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Abst rac t .  In this paper we present a new 128-bit block cipher called 
SQUARE. The original design of SQUARE concentrates on the resistance 
against differential and linear cryptanalysis. However, after the initial 
design a dedicated attack was mounted that forced us to augment the 
number of rounds. The goal of this paper is the publication of the resulting 
cipher for public scrutiny. A C implementation of SQUARE is available 
that runs at 2.63 MByte/s on a 100 MHz Pentium. Our M68HC05 Smart 
Card implementation fits in 547 bytes and takes less than 2 msec. (4 MHz 
Clock). The high degree of parallellism allows hardware implementations 
in the Gbit/s range today. 

1 I n t r o d u c t i o n  

In this paper, we propose the block cipher SQUARE. It  has a block length and key 
length of 128 bits. However, its modular  design approach allows extensions to 
higher block lengths in a straightforward way. The cipher has a new self-reciprocM 
structure, similar to that of THREEWAY and S H A R K  [2, 15]. 

The structure of the cipher, i.e., the types of building blocks and their in- 
teraction, has been carefully chosen to allow very efficient implementations on a 
wide range of processors. The specific choice of the building blocks themselves 
has been led by the resistance of the cipher against differential and linear crypt- 
analysis. After treating the structure of the cipher and its consequences for im- 
plementations, we explain the strategies followed to thwart linear and differential 
cryptanalysis. This  is followed by a description of an efficient attack that exploits 
the particular properties of the cipher structure. 

We do not encourage anyone to use SQUARE today in any sensitive applic- 
ation. Clearly, confidence in the security of any cryptographic design must  be 
based on the resistance against effective cryptanalysis after intense public scru- 
tiny. 

* F.W.O research assistant, sponsored by the Fund for Scientific Research - Flanders 
(Belgium). 
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A reference implementation of SQUARE is available f rom the following URL: 
http://www.esat.kuleuven.ac.be/, .~rij  men/square.  

2 S t r u c t u r e  o f  SQUARE 

SQUARE is an iterated block cipher with a block length and a key length of 128 
bits each. The round transformation of SQUARE is composed of four distinct 
transformations. It  is however impor tant  to note that these four building blocks 
can be efficiently combined in a single set of table-lookups and exor operations. 
This  will be treated later in the section on implementat ion aspects. 

The basic building blocks of the cipher are five different invertible transform- 
ations that operate on a 4 • 4 array of bytes. The element of a state a in row i 
and column j is specified as ai,j. Both indexes start  f rom 0. 

2.1 A Linear Transformat ion 0 

0 is a linear operation that operates separately on each of the four rows of a state. 
We have 

0 : b = O(a) ~ bi,j = cjai,o �9 Cj-lai,1 ~ cj-2ai,2 ~ cj-3ai,3, 

where the multiplication is in GF(2 s) and the indices of c must be taken modulo 
4. Note that the field GF(2 n) has characteristic 2 [9]. This  means that the addition 
in the field corresponds to the bitwise exor. 

The rows of a state can be denoted by polynomials, i.e., the polynomial  cor- 
responding to row i of a state a is given by 

ai(x) = ai,o @ ai, lx @ ai,2x2ai,3x 3. 

Using this notation, and defining c(x) = ~ j  cjxJ we can describe 0 as a modular  
polynomial multiplication: 

b = 6(a) r bi(x) = c(x)ai(x)  mod 1 @ x 4 for 0 < i < 4. 

The inverse of 0 corresponds to a polynomial d(x) given by 

d(x)c(x)  = 1 (mod 1 @ x4). 

2.2 A Nonl inear  Transformat ion ~, 

7 is a nonlinear byte substitution, identical for all bytes. We have 

7 :b = 7(a) r162 bi,j = S~(ai,j), 

with S.~ an invertible 8-bit substitution table or S-box. The inverse of 7 consists 
of the application of the inverse substitution S~'1 to all bytes of a state. 
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2.3 A B y t e  P e r m u t a t i o n  lr 

The effect of 7r is the interchanging of rows and columns of a state. We have 

~r : b = 7r(a) r bi,j = aj,i .  

~r is an involution, hence 7r -1 = 7r. 
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2.4 B i t w i s e  R o u n d  K e y  A d d i t i o n  

(r[k t] consists of the bitwise addition of a round key k t. We have 

cr[kt]: b = ~[kt](a)  r b = a G k t. 

The inverse of cr[k t] is a[k t] itself. 

2.5 T h e  R o u n d  K e y  E v o l u t i o n  r 

The round keys k t are derived from the cipher key K in the following way. k ~ 
equals the cipher key K. The other round keys are derived iteratively by means 
of the invertible affine transformation r 

~) : k t _- r  t - l )  

2.6 T h e  C i p h e r  SQUARE 

The building blocks are composed into the round transformation denoted by 
p[kt]: 

p[k ~1 = ~[k ~] o ~ o ~, o 0 (1) 

SQUARE is defined as eight rounds preceeded by a key addition cr[k ~ and by 
0-1: 

SQUARE [k] ~.~ p[k 8 ] op[k 7] op[k 6 ] op[k 5 ] op[k 4 ] op[k 3] op[k 2] op[k ~ ] o c[k ~ o 0 -1 (~) 

2.7 T h e  I n v e r s e  C i p h e r  

As will be shown in Section 9, the structure of SQUARE lends itself to efficient 
implementations. For a number of modes of operation it is important  that this 
is also the case for the inverse cipher. Therefore, SQUARE has been designed in 
such a way that the structure of its inverse is equal to that of the cipher itself, 
with the exception of the key schedule. Note that this identity in s t ruc ture  differs 
from the identity of c o m p o n e n t s  and  s t ruc tu re  in IDEA [10]. 

From (2) it can be seen that 

S QUARE-IN = o o ~ - l [k~  p- i lk1]  o p- i lk2]  o p-~[k 3] o p-~[k 4] o 
p-1[k5] 0 p-l[k6] 0 p-1[kT] o p-l[kS] 
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Fig.  1. Geometrical representation of the basic operations of SQUARE. 8 consists of 
4 parallel linear diffusion mappings. 3' consists of 16 separate substitutions. 7r is a 
transposition. 
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with 
p - l [ k t l  --'z O- l  o T - l  o f f - l  o o ' - l [k t]  - - : 0 - 1 o 7 - 1  o Tr o o[k  t] (3) 

I t  m a y  seem that the s t ructure  of  the inverse cipher differs substantial ly f rom 
that of the cipher itself. By exploiting some algebraic properties of  the building 
blocks, we can show this not  to be the case. Since ~r only t ransposes the bytes 
ai,j and 7 only operates on the individual bytes, independent  of  their posit ion 
(i, j ) ,  we have 

7 - - 1 0 f f :  ffO,~ -1. 

Moreover, since O-1(a) ~ k t = ~-l(a + ~(kt)), we have 

O'[k t] o 0 -1  -~ 0 -1  o o'[O(kt)], 

We now define the round t ransformat ion  of  the inverse cipher as 

p'[kt] = ~[kt] o ~ o 7 -1 o O -1 ,  (4) 

which has the same structure as p itself, except that  7 and 0 are replaced by 7-1  
and 0 -1 respectively. Using the algebraic properties above, we can derive 

0 o ~[k ~ o p - l [ k l ]  = 0 o ~[k ~ o 0  -1 o 7  -1 o ~ o  ~[k 1] 
= 0 o O -1 o ~[0(k~ o ~ o V -1 o ~[k 1] 

= ~[0(k~ o ~ 0 7 - '  o ~[k 1] 
= ~[0(k~ o ~ o 7 -1 o ~[k 1] o 0 -1 o 0 
= ~[0(k~ o ~ o 7 -1 o 0 -1 o ~[0(kl)] o 0 

= d[0(k~ o ~[0(kl)] o 0 

This  equation can be generalized in a s t ra ightforward way to include more  than 
one round. Now, with ~t = a(ks-t),  we have 

SQUARE -1 : 
o d [ [ ]  o 6] o o 4] o o o 1] o o 0 

Hence the inverse cipher is equal to the cipher itself with 7 replaced by 7 -1 , with 
0 by tg-1 and different round key values. 

2 .8  F i r s t  r o u n d  

The t9 -1 before a[k ~ in SQUARE can be incorporated in the first round. We have 

p[k 1] o ~[k ~ o 0 -1 = ~[k 11 o ~ o 7 o 0 o ~[k ~ o e -1 

= ~[k 11 ~ ~ ~ V ~ ~[0(k~ 

Hence the initial tg-1 can be discarded by omit t ing t9 in the first round and 
applying O(k ~ instead of  k ~ The same simplification can be applied to the inverse 
cipher. 
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3 L i n e a r  a n d  D i f f e r e n t i a l  C r y p t a n a l y s i s  

The resistance against linear cryptanalysis [12] and differential cryptanalysis [1] 
has been the rationale behind the criteria by which the S~ substitution and the 
multiplication polynomial e(x) have been chosen. 

A difference propagation along the rounds of an iterated block cipher is gener- 
ally called a differential characteristic. A characteristic is specified by a series of 
difference patterns. The probability associated with a characteristic is the prob- 
ability that all intermediate difference patterns have the value specified in the 
above series. We call a differential characteristic a differential trail. The probab- 
ility associated with a differential trail can be approximated by the product of 
the difference propagations between every pair of subsequent rounds (which can 
be easily calculated). The probability that a given difference pattern a ~ at the 
input of a number of cipher rounds gives rise to a difference pattern b ~ at the 
output is equal to the sum of the probabilities of all differential trails starting 
with a ~ and ending with bq In general the propagation from the input difference 
pattern a' to the output difference pattern b ~ is called a d~fferential. 

As can be seen in [12] the correlation between a linear combination of input 
bits and a linear combination of output bits of an iterated block cipher can be 
treated in an analogous but slightly different way. A linear trail is specified by 
a series of selection patterns. For a given cipher key, the correlation coefficient 
(positive or negative) corresponding to a linear trail consists of the product of 
the correlation coefficients between the linear combinations of bits of every pair 
of subsequent rounds. In [2] it was shown that the correlation between a linear 
combination of input bits, denoted by selection pattern u, and a linear combina- 
tion of output bits, denoted by v is equal to the sum of the correlation coefficients 
of all linear trails starting with u and ending in v. It must be remarked that the 
correlation coefficients may be positive or negative and that the sign depends on 
the value of round key bits. 

S.~ and c(x) are chosen to minimize the maximum probability of differential 
trails and the maximum correlation of linear trails over four rounds. This is 
obtained in the framework of a very specific approach. 

3.1 Wide Trail Design Strategy 

In [2] the 'wide trail design strategy' was introduced as a means to guarantee low 
maximum probability of multiple-round differential trails and low maximum cor- 
relation of multiple-round linear trails. In this strategy the round transformation 
is composed of a number of uniform transformations, that are split in the nonlin- 
ear blockwise substitution (corresponding to our 7) and the composition of the 
linear transformations (corresponding to our 0 o ~r). The round key addition does 
not play a role in the strategy. It was shown in [2] that the probability of a differ- 
ential trail is the product of the input-output difference propagation probabilities 
of the S-boxes with nonzero input difference ('active S-boxes'). The correlation of 
a linear trail is the product of the input-output correlations of the S-boxes with 
nonzero output selection patterns ('active S-boxes'). The two mechanisms for 
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eliminating high-probability differential trails and high-correlation linear trails 
are the following: 

- Choose an S-box where the max imum difference propagation probabili ty and 
the max imum input-output correlation are as small as possible. 

- Choose the linear part  in such a way that there are no trails with few active 
S-boxes. 

The first mechanism gives us two clear criteria for the selection of the $7. The 
second mechanism gives a hint on how to select the multiplication polynomial  
c(x). In the following section we will focus on the linear par t  0 o rr. 

4 T h e  M u l t i p l i c a t i o n  P o l y n o m i a l  c(~e) 

The transformation 0 treats the different rows of a state a completely separately 
and in the same way. We will now study the difference propagation and correl- 
ation properties of 0, concentrating on a single row. Assume an input difference 
specified by a'(z) = a(z) @ a*(z). The output difference will be given by 

b'(z) = c(z)a(x) @ e(x)a*(z) mod 1 @ x 4 = e(x)a'(x) mod 1 @ z 4. 

On the other hand, a linear combination of output bits, specified by the selection 
polynomial  u(z) is equal to (i.e., correlated to, with correlation coefficient 1) a 
linear combination of input bits, specified by the following selection polynomial  
[2]: 

v(x) = e(z-1)u(x)  mod 1 + x 4. 

I t  is intuitively clear that both linear and differential trails would benefit f rom a 
multiplication polynomial  that could limit the number of nonzero terms in input 
and output difference (and selection) polynomials. This is exactly what we want 
to avoid by choosing a polynomial with a high diffusion power, expressed by the 
so-called branch number. 

Let Wh (a) denote the Hamming  weight of a vector, i.e., the number of nonzero 
components in that vector. Applied to a state a, a difference pattern a '  or a 
selection pattern u, this corresponds to the number of non-zero bytes. In [2] the 
branch number B of an invertible linear mapping was introduced as 

13(0) = min(wh(a) + wh(O(a))) . 
a~O 

This  implies that the sum of the Hamming  weights of a pair of input and output 
difference patterns (or selection patterns) to 0 is at least B. I t  can easily be shown 
that B is a lower bound for the number of active S-boxes in two consecutive rounds 
of a linear or differential trail. Since 0 operates on each row separately, we can 
have B = 5 at most.  

In [15] it was shown how a linear mapping over GF(2m) ~ with optimal B 
(B = n + 1) can be constructed from a max imum distance separable code. The 
MDS-code used is a Reed-Solomon code over GF(2m): if G~ = [ I~x~B,x~]  is 
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the echelon form of the generation matrix of and (2n, n, n + 1)-RS-code, then 
/9 : X ~ Y = B - X defines a linear mapping with optimal branch number. 

The polynomial multiplication with c(x) corresponds to a special subset of 
the MDS-codes, having the additional property that B is a circulant matrix. A 
circulant matrix is a matrix where every row consists of the same elements, shifted 
over one position, o r  bi,j = bo , j - imodn .  This property is exploited in section 9.2 
to produce a memory-efficient implementation of the cipher. In [11] we find the 
following theorem: 

T h e o r e m  1. An (n, k,d)-code g with generator matrix G = [IB] is MDS iff 
every square submatmx of B is nonsingular. 

In a matrix with elements from GF(2 m) every determinant has a probability of 
2 - '~ to evaluate to zero. For increasing size of the matrix the number of determ- 
inants increases exponentially, making it infeasible to search randomly for an 
MDS-code. However, in a circulant matrix the number of distinct determinants 
is only a fraction of the number for arbitrary matrices (cf. Table 1). By impos- 
ing the extra constraint that the matrix should be a circulant, we increase the 
probability to find an MDS-code by random search. 

n generic circulant n genericlcirculant 
1 1 1 5 252 41 
2 5 3 6 924 111 
3 20 7 7 3431 309 
4 70 17 8 12869 935 

Table  1. The number of square submatrices in a generic matrix of order n, and the 
number of non-equivalent determinants in a circulant matrix of the same order. The 
numbers of the last column were obtained by an exhaustive computer search. 

c(z) corresponds to a 4 x 4 matrix, hence if we choose it randomly, the prob- 
ability that it has B = 5 can be approximated by (1 1 17 - ~ )  ~ 0.93. This gives 
us a high degree of freedom in the choice of c(z). We choose 

c(x) = 2x | lx " x |  ix -x 2 @ 3x "x 3. 

This determines d(x) uniquely. 

d ( x ) = E x q ) 9 x . x ( ~ D x . x  2q) Bx .x  3 

4 . 1  M o t i v a t i o n  f o r  t h e  C h o i c e  o f  

Since the branch number of c(z) is 5, the number of active S-boxes in a two-round 
trail is at least 5. The effect of 7r, interchanging rows and columns, has the effect 
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that any trail over four consecutive rounds will have at least 25 active S-boxes. 
A simple and clear proof of this is available and will be published in a more 
theoretical paper that is being written [3] . 

5 T h e  N o n l i n e a r  S u b s t i t u t i o n  ~, 

As explained above, the relevant criteria imposed upon the 7 S-box are the 
highest (in absolute value) occurring correlation between any pair of linear com- 
bination of input bits and linear combinations of output bits (denoted by A) 
and the highest occurring probability corresponding to any pair of input differ- 
ence and output difference pattern. This corresponds to the highest value in the 
so-called exor table of the 7 S-box, defined as 

Eli  = # { x l S ( x  ) G S ( x  @ i) = j }  . 

We define (f = max/,j{Ei3} �9 2 -8. 
We present three alternative choices for the S-box: explicitly constructed non- 

linear algebraic transformations, slightly modified versions of the latter and ran- 
domly selected invertible mappings. 

5.1 Explicit Construction 

In [13] a method is given to construct m-bit S-boxes with ~/ = 21-m/2 and 
~f = 22-m, the theoretically minimum possible values. From the proposals in [13] 
we select the mapping x ~-~ x -1 over GF(2S), with 5 -- 2 -6 and A = 2 -3. 

The problem with this choice is that the mapping has a very simple descrip- 
tion in GF(2S). The other components of the round transformation also have a 
simple description in GF(2S). This may enable cryptanalytic attacks based on 
the algebraic manipulation of equations to derive key information [4]. 

Note that any m-bit mapping can be represented as a polynomial or a rational 
form in GF(2"~). It is however unlikely that this representation can be exploited 
in cryptanalysis if the polynomial or rational form is of no special, relatively 
simple, form. 

The feasibility of algebraic manipulation can be severely diminished. The ele- 
ments of GF(2 s) can be represented with respect to different bases. By choosing 
a different basis for the definition of ~ and "/ we can prevent that the round 
transformation has a simple description in any basis of GF(2S). 

Still, even specified in another basis, the chosen nonlinear mapping stays an 
involution and has two fixed points: 0 and 1. By applying an affine transformation 
on the individual bits of the output these properties can be removed and a simple 
algebraic expression of the round transformation in any basis of GF(2 s) can be 
prevented. 
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5.2 Modif icat ions  

Another  method to prevent a simple algebraic description is by choosing a map-  
ping according to the method explained in the previous subsection and sub- 
sequently modifying it slightly to destroy the exploitable algebraic structure.  It  
will be seen that  the disadvantage of  this approach is that  5 a n d / o r  ,~ will increase. 

We conducted some experiments  s tar t ing f rom the mapping  multiplicative 
inverse in GF(28) as proposed above (5 = 2 . 6  and )~ = 8 x 2 -6)  and we applied 
a small number  of  modifications. 

When  we consider the mapping  as a look-up table and investigate all variants  
that  have a pair  of  entries swapped,  an increase is observed of  5 to 6 .2  - s  a n d / o r  
)~ to 9 x 2 -6.  We also tested 300 000 variants  in which four or eight entries were 
swapped.  Swapping four entries increases ,~ to 9 x 2 -6,  swapping eight entries 
increases )~ to 10 x 2 .6  and 5 to 6 - 2 -8.  

5 .3 R a n d o m  S e a r c h  

Algebraically constructed permutat ions  always exhibit some structure that  m a y  
be exploited in attacks in unant ic ipated ways, designers often resort to r a n d o m  
substitutions: a substi tution is selected f rom a set of  substi tutions that  are gener- 
ated by the use of  a r andom source and evaluated with respect to (presumably)  
relevant nonlineari ty criteria. In [14] the average differential properties of  per- 
mutat ions  are investigated and a bound for the expected value of  5 is given. For 
an m-bi t  permutat ion 

lim E[62m] < 1. 
m~oo 2m -- 

We verified this experimental ly for 1.5 million samples  with m = 8 and 
measured at the same time 5 and ,~. The  results are given in table 2. The S-boxes 
with the highest resistance against  both linear and differential cryptanalysis ,  have 
d = 1 0 - 2  - s  and A = 1 5 . 2  . 6  . 

5 
�9 2 -"  10.2  -~ 12 .2  -~ 14 .2  -"  16.2 -~118.2 -"  20.2  -~ 

15 x 2 -~ 0 0.07 0.07 0.006 0.0001 0 0 
16 x 2 -6 D.0003 4.7"7 5.58 0.58 0.04 0.002 0 
17 x 2 -6 [Z002 15.63 20.55 2.24 0.15 0.007 0.0004 
18 x 2 -6 3.0002 12.21 17.17 1.96 0.13 0.007 0.0005 
19 x 2 -6 9.0004 4.91 7.31 0.87 0.05 0.003 0 
20 x 2 -6 0 1.52 2.34 0.28 0.02 0.001 0 

21 x 2 -6 0 0.41 0.64 0.08 0.004 0.001 0 

Table  2. Maximum input-output correlation and difference propagation probability of 
randomly generated nonlinear permutations. The entries denote the percentage of the 
generated mappings that have the indicated )~ and 8. 
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5.4 O u r  C ho i c e  

Because of its optimal values for A and of, we have decided to take for $7 an 
S-box that is constructed by taking the mapping x ~-+ x-1 and applying an affine 
transformation (over GF(2)) to the output bits. This affine transformation has the 
property that it has a complicated description in GF(28) to thwart interpolation 
attacks [4]. 

Our choices force all four-round differential trails to have an associated prob- 
ability not higher than 2 -15~ far below the critical noise value of 2 -z~7. Equi- 
valently, four-round linear trails have an associated correlation not over 2 -75 , far 
below the critical noise vMue of 2 TM. Hence, for resistance against conventional 
LC and DC six rounds may seem sufficient. However, the specific blocked struc- 
ture of the cipher allows for more efficient dedicated differential attacks. This will 
be explained in the following section. 

6 A D e d i c a t e d  A t t a c k  

In this section we describe a dedicated attack that exploits the cipher structure 
of SQUARE. The attack is a chosen plaintext attack and is independent of the 
specific choices of S.y, c(x) and the key schedule. It is faster than an exhaustive 
key search for SQUAaE versions of up to 6 rounds. After describing the basic 
attack on 4 rounds, we will show how it can be extended to 5 and 6 rounds. 

6.1 P r e l i m i n a r i e s  

Let a A-set be a set of 256 states that are all different in some of the (16) state 
bytes (the active) and all equal in the other state bytes (the passive). Let ~ be 
the set of indices of the active bytes. We have 

Vx,yEA:{Xi'J•YiJ for ( i , j )  E)~ 
x~,~ = y~,~ for (i, j) ~ ), 

In this section we will make use of the geometrical interpretation as presented 
in Figure 1. Applying the transformations ~/and cr[k t] on (the elements of) a A- 
set results in a (generally different) A-set with the same ),. Applying 7r results 
in a A-set in which the active bytes are transposed by rr. Applying 0 to a A-set 
does not necessarily result in a A-set. However, since every output byte of 7 is 
a linear combination (with invertible coefficients) of the four input bytes in the 
same row, an input row with a single active byte gives rise to an output row with 
only active bytes. 

6.2 Four  R o u n d s  

Consider a A-set in which only one byte is active. We will now trace the evolution 
of the positions of the active bytes through 3 rounds. The 1st round contains no 0, 
hence there is still only one byte active at the beginning of the 2nd round. 0 of the 
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2nd round converts this to a complete row of active bytes, that is subsequently 
transformed by rr to a complete column. 0 of the 3rd round converts this to a 
A-set with only active bytes. This is still the case at the input to the 4th round. 

Since the bytes of the outputs of the 3rd round (denoted by a) range over all 
possible values and are therefore balanced over the A-set, we have 

bi,j = ~ c j - k a i , k  =~ct~ai, t+J = ~  ctO=O" 
b=O(a),aEA aEA k l aEA l 

Hence, the bytes of the output of ~ of the fourth round are balanced. This bal- 
ancedness is in generM destroyed by the subsequent application of "~. 

An output byte of the 4th round (denoted by a here) can be expressed as a 
function of the intermediate state b above 

a i , j  • S w[bj,i] �9 k 4 .  z ,.) �9 

By assuming a value for k .4 . the value of bj,i for all elements of the A-set can be $,3 ' 
calculated from the ciphertexts. If the values of this byte are not balanced over 
A, the assumed value for the key byte was wrong. This is expected to eliminate 
all but approximately 1 key value. This can be repeated for the other bytes of 
k 4 . 

We implemented the attack and found that two A-sets of 256 chosen plaintexts 
each are sufficient to uniquely determine the cipher key with an overwhelming 
probability of success. 

6.3 E x t e n s i o n  b y  a R o u n d  at the  End 

If an additional round is added, we have to calculate the above value of bj,i 
from the output of the 5th round instead of the 4th round. This can be done by 
additionally assuming a value for a set of 4 bytes of the 5th round key. As in the 
case of the 4-round attack, wrong key assumptions are eliminated by verifying 
that bj,i is not balanced. 

In this 5-round attack 240 key values must be checked, and this must be re- 
peated 4 times. Since by checking a single A-set leaves only 1/256 of the wrong 
key assumptions as possible candidates, the cipher key can be found with over- 
whelming probability with only 5 A-sets. 

6.4 E x t e n s i o n  b y  a R o u n d  at the  B e g i n n i n g  

The basic idea is to choose a set of plaintexts that results in a A-set at the 
output of the 2nd round with a single active S-box. This requires the assumption 
of values of four bytes of the round key k ~ 

If the intermediate state after t~ of the 2nd round has only a single active byte, 
this is also the case for the output of the 2nd round. This imposes the following 
conditions on a row of four input bytes of ~ of the second round: one particular 
linear combination of these bytes must range over all 256 possible values (active) 
while 3 other particular linear combinations must be constant for all 256 states. 
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This imposes identical conditions on the bytes in the same row in the input to 
~[kl], and consequently on a column of bytes in the input to lr of the 1st round. 
If the corresponding column of bytes of k ~ is known, these conditions can be 
converted to conditions on four plaintext bytes. 

Now we consider a set of 232 plaintexts, such that the array of bytes in one 
column ranges over all possible values and all other bytes are constant.  

Now, make an assumption for the value of the 4 bytes of the relevant column 
of k ~ Select f rom the set of 232 available plaintexts, a set of 256 plaintexts that 
obey the conditions indicated above. Now the 4-round attack can be performed. 
For the given key assumption, the attack can be repeated for a several plaintext 
sets. If  the byte values of k 5 suggested by these attacks are not consistent, the 
initial assumption must  have been wrong. A correct assumption for the bytes of 
k ~ will result in the swift and consistent recuperation of the last round key. 

We implemented this attack where we assumed knowledge of 16 bits of the 
first-round key. The attack found the other 16 bits of  the first-round key and 128 
bits of the last-round key using only 2 structures of 256 plaintexts for every key 
value guessed in the first round. 

6.5 C o m p l e x i t y  o f  the Attacks 

Combining both extensions results in a 6 round attack. Although infeasible with 
current technology, this attack is faster than exhaustive key search, and therefore 
relevant. We have not found extensions to 7 rounds faster than exhaustive key 
search. 

We summarize  the attacks in Table 3. 

Attack #Plaintexts Time Memory] 
4-round 2 y 2 y small [ 

5-round type 1 211 240 small [ 
5-round type 2 232 240 232 [ 

6-round 232 272 232 ] 

Table  3. Complexities of the attack on SQUARE. 

7 Number  of Rounds 

Due to these attacks we have to increase the number of rounds to at least seven. 
As a safety margin, we fixed the number of rounds to eight. 

Conservative users are free to increase the number of rounds. This  can be 
done in a straightforward way and requires no adaptation of the key schedule 
whatsoever. 
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8 T h e  K e y  E v o l u t i o n  r 

The key schedule specifies the derivation of the round keys in terms of the cipher 
key. Its function is to provide resistance against the following types of attack: 

- Attacks in which part of the cipher key is known to the cryptanalyst, e.g., if 
the cipher is used with a key shorter than 128 bits. 

- Attacks where the key entry to the cipher is known or can be chosen, e.g., if 
the cipher is used as the compression function of a hash algorithm [7]. 

- Related-key attacks. 

Resistance against the first type of attack can be improved by a key schedule in 
which the round key undergoes a transformation with high diffusion. For a good 
scheme, the knowledge of a certain number of bits of one round key fixes very 
few bits in other round keys. The other two types of attack exploit regularities in 
the structure of the key schedule by locally compensating round key differences 
[5, 7]. 

The key schedule also plays an important role in the elimination of symmetry: 

- S y m m e t r y  in the round  t ransformat ion:  the round transformation treats 
all bytes of a state in very much the same way. This symmetry can be removed 
by having round constants in the key schedule. 

- S y m m e t r y  be tween  the rounds:  the round transformation is the same for 
all rounds. This equality can be removed by having round-dependent round 
constants in the key schedule. 

The key schedule is defined in terms of the rows of the key. We can define a 
left byte-rotation operation rotr(ai) on a row as 

rotl[ai,oai,l ai,~ai,3] = [ai,l ai,2ai,3ai,o] 

and a right byte rotation rotr(ai) as its inverse. 
The key schedule iteration transformation k t+l = r t) and its inverse are 

defined by 

k~ +~ = k~ ~ rotl(k~) �9 ct  
ki+l = k l e k ~ +  ~ 
k~ +~ = k~ �9 k~ +I 
k~ +1 = k~ �9 k~ +1 

~+1  = ~ �9 ~ 

t~ +1 = let @ rotr(t~ t) G C~ 

The simplicity of the inverse key schedule is thanks to the fact that 0 and r 
commute. The round constants Ct are also defined iteratively. We have Co = ix 
and Ct -=- 2x. Ct-1.  

This choice provides high diffusion and removes the regularities in an efficient 
way. 
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9 I m p l e m e n t a t i o n  A s p e c t s  

9.1 8-bit Processor  

On an 8-bit processor SQUARE can be programmed by simply implementing 
the different component transformations. This is straightforward for 7r, 6r and 
r The transformation 7 requires a table of 256 bytes. 0 requires multiplication 
in the field GF(2S). However, the multiplication polynomial has been chosen to 
make this very efficient. We have written a program implementing SQUARE in 
Assembler for the Motorola's M68HC05 microprocessor, typical for Smart Cards. 
The machine code occupies in total 547 bytes of ROM, needs 36 bytes of RAM 
and one execution of SQUARE, including the key schedule, takes about 7500 
cycles. This corresponds to less than 2 msec with a 4 MHz Clock. 

The inverse cipher however is significantly slower than the forward cipher. 
This is caused by the difference in complexity between 8 and 8 -1. 

9.2 32-bit Processor  

In the implementation of the cipher, the succession of steps 

0 o~[k G o ~ o~ = ~[k"] o 0 o ~ o 

with k 't = 8 ( k  t )  can be combined in a single set of table lookups. The interme- 
diate state can be represented by four 32-bit words, each containing a row Jail. 
Its transpose is denoted by [ai] T .  For b = 0(r(v(a)) ) + k 't we have 

i v0 c ,  rs,[a< 
[bdr = cl co ca c2 . I &[al,i] 

c= cl co c3 / & [ a = , ' ]  ~ [kT]T 
c3 c= c~ co k S,[a~,d (col iv, Cl CO c3 c2 --  ' S[aoi] �9 �9 S[a l i ]  �9 �9 S[a2i] �9 �9 S[a2i] ~ [k~t] T 
C2 Cl Co C3 
C3 C2 el co 

We define the tables M and T as 

/ [ ~ ]  = ~ [co cl c~ c~ ] 
TIe]  = M [ S [ a ] ] .  

T and M have 256 entries of four bytes each. The table M implements the 
polynomial multiplication. T combines the nonlinear substitution with this mul- 
tiplication. Now we have 

[b,] = ~ rotr j (T[aj,])@ [k:t)].  
J 

We conclude that r o0o~ro 7 can be done with 16 table lookups, 12 rotations 
and 16 exors of 32-bit words. This implementation needs the table T, with 256 
entries of four bytes, i.e. one kilobyte in total. 
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L a s t  R o u n d  It can be seen that in this implementation, 0 of the last round 
is already executed in the previous set of table-lookups. In the last round the 
function to be applied is cr[k s] o ~r o 7. This can be realised by replacing the table 
T[x] = i [S[x]]  by S[x]. Since c2 -- lx, the unity in GF(2S), the entries of the 
small table S can be extracted from T, removing the extra storage requirement 
for S. 

P e r f o r m a n c e  The reference implementation is written in C and runs at 2.63 
MByte/s  on a 100 MHz Pentium with the Windows95 operating system. The 
inverse cipher can be implemented in exactly the same way as the cipher itself and 
has the same performance. The difference is in the tables and the precalculation 
of the round keys. 
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