
All-or-Nothing Encryption and the Package Transform

Ronald L. Rivest

MIT Laboratory for Computer Science
545 Technology Square, Cambridge, Mass. 02139

rivest@theory, ics.mit, edu

Abstract . We present a new mode of encryption for block ciphers, which
we call al l -or -noth ing encrypt ion . This mode has the interesting defining
property that one must decrypt the entire ciphertext before one can de-
termine even one message block. This means that brute-force searches
against all-or-nothing encryption are slowed down by a factor equal to
the number of blocks in the ciphertext. We give a specific way of im-
plementing all-or-nothing encryption using a "package transform" as a
pre-processing step to an ordinary encryption mode. A package trans-
form followed by ordinary codebook encryption also has the interest-
ing property that it is very efficiently implemented in parallel. All-or-
nothing encryption can also provide protection against chosen-plaintext
and related-message attacks.

1 I n t r o d u c t i o n

One way in which a cryptosystem may be attacked is by brute-force search: an
adversary tries decrypting an intercepted ciphertext with all possible keys until
the plaintext "makes sense" or until it matches a known target plaintext. Our
primary motivation is to devise means to make brute-force search more difficult,
by appropriately pre-processing a message before encrypting it.

In this paper, we assume that the cipher under discussion is a block cipher
with fixed-length input /output blocks, although our remarks generalize to other
kinds of ciphers. An "encryption mode" is used to extend the encryption function
to arbitrary length messages (see, for example, Schneier [9] and Biham [3]).

In general, the work required to search for an unknown k-bit key to a known
block cipher is 2 k in the worst-case, or 2 k-1 on the average. Here (and throughout
this paper) we measure the work by the number of elementary decryptions attemp-
ted, where an elementary decryption is a decryption of one block of ciphertext.
For example, in the "electronic codebook" encryption mode the adversary needs
to decrypt only the first block of ciphertext to obtain the first block of plaintext;
this is usually sufficient to identify the correct key. (If not, the second block can
be decrypted as well...)

Sometimes the size of the key space for one's encryption algorithm is fixed,
"marginal," and can't be improved. For example, one can argue that a 56-bit
DES key is marginal (see Blaze et al. [4]). Or, one may be encumbered by export

All-Or-Nothing Encryption and The Package Transform 2t l

regulations that restrict one to a 40-bit secret key. The question posed here
is: is there any way to significantly increase the difficulty for an adversary of
performing a brute-force search, while keeping the key size the same and not
overly burdening the legitimate communicants?

We show that the answer to the question is yes.

2 S t r o n g l y n o n - s e p a r a b l e e n c r y p t i o n

The problem with most popular encryption modes is that the adversary can
obtain one block of plaintext by decrypting just one block of ciphertext.

We illustrate this point with cipher-block chaining (CBC mode). Let the s
blocks of the message be denoted rnl, m2, . . . , ms. The CBC mode utilizes
an initialization vector I V and a key K. The algorithm produces as output
ciphertext ci for 1 < i < s + 1, where

cl = I V

and

Thus

ci+l = E(K, ci G mi) for i = 1 , 2 , . . . , s .

m i = ci ~]~ D(K, Ci+l) for i = 1, 2 , . . . , s ,

and so any one of the s message blocks can be obtained with the decryption of just
one ciphertext block. This makes the adversary's key-search problem relatively
easy, since decrypting a single ciphertext block is generally enough to test a
candidate key.

Let us say that an encryption mode for a block cipher is separable if it has the
property that an adversary can determine one block of plaintext by decrypting
just one block of ciphertext. Thus, CBC mode is separable.

We wish to design non-separable encryption modes. More precisely, we wish
to design strongly non-separable modes, defined as follows.
Def in i t ion . Suppose that a block cipher encryption mode transforms a sequence

m l , m 2 , �9 �9 � 9 m s

of s message blocks into a sequence

C l , C 2 , . . . , Ct

of t ciphertext blocks, for some t, t >_ s. We say that the encryption mode is
strongly non-separable if it is infeasible to determine even one message block
mi (or any property of a particular message block mi) without decrypting all t
ciphertext blocks.

212 Ronald L. Rivest

3 A l l - O r - N o t h i n g T r a n s f o r m s

We propose to achieve strongly non-separable modes as follows:

- Transform the message sequence ml, m2, �9 �9 �9 ms into a "pseudo-message"
sequence m~, m~, . . . , m~s, (for some s' _> s) with an "all-or-nothing trans-
form", and

- Encrypt the pseudo-message with an ordinary encryption mode (e.g. code-
book mode) with the given cryptographic key K to obtain the ciphertext
sequence e l , C2, . . . , e t .

We call encryption modes of this type "all-or-nothing encryption modes." A
specific instance of this mode would be "all-or-nothing codebook mode," when
the encryption mode used is codebook mode, (or "all-or-nothing CBC mode",
etc.).

To make this work, the all-or-nothing transform has to have certain properties.
Def in i t i on . A transformation f mapping a message sequence ml , m2, . . . , m 8

into a pseudo-message sequence m~, m~, . . . , m~s, is said to be an all-or-nothing
transform if

- The transformation f is reversible: given the pseudo-message sequence, one
can obtain the original message sequence.

- Both the transformation f and its inverse are efficiently computable (that is,
computable in polynomial time).

- It is computationally infeasible to compute any function of any message block
if any one of the pseudo-message blocks is unknown.

We note that an all-or-nothing transformation must really be randomized, so
that a chosen or known message attack does not yield a known pseudo-message,
and so that a deterministic function which computes the first pseudo-message
block is not available as a function to contradict the last requirement above.

We note that the all-or-nothing transformation is not itself "encryption," since
it makes no use of any secret key information. It is merely an invertible "pre-
processing" step that has certain interesting properties. The actual encryption
in an all-or-nothing encryption mode is the operation that encrypts the pseudo-
message resulting from the all-or-nothing transform. An all-or-nothing transform
is a fixed public transform that anyone can perform on the message to obtain the
pseudo-message, or invert given the pseudo-message to obtain the message.

T h e o r e m 1. An all-or-nothing encryption mode is strongly non-separable,

" P r o o f " : We assume that the underlying encryption mode is such that all cipher-
text blocks must be decrypted in order to obtain all pseudo-message blocks. (If
this were not the case, the encryption mode would not be efficient, and a more
efficient reduced mode could be derived from it.) Thus, all ciphertext blocks must
be decrypted in order to determine any (property of any) message block. []

All-Or-Nothing Encryption and The Package Transform 213

4 T h e P a c k a g e T r a n s f o r m

The all-or-nothing scheme we propose here (the "package transform") is quite
efficient, particularly when the message is long; the cost of an all-or-nothing
transform is approximately twice the cost of the actual encryption. We shall also
see that all-or-nothing encryption admits fast parallel implementations.

The legitimate communicants thus pay a penalty of approximately a factor
of three in the time it takes them to encrypt or decrypt in all-or-nothing mode,
compared to an ordinary separable encryption mode. However, an adversary
attempting a brute-force attack pays a penalty of a factor of t, where t is the
number of blocks in the ciphertext.

As an example, if I send you a eight-megabyte message encrypted in all-or-
nothing CBC mode with a 40-bit DES key, the adversary must decrypt the entire
eight-megabyte file in order to test a single candidate 40-bit key. This expands
the work-factor by a factor of one-million, compared to breaking ordinary CBC
mode. Since one million is approximately 22~ to the adversary this feels like
having to break a 60-bit key instead of a 40-bit key!

Using this scheme, it can clearly be advantageous for the communicants to
"pad" the message with random data, as it makes the adversary's job harder.

We propose here a particular all-or-nothing transform, which we call the
"package transform." We note that while it uses a block cipher itself as a primit-
ive, no secret keys are used. (Instead, a randomly chosen key is used, and this key
can be easily determined from the pseudo-message sequence.) The block cipher
used in the package transform need not be the same as the block cipher used to
encipher the pseudo-message (the package transform output), although it may
be. (If it is the same encryption algorithm, note that we assume below that the
key space for the package transform block cipher is sufficiently large that brute-
force search is infeasible, while the motivation for the use of an all-or-nothing
encryption mode was that the key space for the outer encryption algorithm was
marginal. This situation can arise for variable-key-length block ciphers such as
RC5. For concreteness, the reader may imagine that we are working with RC5
for both the package transform encryption algorithm and the outer encryption
algorithm, with 128-bit input /output blocks, a 128-bit encryption key for the
package transform, and a 40-bit key for the outer encryption transform.)

For this exposition, then, we assume that the key size of the package transform
block cipher is the same as its block size; this assumption can easily be removed
and is made here only for convenience in exposition. We also assume that the key
space for the package transform block cipher is sufficiently large that brute-force
searching for a key is infeasible. The scheme also uses a fixed publically-known
key K0 for the package transform block cipher.

Here is the package transform:

- Let the input message be ml, m2, . . . , ms.
-- Choose at random a key K ' for the package transform block cipher.
- Compute the output sequence m], mS, . . . , m' s, for s' = s + 1 as follows:

* Let m~ = mi ~ E (K ' , i) for i = 1 , 2 , 3 , . . . , s .

214 Ronald L. Rivest

�9 Let

where

m'~, = K I @ hi @ h~ @ . . . @ h8 ,

hi = E (Ko, m~ @ i) for i - 1 , 2 , . . . , s ,

where K0 is a fixed, publically-known encryption key.

The intent here is that the key K ' be chosen from a large space (for example,
chose K ~ as a 128-bit RC5 key). Since K ' is not a secret shared key (it is
disclosed in the pseudo-message), it is not restricted by the limitations of the
following encryption mode.

The package transformation is similar to encrypting in counter mode, except
that the key is randomly chosen rather than fixed, and the last pseudo-message
block is the exclusive-or of the key and a hash of all previous pseudo-message
blocks (computed as the exclusive-or of the encryptions of variants of these blocks
under a fixed key, where the i-th variant is computed as the exclusive-or of i and
the block). This technique ensures that simple modifications to the ciphertext,
such as permuting the order of two blocks or duplicating a blocks, is highly likely
to change the key K ' computed by the receiver.

One could also define variant package transforms based on block-chaining
techniques instead of counter mode.

It is easy to see that the package transform is invertible:

K ' = m~, (~ hi ~ h2 @ . . . @ h~ ,

m i = m~ @ E (K ' , i) for i = 1 , 2 , . . . , s .

We also note that if any block of the pseudo-message sequence is unknown,
then K ' can not be computed, and so it is infeasible to compute any message
block. (Formal proof omitted here, but we recall that the key K ' is assumed to
be drawn from an infeasibly large set, so that (for example) a meet-in-the-middle
attack is not more efficient than decrypting all the ciphertext blocks.)

5 D i s c u s s i o n

A related well-known approach towards getting more security out of fixed num-
ber of key bits is to use encryption techniques that have a long "set-up" time
(see Quisquater et al. [8], or Schneier's "Blowfish" algorithm [9]). This penalizes
the legitimate user whenever he performs a key-change, whereas all-or-nothing
encryption incurs a fixed penalty for each block encrypted. While this may seem
to favor the increased set-up time approach, we note that

- An all-or-nothing transform is merely a pre-processing step, and so it can be
used with already-existing encryption devices and software, without changing
the encryption algorithm.

All-Or-Nothing Encryption and The Package Transform 215

- Increasing the set-up time may still yield an algorithm that is efficiently
implemented with a special-purpose brute-force chip, since there may be little
need for inter-chip communications. On the other hand, the two-pass nature
of all-or-nothing encryption may necessitate large amounts of input/output,
something that usually slows down operations considerably.

- In any case, the approaches are complementary, and can easily be combined.

We note that all-or-nothing encryption modes are only defined here when the
message to be encrypted is a finite sequence; an infinitely long message can not
be encrypted in an all-or-nothing mode, whereas other modes such as CBC work
perfectly well in this case. All-or-nothing encryption modes work very well in
cases such as for encrypting packets in a network.

We observe, however, that one can begin encrypting in package CBC mode
(or package codebook mode) before one knows the end of message sequence,
since the inner package operation and the outer CBC (or codebook) encryption
modes can both be implemented in a sequential manner. However, decrypting
a package mode ciphertext more-or-less requires two passes and/or having the
entire ciphertext available at once.

Package codebook mode is particularly interesting, since the outer codebook
decryption and the inner package transformation can both be performed effi-
ciently in parallel. (I don't mean that they are performed at the same time, but
that each one separately admits an efficient parallel implementation.) With a
sufficient number of encryption units, a message of length s can be encrypted or
decrypted in time O(log s). This may be an advantage for the legitimate commu-
nicants in a high-speed communications scenario. Note that the same advantage
is available to the adversary-although he has to decrypt the entire ciphertext, he
can also do it in parallel. However, for the adversary this advantage is probably
meaningless, since it is the total search time that is important to him, not the
latency for performing a single decryption. Thus package codebook mode has
much to recommend it from a performance perspective.

We note that all-or-nothing encryption modes can provide protection against
differential attacks and other forms of attack that depend on chosen plaintext,
since a randomized all-or-nothing transformation can effectively destroy any pat-
terns in the actual input (the pseudo-message) to the underlying encryption op-
eration.

In addition, an all-or-nothing transformation can be useful before RSA en-
cryption, as it prevents various kinds of "related message" or other attacks (e.g.
those of Coppersmith et al. [5]). Indeed, the package transform described here
can be viewed as a special case of the "simple embedding scheme" proposed by
Bellare and Rogaway [2] in their "optimal asymmetric encryption" preprocesing
scheme (used before applying RSA encryption):

�9 a (r) II " �9 H (z r G (r)) .

Here z is the message to be encrypted (like our message m), r is a randomly
chosen quantity (like our key K'), G(r) is a pseudo-random output (like our
E(K', 1), E (K ' , 2) , . . .) , and H is a hash function (like our hi @ h2 • . . . h s) .

216 Ronald L. Rivest

The correspondence would be closer if we had proposed using mls, = K I @
MD5(m~,. . . ,m~s), which would also give some improved efficiency, but we
wished to confine ourselves to just using the block cipher as a primitive opera-
tion. We are applying these ideas to symmetric block cipher modes of operation
rather than asymmetric encryption, but the principles are essentially the same.
However, it may also be the case that a rather different approach can be ap-
plied to achieve our goals with substantially greater efficiency than the approach
suggested here or by Bellare and Rogaway's approach in general.

There are many approaches one might take towards devising all-or-nothing
transforms. One might consider computing the pseudomessage as the concatena-
tion of a description of a hash function h chosen randomly from a universal family
of hash functions with a suitably large range, followed by the application of h
to the message. Another approach that may work well is to use a scheme based
on an FFT-like arrangement of randomized multipermutations (see Schnorr et
al. [10]).

Or, one can base an approach on secret-sharing schemes. Actually, the pack-
age transform can be viewed as a s' out of s' secret-sharing threshold scheme;
each of the s' pseudo-message blocks can be viewed as one "share" of the under-
lying message. Decrypting so as to obtain fewer than # pseudo-message blocks
yields no information at all about the underlying message. This is "computational
secret sharing" (see [6]) since the shares are shorter than the message itself. In-
deed, one can design all-or-nothing schemes based on Krawczyk's proposals.

An entirely different approach is given by Anderson and Biham [1], who
design block ciphers (such as BEAR and LION) from scratch that seem to have an
"all-or-nothing" property. Their approach is different because they design block
ciphers with variable-length blocks to accomodate messages of varying lengths,
whereas our focus is on designing an encryption mode for fixed-length block
ciphers that provide an all-or-nothing property. Nonetheless, their schemes may
be the method of choice in some situations.

We note that all-or-nothing encryption has terrible error-propagation prop-
erties: if any ciphertext block is damaged, then it is likely that every message
block will be damaged. Thus, ciphertext should be transported with reliable
transmission means. (One could interpose an error-correction phase between the
all-or-nothing transformation and the encryption; this could help handle errors
while only modestly decreasing non-separability.)

Using this error-propagation property to one's advantage, one can extend all-
or-nothing mode by appending a suitable block of redundancy (such a block of
all zeros, or the sum of all the previous message blocks) to the message before
applying the all-or-nothing transformation. This redundancy can be verified and
removed upon decryption. This helps to detect corrupted ciphertext.

As a variation on the idea of the previous paragraph, the redundancy block
may be computed as the sum of previous message blocks and a secret value that
is known only to the two parties communicating; this provides a form of message
authentication. The redundancy block could of course also be computed with
more conventional keyed hashing techniques.

All-Or-Nothing Encryption and The Package Transform 217

The preceding paragraphs touch upon an important issue: that an encryption
mode should provide integrity as well as confidentiality. Mao and Boyd [7] make
this point well. Bellare and Rogaway prove that their simple embedding scheme
provides non-malleability, for example.

6 C o n c l u s i o n

We have presented an encryption mode-- the all-or-nothing encryption m o d e - -
and a specific means of implementing it using the package transform. Other forms
of all-or-nothing encryption are presumably yet to be devised.

We leave it as an open problem to devise an all-or-nothing encryption mode
that is substantially more efficient than the scheme presented here. Is it possible,
for example, to reduce the cost of implementing an all-or-nothing mode from a
factor of three greater than CBC to just a factor of two greater?

A c k n o w l e d g m e n t s
I would like to thank Don Coppersmith, Oded Goldreich, Shaft Goldwasser,

Mihir Bellare, Burt Kaliski, and the referees for helpful comments and conver-
sations. Silvio Micali deserves special thanks for suggesting the term "all-or-
nothing." David Wagner deserves thanks for pointing out significant bugs in
earlier versions of this paper, and for pointing out the relationship between this
work and the Bellare-Rogaway work on optimal asymmetric encryption. And
thanks to Mihir Bellare for noting the relationship with secret-sharing schemes.

R e f e r e n c e s

1. Ross Anderson and Eli Biham. Two practical and probably secure block ciphers:
BEAR and LION. In Dieter GoUman, editor, Fast Software Encryption, pages
114-120. Springer, 1996. (Proceedings Third International Workshop, Feb. 1996,
Cambridge, UK).

2. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption--how to en-
crypt with RSA. In EUROCRYPT94, 1994.

3. Eli Biham. Cryptanalysis of multiple modes of operation. 1995. Pre-Proceedings
of ASIACRYPT '94. Submitted to J. Cryptology.

4. Matt Blaze, Whitfield Diffie, Ronald L. Rivest, Bruce Schneier, Tsutomu Shimo-
mura, Eric Thompson, and Michael Wiener. Minimal key lengths for symmet-
ric ciphers to provide adequate commercial security: A report by an ad hoc
group of cryptographers and computer scientists, January 1996. Available at
h t tp ://www. bsa. org.

5. Don Coppersmith, Matthew Franklin, Jacques Patarin, and Michael Reiter. Low-
exponent RSA with related messages. Technical Report IBM RC 20318, IBM T.J.
Watson Research Lab, December 27, 1995. (To appear in Eurocrypt '96).

6. Hugo Krawczyk. Secret sharing made short. In Douglas R. Stinson, editor, Proc.
CRYPTO 93, pages 136-146. Spring-Verlag, 1993.

7. Wenbo Mao and Colin Boyd. Classification of cryptographic techniques in authen-
tication protocols. In Proceedings 1994 Workshop on Selected Areas in Crypto-
graphy, May 1994. (Kingston, Ontario, Canada).

218 Ronald L. Rivest

8. J.-J. Quisquater, Yvo Desmedt, and Marc Davio. The importance of "good" key
scheduling schemes (how to make a secure DES scheme with < 48 bit keys). In
H. C. Williams, editor, Proc. CRYPTO 85, pages 537-542. Springer, 1986. Lecture
Notes in Computer Science No. 218.

9. Bruce Schneier. Applied Cryptography (Second Edition). John Wiley & Sons, 1996.
10. C. P. Schnorr and S. Vandenay. Black box cryptanalysis of hash networks based

on multipermutations. In EUROCRYPT94, 1994.

