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Abst rac t .  The mismatch between traditional cipher designs and effi- 
cient operation on modern Very Long Instruction Word, Single Instruc- 
tion Multiple Data, superscalar, and deeply pipelined processors is ex- 
plored. Guidelines are developed for efficiently exploiting the instruction- 
level parallelism of these processor architectures. 
Two stream ciphers, WAKE-ROFB and WiderWake, incorporating these 
ideas are proposed. WAKE-ROFB inherits the security characteristics of 
WAKE, from which it is derived, but runs almost three times as fast as 
WAKE on a commercially available VLIW CPU. Throughput in excess of 
40 MByte/s on a 100 MHz processor is demonstrated. Another derivative, 
WiderWake, whose security characteristics are not directly transferrable 
from WAKE runs in excess of 50 MByte/s on the same processor. 

1 I n t r o d u c t i o n  

Much of existing cipher design stems from an era when processors exhibited 
little or no instruction parallelism or concurrency. Given such processors, the 
route to achieving the ultimate in performance for software based encryption 
algorithms was to reduce to a min imum the total number of operations required 
to encrypt each symbol.  Examples of algorithms that epitomize this strategy are 
RC41, SEAL[10], and WAKE[l].  

The latest generation of processors gain much of their performance improve- 
ments by having deeper pipelines and a greater degree of available parallelism 
than their predecessors. This dictates additional design criteria for algorithms 
that are to fully benefit from these changes. Until now little attention has been 
paid to optimizing ciphers to run on such architectures. 

We examine the performance limitations of some existing ciphers on the new 
CPU architectures and make suggestions for design practices to maximize speed. 
Some of these recommendations are contrary to practices currently favored in the 
design of ciphers for software execution. 

Two related cipher families incorporating these ideas are presented as working 
examples of the potential  for substantially increased throughput available on 
recently introduced processors. 

1 RC4 is a trademark of RSA Data Security Inc. Discussion of RC4 herein refers to 
the cipher described under that name in [11]. 
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2 E x p l o i t i n g  P a r a l l e l i s m  in  M o d e r n  P r o c e s s o r s  

Instruction-level parallelism in modern processors is expressed in several forms: 
�9 P i p e l i n i n g -  The execution pipe is split into several stages with registers in 

between. The clock rate can be increased because only a small amount of work 
is done in each stage of the pipe. It takes several machine cycles from the time 
an instruction enters the pipe until the time the result comes out, however, 
during that time additional instructions can be fed into the beginning of the 
pipe so long as they don't depend on results that are not yet available. Thus 
there is concurrency between instructions that are in different stages of the 
pipeline. 

As welt as being a technique used in single threaded processors, pipelining is 
typically used in the execution units of each the following architectures. 
�9 S u p e r s c a l a r -  Multiple execution units are implemented in one CPU. Several 

of them can accept instructions on each machine cycle. Assignment of instruc- 
tions to the available execution units, and resolution of data dependencies 
between instruction streams, are tasks performed by the CPU at run-time. 

�9 Very Long I n s t r u c t i o n  W o r d  (VLIW )  - Like superscalar, multiple exe- 
cution units are implemented in one CPU. Several execution units can accept 
instructions on each machine cycle. Unlike superscalar however, VLIW instruc- 
tions are assigned to specific execution units and data dependencies between 
instruction streams are resolved, at compile-time, i.e. the compiler generates 
assembly code that accounts for the CPU's pipeline delays in each path. So, 
two members of a VLIW CPU family having different pipeline delays may 
need different assembly code even if their instruction sets are identical. 

�9 Single Ins t ruc t ion ,  Mul t ip le  Da ta  (S IMD)  - A single instruction stream 
is applied simultaneously to several data elements. This technique is espe- 
cially favored for accelerating video and graphics processing. The Intel MMX 
instruction set recently added to the Intel Pentium line is one example. 

Some authors have optimized their algorithms for 64-bit CPUs in their quest 
to extract more performance from recent processors, an example being the se- 
cure hash Tiger[2]. However, direct support for 64-bit arithmetic continues to be 
substantially limited to the niche market of high-end RISC CPUs. 

Meanwhile, Intel-Architecture CPUs and other 32-bit processors for desktop 
and embedded applications are eagerly embracing a combination of superscalar, 
VLIW, and SIMD techniques. SIMD instructions have also been added to some 
of the high-end 64-bit RISC CPUs to accelerate video and graphics operations. 

In SIMD architectures it is common for carry generation to take extra instruc- 
tions, causing multiple precision arithmetic to be somewhat inefficient. For this 
reason we suggest that for widest applicability algorithms should avoid 64-bit 
arithmetic, n x 32-bit SIMD compatibility is the preferred way of taking advant- 
age of data paths wider than 32-bits. 

A common assumption in the design of software-oriented algorithms is that 
table-look-ups are inexpensive operations provided that the table fits inside the 
processor's cache[l, 10, 12]. On modern deeply pipelined processors, memory 
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accesses, even to the CPU's local cache, typically have a longer latency than 
simple arithmetic or logical operations. Also, in highly parMlel CPUs it is rare 
to have as many concurrent ports into the data cache as the number of parallel 
execution paths. Consequently, table-look-ups on such processors can be much 
more expensive relative to arithmetic or logical operations than they would be 
on a non-pipelined single-threaded CPU. To mitigate this, algorithms should be 
designed so that other useful work can proceed in parallel with table-look-ups. 

Bit-rotations within a word have found favor in a number of recent 
algorithms[6, 10], with some including data-dependent rotations[9]. Common 
SIMD instruction sets, MMX included, do not directly support rotations within 
each of the multiple data operands, so a rotation must be synthesized by mer- 
ging the results of two simple shifts, at a cost of three instructions. On a SIMD 
machine, data-dependent shifts and rotates can be substantially more costly than 
their fixed-length counterparts since applying different shifts to each operand is 
commonly not supported. 

So, for efficient SIMD operation, shifts are preferred over rotations, and fixed- 
length shifts and rotations are preferred over data-dependent ones. 

VLIW and superscalar architectures do not necessarily show a penalty for 
rotations versus shifts or for data-dependent versus fixed, except that rotations 
may only be efficient for the native word length. 

3 P a r a l l e l i s m  i n  E x i s t i n g  C i p h e r s  

A characteristic of many existing ciphers is that a symbol of plaintext undergoes 
numerous inherently sequential operations on its way to becoming ciphertext, 
and the next plaintext symbol cannot be processed Until the preceding ciphertext 
symbol is known. Encryption using a block algorithm such as DES[7] in cipher- 
feedback (CFB) mode[4] is a classic example of this characteristic ~. The DES 
rounds are inherently performed sequentially, and the level of parallelism within 
a DES round is small except for eight parallel S-box look-ups. Unfortunately, 
table-look-ups are one of the least parallelizable operations on a modern CPU. 

Coarse-grained parallelism can be forced on a system by for instance inter- 
leaving several independent cipher streams, but for a single CPU to get more 
throughput this way the associated replicated instruction streams need to map 
efficiently to the fine-grained instruction-level parallelism of modern processors. 
As a minimum, interleaving requires replication of the state variables that differ 
with each instance of the cipher, such as chaining variables or initialization vec- 
tor dependent look-up-tables. The enlarged amount of state necessary to execute 
multiple instances of a cipher concurrently may reduce performance if it causes 
the cache capacity to be exceeded, or if it causes variables that otherwise could 
be held in CPU registers to instead be accessed from memory. 

2 While encryption in CFB mode is inherently a serial process, decryption using a block 
cipher in CFB mode offers urdimited block-level (coarse-grained) parallelism. This 
parallelism arises from the same absence of feedback loops in the decryption compu- 
tational flowgraph that accounts for this mode's finite error extension characteristic. 
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Table 1. Performance characteristics of various encryption algorithms 
RC4 SEAL WAKE-CFB 

Number of bits ciphered per iteration 8 128 32 

Number of 32-bit operations per iteration 15 68 24 

Number of 32-bit operations per byte 15 4.25 6.0 

Number of 32-bit operations in critical path 6 35 17 
(Add/XOR/mask, table-look-up, other) (2, 2, 2 stores) (27, 8, 0) (13, 4, 0) 

Number of cycles in critical path 10 51 25 

Normalized critical path 10cycles/byte 3.2cycles/byte 6.25cycles/byte 

Apparent parallelism 2.5x 1.94x 1.41 x 
(ops-per-lterataon / ops in critical path) 

Critical-path efficiency 0.60 0.69 0.68 
(ops in critical path / cycles in critical path) 

P-factor 1.5 1.33 0.96 
(Apparent parallelism x critical-path efficiency) 

Benchmarked performance on 32-bit VLIW CPU 10.6cycles/byte 3.5cycles/byte 6.38cycles/byte 

To determine the upper limit on performance of a cipher on a suitably parallel 
processor architecture we attempt to identify the software critical path through 
the algorithm. This is the path through the algorithm from one output symbol 
to the next, that has the largest weighted instruction count, the weighting being 
the number of cycles of latency associated with each type of instruction. 

For instance, on most processors the result of a simple operation like an 
addition or XOR can be used in the subsequent cycle - these instructions are 
said to have a one cycle latency. However, reading from memory, even when the 
data is in the CPU's local cache, will typically take several cycles. Data read from 
cache commonly suffers a two or three cycle latency on modern deeply pipelined 
processors, while one recent introduction has it is as high as five cycles. Table- 
look-ups are inherently memory references, since even if the table is so small 
that it could reside in the generous register space of some modern processors, 
it cannot be placed there because the instruction sets do not support indirect 
referencing of registers. 

Table 1 compares the theoretical and benchmarked encryption performances 
of RC4, SEAL, and WAKE on a 32-bit CPU with a RISC-like instruction set. The 
critical paths assume a memory-read latency of three cycles. All other operations 
are assigned a latency of one cycle. The total number of operations per iteration 
includes reading a plaintext input buffer, applying the cipher, and writing the 
ciphertext to an output buffer. For purposes of comparison loop overhead has 
been ignored when counting operations since it is essentially common to all the 
algorithms and can generally be reduced to insignificant levels by sufficient loop 
unrolling. 

The 'apparent parallelism' listed in the table is the ratio of the total number 
of operations per iteration of the cipher to the number of operations in the critical 
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path. It gives an indication of the most execution units that the algorithm could 
take s o m e  advantage of. 

Another metric - the critical-path efficiency, tells what fraction of the cycles 
in the critical path are actually used to issue an instruction. In a pipelined pro- 
cessor the unused cycles here represent an opportunity for performing additional 
operations without resorting to more execution units or slowing the computation. 
Ideally an algorithm will have enough parallelism to exploit these 'bubbles' in 
the critical-path pipeline and s t i l l  make use of multiple execution units. 

A gauge of the most execution units that can be f u l l y  exploited by an al- 
gorithm can be obtained by taking the ratio of the total number of operations 
per iteration of the cipher to the number of cycles in the critical path. This is the 
same as the apparent parallelism times the critical-path efficiency, and is referred 
to in the table as the P-factor (for parallelism-factor). Note that since the critical 
path is a function of both the algorithm and  the associated instruction latencies, 
the values for these metrics will change if the processor under consideration has 
different latencies from those assumed here. The instruction latencies used for 
the table are those of the processor actually used for benchmarking. 

In order for an algorithm to fully exploit a superscalar, VLIW, or SIMD 
processor the P-factor needs to be substantially greater than unity. Ideally it 
should be no less than the number of parallel execution paths available in the 
target CPUs. 

For some recently introduced processors the number of parallel execution 
paths is in the range of four to eight. Clearly, with P-factors of less than two, 
the encryption algorithms examined here cannot efficiently exploit the resources 
of such processors. 

4 D e s i g n  S t r a t e g y  f o r  a N e w  C i p h e r  

The strategy for developing a new cipher was to attempt to apply these principles 
to an already existing fast cipher, hopefully in a way that could leverage the 
security claims of the original. Two candidates were considered as the starting 
point for this exercise, RC4 and WAKE. 

RC4 offers opportunity for speed-up both by use of wider data paths, and 
by an increase in concurrency. Schneier[ll] suggests a modification to RC4 to 
exploit wider data paths, but only at the unacceptable expense of an exponential 
growth in the associated look-up-table that precludes extension to 32-bits. In 
some ways ISAAC[5] can be viewed as an extrapolation from RC4 to 32-bit and 
64-bit data paths while not particularly addressing RC4's modest P-factor. 

WAKE is already very fast, makes good use of a 32-bit datapath, avoids 
rotations, and its regularity lends itself to the possibility of efficient mapping 
to SIMD architectures. Its only weakness is a lack of concurrency principally 
brought about by cascaded table-look-ups. In addressing this limitation, another 
attraction over RC4 is WAKE's lack of self modification of its look-up-table. 

WAKE was chosen as the candidate cipher for modification. 
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5 W A K E  

In [1] Wheeler introduced the cipher WAKE. It uses a mixing function, 
M ( z , y , T ) ,  that combines two 32-bit inputs, z and y, into one 32-bit output 
with the aid of a key-dependent 256 x 32-bit look-up-table, T. By constraining 
the values in the upper byte lane of the otherwise 'random' entries of T to form 
a permutation of the numbers 0 to 255, the mixing function is made reversible in 
the sense that knowledge of the output word and one of the two input words is 
sufficient to uniquely specify the other input word. The mixing function, and its 
inverse, are shown in Fig. 1. 
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Fig. 1 a) WAKE's Mixing function 
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WAKE consists of cascading four of these mixing functions with registered 
feedback around each one and overall feedback around the group. Four stages 
are chosen as the minimum number needed for complete diffusion. Fig. 2a shows 
WAKE in cipher-feedback mode as originally described. 

In addition to its use in cipher-feedback mode, Wheeler suggests that WAKE 
is suitable for the production of a pseudo-random sequence for use as a stream 
cipher by XORing with the plaintext. This mode, shown in Fig. 2b and referred to 
here as WAKE-OFB, is used as the basis for the new ciphers since it conveniently 
circumvents the complaint that WAKE in cipher-feedback mode is susceptible to 
a chosen-plaintext attack. 

Using the assumptions given for table 1, the mixing function has a critical 
path of 6 cycles, three of them for the table-look-up and one each for the other 
three operations in the path. WAKE-OFB cascades four mixing functions, for a 
total critical path of 24 cycles. 
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6 T a k i n g  a S t e p  B a c k w a r d s  

Cryptographic security of a pseudo-random sequence, as used for a stream 
cipher, demands that no one part of the sequence can be predicted from any 
other part of the sequence. This security property makes no distinction between 
the forward and time reversed versions of the pseudo-random sequence. Thus, if 
a reversible pseudo-random number generator (PRNG) produces a cryptograph- 
ically secure sequence then that same generator running in reverse must also 
produce a cryptographically secure sequence. 

WAKE's next-state function is designed to be reversible in order to maximize 
the cipher's expected cycle lengths, thus when used in OFB mode it forms a 
reversible PRNG. 

Fig. 2c shows the flowgraph for WAKE-OFB run in reverse which we will 
refer to as WAKE-ROFB. It differs from the forward version in that the direc- 
tion of data through the registers is reversed, resulting in its stepping backwards 
through its states. Strictly speaking, to achieve the actual time-reversed sequence 
the mixing functions should also be replaced by their inverses. However, for con- 
venience we can just as easily leave them unchanged, reasoning that the forward 
or inverse mixing functions will provide equally good but different encipherment, 
just as Wheeler in [1] reasons that performing an arithmetic right shift on signed 
32-bit operands inside the mixing function is as good, but different from, per- 
forming a logical shift as is done in his reference implementation. In any case, 



280 Craig S.K. Clapp 

the forward and inverse mixing functions have identical critical-path lengths so 
choosing one over the other does not affect the performance analysis. 

An interesting result of this reversal of the state machine is that the longest 
path from the output of one register to the input of another is now through only 
two mixing functions (M3 and M0), instead of through all four as in the original 
flowgraph. At first this might suggest that the critical path has been halved. 
However, closer inspection reveals that the critical path has in fact been reduced 
by a factor of three since at any given time three out of the four mixing functions 
can be evaluated concurrently, and three out of four registers updated, so over a 
period of four mixing function evaluations each of the registers can be updated 
three times, as illustrated by the following pseudo-code: 

�9 Starting with known values for R0 through R3: 
�9 Evaluate M1, M2, and M3 in parallel, update R1, R2, and R3 
�9 Evaluate Me, Ms, and M3 in parallel, update R0, R2, and R3 
�9 Evaluate M0, M1, and M3 in parallel, update R0, R1, and R3 
�9 Evaluate M0, M1, and M2 in parallel, update R0, R1, and R2 

�9 All four registers have now been updated exactly three times. Each update 
of R3 allows another word to be ciphered. Repeat the sequence until done. 

Thus, simply by running WAKE-OFB backwards we can achzeve a threefold in- 
crease in parallelism while claiming identical security. 

Wheeler offers that WAKE's security can be enhanced by increasing the num- 
ber of stages from the four given, albeit at a reduction in speed. Indeed, for the 
original WAKE, both the total computation and, more importantly, the critical 
path, are essentially proportional to the number of stages, with the result that 
performance inherently declines as stages are added. 

Now let's consider adding stages to WAKE-ROFB. Just as 4-stage WAKE- 
ROFB had three times as much parallelism as WAKE-OFB, a time reversed 
5-stage version has four times as much parallelism as its non-reversed coun- 
terpart. Where 4-stage WAKE-ROFB had a critical path of 4 mixing function 

5 mix- evaluations, 5-stage WAKE-ROFB has the slightly shorter critical path of 
ing function evaluations. 

Counter to our intuition, we note that adding stages can actually speed-up 
the cipher, even though the total amount of work per word ciphered increases 
in proportion to the number of stages. The caveat here is of course the need for 
the processor to exhibit adequate parallelism. However, additional stages always 
harm the cipher's performance on a single-threaded CPU, and also on a CPU with 
parallelism once all of its parallelism has been exploited. For this reason, and 
also because further stages give progressively diminishing return in critical-path 
reduction, it is unattractive to extend beyond five stages. 

The principal attraction of the 5-stage version is that its fourfold parallelism 
is a better fit for typical SIMD datapaths than the 4-stage version's threefold 
parallelism. Similarly, optimal loop-unrolling for the 5-stage version involves a 
factor of four, while for the 4-stage version loop-unrolling by a multiple of three 
is most efficient, which may be inconvenient for some applications. 
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7 A d d i n g  t o  t h e  F l o w g r a p h  - W i d e r W a k e  

To further increase WAKE's parallelism and shorten its critical path we invest- 
igate inserting additional pipeline stages in the algorithm's flowgraph. The trick 
is to do so without compromising its security characteristics. Our goal is to re- 
duce the critical path to just one mixing function evaluation, while keeping the 
total computation down to that of 4-stage WAKE so that single-threaded CPU 
performance is not impaired. 

For algorithms that include overall feedback - WAKE included, adding pipe- 
line stages cannot be done without changing the nature of the algorithm. This 
means that the modified version does not necessarily inherit the security charac- 
teristics of the original scheme. 

As an example, Fig. 3a shows a rearrangement of WAKE with its registers 
now acting as pipeline stages. This simple expedient increases the available par- 
allelism by a factor of four over WAKE since now all four mixing functions can 
be evaluated concurrently. 

However, it may be observed that unlike the original WAKE, the version of 
Fig. 3a has no direct way of determining its previous state. Indeed, some states 
may not have a unique previous state, while others may have no previous state 
at all. The lack of bijectivity in this version's state transition function would, 
due to the birthday paradox, result in its expected cycle lengths being dramatic- 
ally shorter than those of the original (i.e. inferior security). This illustrates the 
caution necessary in making modifications to the flowgraph. 

In order to achieve our critical-path goal, every mixing function output must 
be registered before becoming a mixing function input. Given this, we note that 
for the flowgraph to be reversible we additionally require that at least one of 
the mixing functions has an input node in common with the input of a register 
(this guarantees that when the flowgraph is reversed there becomes at least one 
mixing function with registers defining two of its three nodes). Since this input 
cannot be that of any of the mixing function output registers without violating 
our critical-path constraint, we conclude that for an n-stage flowgraph we need 
a minimum of n -4- 1 registers in order to meet our objectives. 

One such arrangement, with the minimum five registers needed for four stages, 
is shown in Fig. 3b. 

This general topology, in which an additional register is added in the feedback 
loop of one or more of the stages, we will refer to as WiderWake. 

We identify specific instances of the topology by the total number of stages 
and the number of modified feedback loops, following the naming convention 
illustrated by Fig. 3b and Fig. 3c. 

The available parallelism is determined by the overall number of stages, it 
does not change with the number of feedback loops that are modified. 

Each modified feedback loop adds another 32-bits of state to the state ma- 
chine, increasing the complexity of the generator, and potentially its security. 

With four-stage WiderWake we can modify at most three of the four stages 
(WiderWake 4+3). This is because if all four stages are modified we get a common 
factor of two between the number of registers in the outer-loop (4 registers) and 
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each minor loop (2 registers each). This causes the state machine to degenerate 
into two interleaved 128-bit generators instead of being a single 256-bit generator. 
The same problem does not afflict generators having an odd number of stages, 
however it is questionable whether modifying the stage which is tapped for the 
generator's output does anything to enhance security since it does not increase 
the amount of hidden state. 

The most useful variants are suggested to be WiderWake4+l, and Wider- 
Wake4+3. The former has the benefit of using the fewest registers, and so may 
be best suited for backward compatibility with older register-impoverished pro- 
cessors. The latter has the highest generator complexity given the minimum num- 
ber of four stages. 
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Table 2. Per fo rmance  character is t ics  of WAKE and  W i d e r W a k e  

283 

WAKE-OFB WAKE-ROFB WiderWake 
4-stage 5-stage 4-stage 5-stage 4+1 4+3 

Total generator state 128-b i t s  160-bi ts  128-bi ts  160-bi ts  160-bi ts  224-bits 

Hidden state 96-bits 128-b i t s  96-bits 128-b i t s  128-bi ts  192-bits 
Bits ciphered per iteration 32 32 32 32 32 32 
32-bit ops. per iteration 24 29 . 24 29 24 24 

32-bit ops. per byte 6.0 7.25 6.0 7.25 6.0 6.0 
Number of 32-bit 16 20 5.33 5.0 4 4 

operations in critical path (12,4,0) (15,5,0) (12/3,4/3,0) (15/4,5/4,0) (3,1,0) (3,1,0) 

Cycles in critical path 24 30 8 7.5 6 6 
Normalized critical path 6.0 7.5 2.0 1.9 1.5 1.5 

cycles/byte cycles/byte cycles/byte cycles/byte cycles/byte cycles/byte 
Critical-path speed-up lx (ref.) 0.8x 3.0x 3.2x 4.0x 4.0x 
Apparent parallelism 1.5x 1.45x 4.5x 5.8x 6.0x 6.0x 

Critical-path efficiency 0.67 0.67 0.67 0.67 0.67 0.67 

P-factor 1.0 0.97 3.0 3.87 4.0 4.0 

Benchmarked performance 6.23 7.73 2.32 2.28 1.90 1.85 
on32-bitVLIWCPU cycles/byte cycles/byte cycles/byte cycles/byte cycles/bytelcycles/byte 

Throughput at 100MHz 16.1MB/s 12.9MB/s 43.1MB/s 43,9MB/s 52.6MB/s 54.1MB/s 

Relative speed lx (ref.) 0.8Ix 2.69x 2.73x 3.28x 3.37x 

8 P e r f o r m a n c e  

A Phi l ips  T r i M e d i a  processor  was chosen for pe r fo rmance  compar i sons  between 
the a lgo r i t hm var ian ts  as a vehicle tha t  a m p l y  d e m o n s t r a t e s  the po ten t i a l  for 
improvemen t  given adequa te  pa ra l l e l i sm.  

The  T r i M e d i a  processor  is a V L I W  C P U  con ta in ing  five 32-bi t  p ipe l ined  
execut ion uni ts  shar ing  a c o m m o n  set  of  registers .  Al l  execut ion uni ts  can pe r fo rm 
a r i thme t i c  and  logical  opera t ions ,  bu t  loads,  stores,  and  shifts  are only  suppo r t ed  
by a subset  of  them. 

Table  2 compares  the charac ter i s t ics  of  W A K E  in ou tpu t - f eedback  mode  with 
the a lgo r i t hm var ian t s  p roposed  herein. Enc ryp t i on  and dec ryp t ion  have ident ical  
character is t ics .  A s s u m p t i o n s  used are the same as those given for tab le  1. 

The  benchmark  condi t ions  were a 100MHz T r i M e d i a  processor  running  
pe r fo rmance -op t imized  C-code to enc ryp t  a buffer severa l  t imes  larger  than  the 
on-chip  d a t a  cache. C o m p a r a b l e  source-code op t imiza t i ons  were app l ied  to all 
cases. The  adve r t i s ed  benchmark  pe r fo rmance  includes  all  loop-overhead  and 
cycles lost  to cache misses ,  m e m o r y  accesses,  etc. No off-chip cache was present .  

The  b e n c h m a r k e d  pe r fo rmance  of  5-s tage W A K E - R O F B  is seen to marg ina l l y  
exceed tha t  of  the 4-s tage  version,  d e m o n s t r a t i n g  tha t  e x t r a  s tages  can improve  
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performance for this topology in practice as well as theory. 
WiderWake4+3 shows very similar performance to WiderWake4+l, as pre- 

dicted. The slight improvement of WiderWake 4+3 over WiderWake 4+1 can be 
attributed to the former having fewer critical-length paths than the latter, thus 
easing the compiler's task of scheduling the code to simultaneously minimize all 
critical-length paths. 

WAKE-ROFB and WiderWake achieve speed-ups over WAKE-OFB of better 
than 2.5x and 3x respectively. With performance of better than 2 cycles per byte, 
the WiderWake variants allow encryption or decryption at speeds in excess of 
50 MByte/s on a 100 MHz processor. WAKE-ROFB exceeds 40 MByte/s in both 
4-stage and 5-stage versions. 

9 C i p h e r - F e e d b a c k  M o d e  

Any of these generators could in principle be used in CFB mode while main- 
taining their speed, by taking the overall feedback from the ciphertext instead of 
direct from the final stage, just as in WAKE-CFB. However, the user is cautioned 
against doing so without further study. In CFB mode none of these generators can 
claim direct equivalence to WAKE's security. In particular, unlike WAKE-CFB 
where each ciphertext symbol affects the next ciphertext symbol, the fed-back 
ciphertext in all these new versions would take several cycles before it again 
influences the stream. So, as a minimum there might need to be some special 
processing to avoid weaknesses at the start and end of the stream. 

In fairness to WAKE, it should be pointed out that WAKE-CFB itself offers 
fourfold parallelism in decrypt mode, an advantage not shared by WAKE-OFB. 
This comes about because the overall feedback of WAKE-CFB's encryption flow- 
graph becomes feed-forward during decryption, thereby breaking the outer feed- 
back loop. The critical path then becomes just that of the minor loops around 
each stage, i.e. just one mixing function evaluation. After the first four cipher- 
text symbols have 'filled the pipe' all four mixing functions can be evaluated in 
parallel as each new ciphertext symbol arrives. That WAKE-CFB's decryption 
parallelism is not unlimited is a reflection of the fact that WAKE-CFB suffers 
infinite error extension under decryption, unlike a block cipher operating in CFB 
mode. 

10 T a b l e  I n i t i a l i z a t i o n  a n d  S t r e a m  R e - s y n c h r o n i z a t i o n  

For a complete stream cipher definition two further components - look-up-table 
initialization (key scheduling), and stream re-synchronization (Initialization Vec- 
tor processing), need to be specified. 

Wheeler supplies an ad-hoc table-generation routine based on a 128-bit key 
(referred to as the table-key). We retain this routine with minor modifications 
to remove ambiguity from the original definition. On a single-threaded CPU 
this routine runs in about the time it takes to encrypt 1000bytes with any of 
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the 4-stage variants. However, this routine is much less capable of exploiting 
instruction-level parallelism than our optimized cipher variants, so that on a 
CPU having substantial instruction-level parallelism table initialization can take 
more like 2000 to 3000 byte-encryption times. Improving on this is an area for 
future study. 

Re-synchronization is achieved by setting the registers to a new state that 
is a hashed combination of the table-key and an initialization vector (IV). We 
propose a 64-bit IV for compatibility with common block ciphers operated in 
OFB mode. Our minimalist resync procedure consists of seeding the WiderWake 
state machine with a simple combination of the table-key and the IV, and stepping 
the generator until they are satisfactorily mixed, discarding the generator's output 
along the way. For an n-stage generator we choose to step the generator 2n times. 
This is enough so that all registers achieve avalanche at least once, and the output 
register achieves avManche at least twice. For WiderWake 4+1 this resync process 
takes about as long as ciphering 32 bytes. 

The resistance of this simple resync procedure to related-key cryptanalysis 
is unproven. This may represent an exposure if resync intervals are especially 
frequent, or if an attacker has the ability to force resyncs at will[3). The first 
defence against such a weakness would be to step the generator more times 
during resync. Alternatively a secure hash such as SHA-I[8] could be used to 
robustly combine the table-key with the IV, however on a CPU that can exploit 
WiderWake's parallelism this is as costly as ciphering several hundred bytes. 

11 C o n c l u s i o n  

We have illustrated the opportunities for performance gains through exploiting 
the instruction-level parallelism of current generation CPUs. We suggest that ef- 
ficiency on these processors should be among the design criteria for new software- 
oriented ciphers. 

The example ciphers are presented without a supporting security analysis. 
Cycle lengths have been determined experimentally for several models having 
shorter word-lengths and found to be as expected. It remains to be established 
what length of cipher stream can be safely exposed between IV changes and 
between table-key changes. Cryptanalysis is invited. 
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Appendix A. WiderWake4+l Reference Implementation 

The following C-code is a functional reference only. It  does not represent all the 
performance optimizations embodied in the benchmarked source-code. 

/* WiderWake4§ 1 , Version 1.0, functional reference */ 

typedef unsigned long UINT32; /* 32-bit unsigned integer */ 

/* Array sizes - UINT32 T[256], t_key[4], IVec[2], r_key[5]; */ 

/* addition is modulo 232, >> is right shift with zero fill */ 
#define M(x,y,T) (((x)+(y)) >> 8) ^ T[((x)+(y)) & 0xff] 

void ofb_crypt(UINT32 *In, UINT32 *Out, int length, UINT32 *T, UINT32 *r_key) 
{ 

UINT32 R0, RI, R2, R3, R4, R0a, Rla, R2a, R3a; 
int i; 

R0=r_key[0]; Rl=r_key[l]; R2=rkey[2]; R3=r_key[3]; R4=r_key[4]; 

for (i = 0; i < length; i++) 
{ 

R3a = M(R3, R2, T); 
R2a = M(R2, RI, T); 
Rla = M(RI, R0, T); 
R0a = M(R4, R3, T); 

Out[i] = In[i] ^ R3; 

R4 = R0; R3 = R3a; 
} 

I* */ 
/* All four mixing functions */ 
/* can be evaluated in parallel */ 
/* */ 

/* Execution can overlap with mixing functions */ 

R2 = R2a; R1 = Rla; R0 = R0a; 

r_key [ 0 ] =R0; r_key [I ] =RI; r_key [2 ] =R2 ; r_key [3 ] =R3 ; r_ key[4] =R4; 
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void resync(UINT32 *T, UINT32 *t_key, UINT32 *IVec, U]~T32 *r_key) 
/* mix t_key with initialization vector and discard first eight words */ 

( 
UINT32 tenp[8] ; /* bit-bucket */ 

r_key[0] = t_key[0] ^ IVec[0]; r_key[1] = t_key[1]; 
r_key[2] = t_key[2] ^ IVec[l]; r_key[3] = t_key[3]; 
r_key[4] = IVec[0] ; 

ofb crypt(temp, temp, 8, T, r_key); 
) 

void key_sched(UINT32 *t_key, UINT32 *T) /* expand tkey to look-up-table T */ 
{ 

UINT32 x, z, p, tO; 
static UINT32 tt[8] = { 0x726a8f3b, 0xe69a3b5c, 0xd3c71fe5, 0xab3c73d2, 

0x4d3a8eb3, 0x0396d6e8, 0x3d4c2f7a, 0x9ee27cf3 }; 

for (p = 0; p < 4; p++) { T[p] = t_key[p]; } 

for (p = 4; p < 256; p++) 
{ x = T[p-4] + T[p-l]; T[p] = (x >> 3) ^ tt[x & 7]; } /* (UINT32)x */ 

for (p = 0; p < 23; p++) { T[p] += T[p+89]; } 

x = T[33]; z = (T[59] J 0x01000001) & 0xff7fffff; 

for (p = 0; p < 256; p++) 
{ x = ( x & 0xff7fffff) + z; T[p] = (T[p] & 0x00ffffff) ^ x; } 

x = (T[x & 0xff] ^ x) & 0xff; t0 = T[0]; T[0] = T[x]; 

for (p = i; p < 256; p++) 
{ T[x] = T[p]; x = (T[p ^ x] ^ x) & 0xff; T[p] = T[x]; } 

T[x] = tO; 
) 

Appendix B. Test Case 

void test(void) 
{ 

UINT32 t_key[4] = { 0x12345678, 0x98765432, 0xabcdef01, 0xl0fedcba }; 
UINT32 IVec[2] = { 0xbabeface, 0xf0eld2c3 }; /* Initialization Vector */ 

UINT32 text[4] = { 0xl234abcd, 0xa0blc2d3, 0xla2b3c4d, 0x55667788 }; 

UINT32 T[256], r_key[5]; 
int i; 

key_sched(t_key, T); /* Schedule key */ 
resync(T, t_key, IVec, r_key); /* Initialize generator state using IV */ 

for (i = 0; i < 256; i++) /* Encrypt text buffer 256 times */ 
{ ofb_crypt(text, text, 4, T, r_key); } 

for (i = 0; i < 4; i++) { printf("0x%081x ", text[i]); } printf("\n"); 
} 

/* final text[] == { 0x94739922, 0xb251752f, 0xldelf2fe, 0x405f83dd } */ 


