[6, 4, 3] 
[s, 6, 3] 

[12,10, 3] 

[9, 6, 4] 
[16,13, 4] 

1/4 
1/2 
2/3 

1/3 
5/8 

> 2 ,~ 
> 2 "~ 
_> 2 "~ 

2 3m/2 

23"q2 

Note that  the 2 rn complexities of  MDC-2 and MDC-4 are the best known 
attacks against the hash function, while against Merkle's scheme and the schemes 
of Table 2 the 2 m complexi ty is against the compression functions and is a lower 
bound for the complexity of an a t tack on the hash function. 

In the following we show an implementat ion of the construction using the 
code [9, 6, 4]. We define GF(24)  as the extension field GF(2)[z]/(~c 4 + z + 1). 
There are many generator matr ices for a [9, 6, 4] linear code over GF(24). We have 
searched for a generator ma t r ix  which leads to a simple and efficient compression 
function, as explained below. The  generator  matr ix  has the following form: 

" 1 0 0 0 0 0  1 1 1" 
0 1 0 0 0 0 1 a ~  
0 0 1 0 0 0 1  # ~  (3) 
0 0 0 1 0 0 a l #  
0 0 0 0 1 0 a f l l  
0 0 0 0 0 1 # 1 ~  
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Here 0 and 1 are the additive and multiplicative neutral elements in GF(2 4) and 
c~ = z, and 13 = x 3 +z- '+  1. The motivation for the choice of the generator matrix 
is as follows. In an implementation of the compression functions the elements 
of GF(2 4) are represented as elements of a vector space over GF(2). Clearly, 
multiplications with 0 and 1 are the easiest to implement. A closer analysis shows 
that multiplication with ~ and/3 in the above example can be implemented with 
one respectively two exclusive-ors. An exhaustive search for the matrix with 
the easiest implementation is clearly not feasible, but by restricting ourselves to 
using the elements 0, 1, ~, and 13 we obtain a solution close to the optimal one. 

Let f i ( X ,  Y )  be different instantiations of the function E x ( Y )  (9 Y ,  let XL 
and XR denote the leftmost respectively rightmost m / 2  bits of X and let I[ 
denote concatenation of m / 2  bit blocks. Furthermore, let G1, . . . ,  G 9 be the 9 
input blocks coming from the compression function in the previous iteration and 
let M 1, M 2, M 3 be the 3 message block inputs. This results in the following 
compression function: 

g 1 = fl  (G 1 , G 2) 

H 2 = f2 (G 3, G 4) 

H 3 = f3 (G s, G 6) 

g 4 = f 4 ( V  r, G s) 
H 5 = f s ( a  9, M 1) 

H 6 = f6 (M 2, )k/3) 

H 7 = fT(GIeGa.GS~(G~IIG~)~(G~IIM~.).(M~RIIM~), 
G2 eG4 ~G6 0(G[ ~GSRIIGrL)~(G~ ~ M~IIG9L)e(MIIIM~ ~:f~R) ) 

H s = f s ( G I ( 9 G r ( g M  2 3 4 6 6 r (GRIIGL) (9 (GzRIIGR) (9 (Mb~IIM~), 
4 3 3 ~. s t G 9 H G g m M  t u G2(gGS(gM3(9(GR(9GLI]GL)v~G (gt LH R w  LRJI 

g 9 fg(GI(gG9(9(G4L1~HG4R) ~ .5 6 s s 2 3 = (GnIIGL) (9 (GLRIIGR) (9 (g~ [[M~,), 
G~(gM~(gG3(9(G~(gG~IIG~)(9Gr(9(M~(gM.~IIM/.)),3 2 

where Gt = (G~IIG h (9 G~+I (9 Gh+X) and XLa = XL (9 XR.  
As an output transformation we suggest to first hash the 9 blocks to 7 blocks 

via the compression function using the code [7, 4, 4] (nmi n = 7 for d = 4) and 
then to hash the 7 blocks to 3 blocks using the output transformation with 7 
rounds described in the previous section. 

4.2 Using an (rn, 2rn)-block c iphe r  

The only known hash functions based on an (m, 2m)-block cipher with a 2m-bit 
hash result are the Abreast-DM and the Tandem-DM from [12]. The compression 
functions of both hash functions process an m-bit block using two encryptions, 
i.e., with rate 1/2. Let Hi and Gi denote the intermediate hash values. The 
Abreast-DM is defined as follows 

Hi = Hi -1  (9 Ec ,_~ .M,(Hi -1)  

Gi = Gi -1  �9 EM,,H,_, (Gi-1), 
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where G is the bitwise complemented  value of G. The  Tandem-DM is defined as 
follows 

[~i = EG,_t,M, ( H i - t )  

Hi = |[~ ~ Hi-1 

Gi = Gi- t  ~ EM,,w,(Gi-I).  

Table 3 lists the rates and complexities of the best known attacks on the two 
constructions. However, as already indicated before, there e.-6st more efficient 

Table 3. Rates and complexities of previous proposal for (m, 2m)-block ciphers [12]. 

Scheme Rate Collision h Collision H 
Abreast-DM 1/2 2 '~ 2 "~ i 
Tandem-DM 1/2 2 'n 2"* 

constructions with a higher security level. Table 4 lists the rates and complexities 
of such constructions. As before, it  is possible divide the m-bit blocks into smaller 
subblocks. E.g., the blocks can be divided into halves and expanded with a code 
over GF(26),  such as [65, 63.3]. 

Table 4. Rates and complexities of our proposals for (m, 2m)-block ciphers using codes 
over GF(23). 

Code 
[4,2.3] 
[6, 4, 3] 
[9, 7.3] 
[5,2.4] 
[7,4,4] 

[10, 7, 4] 

Rate Collision 

1/2 >_ 2 m 

1 _> 2"  
4/3 > 2 m 

1/5 > 2 3'n/2 
5/7 >_ 2 3m/2 

11 /10  >_ '2 3m12 

4.3 T h e  M D x  f a m i l y  

Both MD4 [21] and MD5 [22] can be viewed as a Davies-Meyer construction with 
an underlying m-bit  block cipher with a 4m-bit  "key." From this perspective, 
both constructions have rate 4. 

However, Dobbert in 's  at tacks [4, 6] on MD4 and MD5 show that the compres- 
sion functions are not collision resistant, and his attack on the extended MD4 
[5] shows that  for MD4 even two dependent  runs of the compression function are 
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not collision resistant. However, it seems unlikely that  Dobbertin's attacks ex- 
tend to compression functions consisting of two or more instantiations of MD5. 
We can apply our methods  to construct  parallel MD5 hash functions based on 
linear codes over GF(25).  In Table 5 we list possible constructions. 

Table  5. Rates and complexities of our proposals for the MDx family using codes over 
GF(25). 

Scheme Rate Scheme Rate Scheme Rate 
MD4 4 [5, 3, 3] 2 [5, 2, 4] 1 
MD5 4 [10, 8, 3] 3 [10, 7, 4] 2.5 

[20, lS, 3] 3.5 [20, 17, 4] 3.25 

Since the assumption for our constructions,  i.e., that  the basic components 
are secure, does not hold for MD4 and MD5, we do not specify explicit bounds for 
the complexities of collision at tacks on the compression functions. However, we 
conjecture that for the constructions using MD5 and codes of minimum distance 
4, a collision attack is infeasible. The  at tack requires a simultaneous collision for 
at least 3 different instantiations with dependent  inputs. 

5 Conclusion 

We have demonstrated that  finding collisions of the compression function of 
MDC-4 takes 241 operations when used with DES. This casts some doubts on 
the security of MDC-4. We have presented a new method for construction of 
hash functions based on block ciphers such as DES which is faster and more 
secure than existing proposals. Also, our me tho d  extends to block ciphers such 
as IDEA where the block size and key size are different. For large values of 
the internal memory, constructions using IDEA exist with rates close to two, 
which is a factor of four faster than  existing proposals. Finally, we discussed the 
applications of our result to the MDx family. We show constructions using MD5, 
almost as fast as MD5, but  (conjectured} much more secure than MD5 itself. 
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