Unification in Extensions of Shallow Equational
Theories

Florent Jacquemard*, Christoph Meyer, Christoph Weidenbach**

Max-Planck-Institut fur Informatik
Im Stadtwald
66123 Saarbriicken, Germany
email: {florent,meyer,weidenb}@mpi-sb.mpg.de

Abstract. We show that unification in certain extensions of shallow
equational theories is decidable. Our extensions generalize the known
classes of shallow or standard equational theories. In order to prove de-
cidability of unification in the extensions, a class of Horn clause sets
called sorted shallow equational theories is introduced. This class is a
natural extension of tree automata with equality constraints between
brother subterms as well as shallow sort theories. We show that satura-
tion under sorted superposition is effective on sorted shallow equational
theories. So called semi-linear equational theories can be effectively trans-
formed into equivalent sorted shallow equational theories and generalize
the classes of shallow and standard equational theories.

1 Introduction

Algorithms to solve unification and word problems in an equational theory play
a crucial role in many areas of computer science like automated deduction, logic
and functional programming, and symbolic constraint solving. Many algorithms
are dedicated to particular theories and often semantic conditions are assumed.
In addition, a lot of progress has been made towards syntactic characteriza-
tions of classes of equational theories or rewrite systems in which these prob-
lems are decidable. The class of shallow theories, axiomatized by equations in
which variables occur at most at depth one, has been shown by Comon, Haber-
strau & Jouannaud (1994) to have a decidable unification problem. They exploit
a transformation of the system into an equivalent cycle-syntactic presentation
(Kirchner 1986). By a termination analyses under basic superposition Nieuwen-
huis (1996) generalized the result to so-called standard theories.

Furthermore, tree automata and tree grammars have also been used for uni-
fication purposes. Limet & Réty (1997) use Tree Tuple Synchronized Grammars
to generate solutions to unification problems by a simulation of narrowing. In
(Kaji, Toru & Kasami 1997) it is shown that the closure with respect to some
kind of term rewriting system of the (recognizable set) of ground instances of a

* This work was partially supported by the CONSOLE project.
** This work was supported by the German science foundation program Deduktion.



linear term is recognizable. Similar techniques based on the completion of tree
automata are presented by Comon (1995) and Jacquemard (1996) for linear shal-
low TRS and a generalization called linear growing TRS. The decidability of the
word problem as well as restricted cases of unifiability in the concerned theories
can be derived from these results.

In this paper we show the decidability of unification in so called semi-linear
equational theories which strictly extend shallow theories. Informally, a semi-
linear system contains equations in which non-linear variables only appear in
the same subterms. For example, the equation f(f(x, z),y) ~ g(f(z,z)) is semi-
linear whereas f(g(x), h(z), h(g(y))) = h(g(x)) is not. Our techniques are influ-
enced by tree automata, sorted unification and saturation-based methods.

Sorted shallow equational theories naturally generalize tree automata with
equality constraints (Bogaert & Tison 1992) as well as shallow sort theo-
ries (Weidenbach 1998). Throughout the paper, we consider the following ex-
ample of Nieuwenhuis (1996). The equational theory is given by the equa-
tions f(g(x),y) =~ h(y) and f(z,z) ~ g(x). The definition of standard theo-
ries does not include this case. The closure of the theory under basic super-
position leads to an infinite set of equations g(h"(g(z))) ~ h"T1(g(z)). The
infinite expansion can be avoided by abstracting the linear (semi-linear) term
g(z) into a sort declaration S(g(z)). The theory is then transformed into a
sorted shallow equational theory consisting of the Horn clauses || — S(g(x)),
S@)|| = fle,y) = h(y), || = f(z,z) = g(x). Our notation for clauses is of the
form Sort Constraint|| Antecedent — Succedent where the sort constraint atoms
are particular, monadic antecedent atoms for which special inference rules are
provided by our sorted superposition calculus.

The paper is organized as follows: Section 3 starts with a discussion on tree
automata with brother constraints. We prove that they are not sufficient for
our purpose. Then sorted shallow equational theories are studied. It is shown
that saturation under sorted superposition terminates and that unifiability mod-
ulo the saturated theory is decidable. A procedure which transforms a sorted
semi-linear equational theory into an equivalent sorted shallow one is given in
Section 4. This implies the decidability of unifiability modulo a set of (sorted)
semi-linear equations. This result strictly embeds previous ones concerning shal-
low theories by Comon et al. (1994). We show in Section 5 that with similar
techniques, we can treat a generalization of standard theories as proposed by
Nieuwenhuis (1996). In the same section, we also consider some other exten-
sions for which our method does not work and discuss some related work on E-
unification. For more details consider our technical report (Jacquemard, Meyer

& Weidenbach 1998).

2 Preliminaries

We adhere to the usual definitions for variables, terms, substitutions, equations,
atoms, (positive and negative) literals, multisets, and clauses, see (Dershowitz &



Jouannaud 1990) for what concerns equational theories. We give just the most
important definitions for our purpose.

The algebra of terms over a finite set of function symbols F and a set A
of variables is denoted T (F, ') and T (F) is its subalgebra of ground terms.
An equation is an unoriented pair of terms of T (F, X') denoted s = t. For sake
of simplicity, we may apply to equations or other atoms the same following
notations as for terms. The function vars maps terms, atoms, literals, clauses
and sets of such objects to the set of variables occurring in these objects. A
position p in a term (equation, atom) is a word over the natural numbers. For a
term (equation, atom) ¢ we define ¢|, of ¢ at position p by t|c =t and ¢|;., = ti,
where t = f(t1,...,t,) and 1 < i < n. We write ¢[s], to denote that ¢|, = s and
t[p/s’] is the term obtained from ¢ by replacing its subterm at position p by s'.

A term is called complex if it is neither a constant nor a variable. A term
t is called shallow if t is a variable or is of the form f(z1,...,%,) where the
x; are not necessarily different. An equation s & t is called shallow if both s
and t are shallow. Note that shallow variables in s &~ t can be arbitrarily shared
by s and f. A term t is called linear if every variable occurs at most once in
t. A term t is called semi-linear if it is a variable or of the form f(t1,...,%,)
such that every ¢; is semi-linear and whenever vars(t;) N vars(t;) # @ we have
t; =t; for all ¢, j. An equation s ~s t is semi-linear if (i) s and ¢ are variables or
(ii) s = f(s1,-.-,5n) and if t is a variable and ¢ € vars(s;) then s; =t for all ¢ or if

t=yg(ty,.. tm) and vars(s;)Nvars(t;) # 0 then s; = t; for all ¢, j. For instance,
the term f( (),9(x), h(y,y)) and the equations h(g(x),g(x),y) ~ f(y,9(z),y)
and f(g(z),¢(x),y) ~ y, are semi-linear, but f(g(z),g(x),h(z,y)), h(g(z),x)
and h(g(z),g(x)) ~ x are not.

Atoms formed from unary predicates are called monadic. For the purpose
of this paper, a Horn clause is written in the form @ || I' — A where the sort
constraint @ consists of monadic atoms representing the sort restrictions. I" and
A denote the antecedent and succedent atoms of the clause, respectively. In the
initial clause set we assume the arguments of all sort constraint atoms to be
variables. Furthermore, for the theories we consider here, it is always the case
that either the antecedent or the succedent of a clause is empty.

We call a sort constraint @ solved in a Horn clause @||I' — A, if
vars(@) C wvars(I' U A) and all terms occurring in @ are variables. A Horn
clause Ti(21),...,Th(zn) || — S(t) is called a declaration if Ty (x1),...,Th(zp)
is solved. In case t is a variable, a declaration is called a subsort declaration.
A declaration Ty(z1), ..., Tu(xn) || — S(t) is shallow (linear, semi-linear) if ¢
is shallow (linear, semi-linear). A sort theory is a finite set of declarations. Tt is
called shallow (linear, semi-linear) if all declarations are shallow (linear, semi-
linear). A sorted equation (sorted disequation) is a clause @ || — [ & r (a clause
O ||l & r —) where O is solved. A sorted equational theory is a finite set of sorted
equations and declarations. It is called shallow (semi-linear) if all equations and
all declarations are shallow (semi-linear).

A substitution is a mapping from X' to T (F, X). As usual, we do not distin-
guish between a substitution and its homomorphic extension in the free algebra



T(F,X). Given an equational theory F, i.e., a finite set of equations, we write
s<prt iff there exists an equation [ &~ r € F and a substitution o such that
slp = lo and t = s[p/ro]. The reflexive symmetric transitive closure of the bi-
nary relation <z is denoted <%». Two terms s and ¢ are called unifiable modulo
an equational theory F' iff there exists a substitution o such that so <»to. Note
that this is equivalent to stating that the clause set consisting of the equational
theory E and the clause || s &~ ¢ — is unsatisfiable.

For a set of Horn clauses A and a clause C, A = C denotes the usual semantic
entailment relation where all variables of A and C are assumed to be universally
quantified.

3 Decidability of Sorted Shallow Equational Theories

In this section we show how saturation-based methods for sorted shallow equa-
tional theories succeed in the decision of unifiability in (non-linear) shallow the-
ories whereas tree automata (with constraints) techniques fail.

3.1 Tree automata and linear shallow theories

We adopt here a definition of tree automata by means of Horn clauses. This
definition, though non-standard, is equivalent to the usual ones, e.g., (Bogaert &
Tison 1992). A systematic correspondence between various types of Horn clause
sets and known classes of tree automata with constraints has been studied by

one of the authors (Weidenbach 1998).

Definition 1. A tree automaton A is a finite set of linear shallow declarations

of the form Sy(21),..., S (zn) || — S(f(xl, . ,xn))

Following tree automata terminology, the unary predicates are called states and
the Horn clauses of A are transition rules or just transitions.

A term t € T(F) is recognized by A in some state S if A = S(t). If we fix in
A asubset S of final states (final predicates), then t € T(F) is recognized by A
(with respect to &) if ¢ is recognized by A in some final state. A set L C T(F)
is a recognizable language if L is the set of ground terms which are recognized
by a tree automaton .4 (with respect to some set of final states).

The class of recognizable languages is closed under Boolean operations. Every
recognizable language is recognized by one deterministic tree automaton A such
that a ground term cannot be recognized by A in more than one state. Every
recognizable language is recognized by one completely specified tree automaton
A, such that every ground term is recognized by A at least in one state. It is
decidable in polynomial time whether a given term ¢ € 7 (F) is recognized by a
tree automaton A. It is decidable in linear time whether the language recognized
by some tree automaton A is empty or not.

Tree automata and grammars have been used by Kaji et al. (1997) and Limet
& Réty (1997) to solve word and unifiability problems. In the first paper as well
as in the papers by Comon (1995) and Jacquemard (1996) the recognizability



of the closure of some recognizable set L with respect to term rewriting systems
of restricted classes is investigated. In the following we denote the closure of a
set of terms L C 7(F) with respect to an equational system E: (<3 )(L) :=
{s € T(F) | 3t € L t&»s}. For a given system I we can reduce the word
problem s<%»t to the membership problem for s € (<& )({t}) if the closure
set and L is recognizable. For a goal s = ¢ where s and ¢ are both linear and
vars(s) N vars(t) = B, unifiability modulo E is equivalent to {so | o ground} N
(G ({to | o ground}) = (. Since the set of ground instances of s and t are
both recognizable unifiability in this case can be reduced to an emptiness decision
problem for tree automata.

Theorem 2. (Comon 1995). Let E be a linear shallow equational system and

L be a recognizable language. Then (<& )(L) is a recognizable language.

The principle of the construction for linear shallow equational systems is the
following. We start with a tree automaton .4g which recognizes I and contains
one state 9j, for each direct ground subterm /; in equations f({1,...,l,) 8 rin F
such that /; (and only [;) is recognized by Ag in S, . In some sense these subterms
are abstracted by Ag. Then Aq is completed with respect to inference rules like
the one below. Note that the construction of Ag is similar to our transformation
process in Section 4.

| = flle, . ly) mg(r1,...,mm) €FE
S1(x1), ..., Sn(zn) || —>S(f(x1,...,xn))
Ti(x1)y s Tm(2m) || %S(g(xl,...,xm))

This inference rule is applied providing that for each 7 < m such that r; is a
ground term, T; = 5,,, and for each 1 < m, j < n such that [; and r; are the same
variables, then T; = S;. If we apply paramodulation to the premises of the above
inference rule we obtain the clause S1({1),..., S.({n) || — S(g(rl, cen, rn)) With
the two above conditions (abstraction of r; by T; and equalities between states
according to variables), and since F is linear shallow, this clause is equivalent
to Th(y1)y- s Tm(ym) || — S(g(yl, ey ym)) This relates the automata theo-
retic approach and its generalization presented in Section 3.3. Unfortunately,
the above recognizability result of Theorem 2 cannot be extended to non-linear
systems, as the following example shows. Assume f is a binary function symbol,
s is unary and a is a constant, and let L = {a}, £ = {f(z,2) = a}. Then it
is well known that languages of the form {f(¢,¢)} are not recognizable by tree
automata.

Inf

3.2 Brothers automata and the non-linearities

Bogaert & Tison (1992) introduce tree automata with constraints which define
a strict superclass of recognizable languages to deal with non-linear rewrite sys-
tems.

Definition 3. A tree automaton with equality constraints between brother sub-
terms is a finite set of shallow declarations of the form Sy(#1),...,Sn(2n) || —
S(f(x1,...,2,)) where the z; are not necessarily different.



We call Rec— this class of recognizers as well as the class of recognized languages;
the notion of recognized terms and languages is the same for tree automata with
equality constraints between brother subterms as for (standard) tree automata.

The class Rec (Bogaert & Tison 1992) is strictly larger than Rec— because
(syntactic) disequations between variables x; # x; are also allowed in the an-
tecedent of clauses. The nice closure properties of tree automata still apply
here, namely closure under Boolean operations, under determinism and com-
plete specification. The emptiness problem is also decidable for Recx though
EXPTIME-hard. However, disequalities are not necessary for our purpose (see
the conclusion for a discussion about this extension), but we can show that nei-
ther Rec— nor Recy suffice to generalize Theorem 2 to the case of non-linear
shallow systems.

Lemma 4. There exists some recognizable set L and (non-linear) shallow equa-
tional system E such that the set (<& )(L) is not in Recy.

Proof. Let f, g be two binary function symbols, a be some constant and consider
the system F := {f(z,z) = g(x,2)} and language L := {g(s1,52) | s1,52 €
T(F)}. Assume that L' := («»)(L) is recognized by some A € Recy with
respect to the distinguished set of final states §. We may assume without loss of
generality that 4 is deterministic and completely specified. Let N be the number
of states of A. Let us define a sequence of well-balanced ground terms of 7 (F) by
t1:= f(a,a) and for allé > 1,¢;41 := f(t;, ;). It is easy to check that for all ¢ > 1,
the cardinal of the equivalence class of {; modulo <% is 22'~1 Thus there exists
an integer ip = [log(log(|@Q| + 2))] such that for all i > 4o, we have two distinct
ground terms s;, s; both equivalent to t; modulo <%+ and both recognized by A in
the same state called S;. Moreover, by construction, we have that f(s;, s}) € L'.
Thus this term is recognized by A in some final state ST € §. By determinism
of A, there exists a clause C; = S;(z1), Si(z2) || It — SH(f(x1,22)) € A, (I}
is a set of syntactic disequations between variables) such that A = Cjo with
o = {21+ s;,22 — s; }. Note that for all i > o, the variables z; and z, are
distinct because s; # s;. On the other hand, there exist two distinct integers
Jij' > io such that S; = S Thus, A | Cjo where 0 = {x1 — s;,22 — sj: },
because x1 # x2 in C; and thus f(s;, s;/) is recognized by A in the final state
S§. This is a contradiction because this term is not in L’.

We can conclude from Lemma 4 that the syntactic equality constraints of the
automata in Rec— are too rough for our purpose. The sorted shallow equational
theories studied in the following section are a strict generalization of Rec—.
An important achievement of this approach is that semantic equality tests are
possible.

3.3 Saturation

The following inference rules form a sound and refutationally complete calcu-
lus for Horn clause sets consisting of declarations and sorted (dis)equations.



They are mainly an adaption of basic superposition with selection (Bachmair,
Ganzinger, Lynch & Snyder 1995, Nieuwenhuis & Rubio 1995) to the particular
form of the Horn clauses considered here, where the sort constraints are subject
to the basic restriction and are solved by a particular selection strategy. This
strategy is expressed by the rule Sort Constraint Resolution, see below. As usual,
we assume a reduction ordering > that is total on ground terms. We call the
calculus consisting of the inference rules Sort Constraint Resolution, Superposi-
tion Right, Superposition Left and Equality Resolution plus the usual reduction
rules subsumption and condensing the sorted superposition calculus. Note that
the basic restriction does not interfere with subsumption or condensing, because
sort constraint atoms are solely subsumed (condensed) by other sort constraint
atoms and in considered clause sets no non-variable terms occur in the sort
constraint.

Definition 5 (Sort Constraint Resolution). The inference

Tot), . To(t), ¥ T = A
O1]  —Ti(t)

O, | = Ta(tn)

Inf U; @ic,¥o||T'oc— Ao

where 1 is either a non-variable term or ¢ is a variable t = x with # & vars(I'UA)
and no non-variable term occurs in ¥; no further atom S(t) occurs in ¥, o is the
simultaneous mgu of ¢, ¢, ..., ¢, and all ©; are solved is called a Sort Constraint
Resolution inference.

Definition 6 (Superposition Right). The inference

V|| os~t
Ol = Als'lp

It B T AT/t

where ¢ is the mgu of s and ¢/, to ¥ so, s’ is not a variable, if A is an equation
[ ~ 7 with |, = s’ then ro # lo and the sort constraints ¥, @ are solved is
called a Superposition Right inference.

Definition 7 (Superposition Left). The inference

7| — st
o ls,~r —

Inf Vo, Oc||lp/t]o ~ ro—

where o is the mgu of s and ', to ¥ so, s’ is not a variable, ro ¥ lo and the
sort constraints ¥, @ are solved is called a Superposition Left inference.

Definition 8 (Equality Resolution). The inference



Olls~t—
O | —

Inf

where o is the mgu of s, ¢t and @ is solved is called a Equality Resolution inference.

Lemma 9. Sorted shallow equational theories can be finitely saturated by sorted
superposition.

Proof. We shall show that the saturation process results in clauses of the form

Ti(t)y ..., Th(t), S1(x1), ..., Sm(zm) || = A4
where n, m are possibly zero, A is either a monadic atom 7'(s) or an equation
l ~ r and t, s, [ and r are always shallow terms. If the saturation process
produces only clauses of this form, then it will terminate, because the depth of
all these clauses as well as the length of variable chains between their literals are
bound. Hence, there are only finitely many different clauses of this form modulo
subsumption and condensing.

It remains to prove that all clauses generated by the saturation process have
the above form. Obviously, shallow declaration clauses and sorted shallow equa-
tions are of the above form, where ¢ as well as the z; are variables occurring
in A. For symmetry reasons it is sufficient to consider three cases of possible
inferences: (i) The term ¢ is a non-variable shallow term and we perform a sort
constraint resolution inference. (ii) The term ¢ is a variable that does not occur in
A and we perform a sort constraint resolution inference. (iii) The sort constraint
Ti(t)y ..., Th(t), S1(x1), ..., Sm(zm) is solved and we perform a superposition
right inference. We separately consider these cases:

(i) The other clauses involved in the inference are all of the form
Q1(v1)s. ., Qui(yr,) || — Ti(t;) where the y; occur in ¢; and ¢; is a shallow
term. The unifier o only maps a variable to a non-variable shallow term if the
variable is some t;. Hence, the result of the inference is a clause of the desired
form.

(ii) Again all other clauses involved in the inference are of the form
Q1(v1)s. ., Qui(yr,) || — Ti(t;) where the y; occur in ¢; and ¢; is a shallow
term. The unifier o possibly maps the variable ¢ to a non-variable shallow term,
but since ¢ does not occur in A the result of the inference is again a clause of
the desired form.

(iii) Since we do not superpose into variables and for any equation of the form
flz1,...,2n) & y either y = x; for some i and hence f(x1,...,2n) = 2; or y
does not occur in f(zy,...,2,), a case analysis over the different combinations
of the form of A and the involved sorted equation shows that the result is always
of the desired form. Note that in the case of a Superposition Right inference, the
involved clauses have a solved sort constraint.

For example, we apply the saturation process to the sorted shallow equational
theory presented in Section 1:

(1) S(x) || = f(=,9)

(2) | = f(z,

(3) | = S(g())

h(y)
g9(z)

5]
~—



where we assume f(z,y) = g(x) = h(x). Then the saturation process generates
the additional clauses (4) and (5) by Superposition Right inferences.

(1) S(@) || —glx) ~ h()

(5)S() 1| = S(hie))
The clauses (1)-(5) are saturated by sorted superposition.

Lemma 10. Unifiability with respect to finitely saturated sorted shallow equa-
tional theories is decidable.

Proof. Two arbitrary terms ¢, s are unifiable iff we can derive the empty clause
from the saturated theory and the goal clause ||t~ s —. Since the sorted shal-
low equational theory is saturated, no inferences inside the theory need to be
considered. Furthermore, the goal is purely negative, so we can delete all clauses
with an unsolved sort constraint from the saturated theory. We show that the
sorted superposition calculus terminates on the goal clause. All generated clauses
are of the form:
S1(t1), -y S(tm) |t = s’ —

where t/, s’ are terms resulting from inference rule applications to clauses in-
ferred from the goal clause, m is possibly zero and ¢ a2 s’ does possibly not
exist (after the application of an Equality Resolution inference). All inference
rule applications to clauses of the above form, except Sort Constraint Reso-
lution to a variable, are monotone in the well-founded ordering composed of
the lexicographic combination of the number of non-linear variables occurring
at different depth in some #q,...,%,,,t &~ s’ and the maximal term depth of
t1,...,tm,t’ & §'. The rule Sort Constraint Resolution is only applicable to a
variable if the variable does not occur in ¢’ &~ s’ and all other ¢; are variables.
Then an application generates at most one new shallow term in the sort con-
straint and following the argumentation in the proof of Lemma 9 the process of
solving the generated sort constraints will eventually terminate. In summary, the
term depth in all generated clauses is bound and solving sort constraints with
variables that do not occur in the antecedent equation terminates. It remains
to show that the length of variable chains in the generated clauses is bound.
Obviously, such crucial chains can only occur in the sort constraint between sort
constraint atoms that have a complex term as its argument. But this cannot hap-
pen, since Sort Constraint Resolution applied to a non-variable term is strictly
monotone in the above ordering if the involved declarations have a succedent
atom with a non-variable argument. With respect to subsort declarations, the
saturation using Sort Constraint Resolution terminates anyway.

We evaluate two example queries with respect to the above saturated sorted
shallow equational theory. First, we want to unify f(z,y) and h(y) starting with
the goal clause

| f(2,y) = h(y) —
We apply Superposition Left with (1) giving S(z) || h(y) ~ h(y) —. Next we
apply Sort Constraint Resolution with (3) yielding || 2(y) ~ h(y) — and finally
an application of Equality Resolution yields the empty clause. Therefore, f(x,y)
and h(y) are unifiable in the considered shallow equational theory.



Second, consider the unification problem of f(a,z) and h(z) where a is some
constant. The problem has no solution justified by the saturated clause set con-
sisting of the clauses (1)—(5) and the clauses below:

| f(a;z) ~ h(x)
S(a) |l
l9(a) ~ h(a)

Ll

4 Semi-Linear Sorted Equational Theories

In this section we prove that unification in semi-linear equational theories is de-
cidable, too. We do so by transforming a semi-linear equational theory into
a sorted shallow equational theory, preserving satisfiability. Then we apply
Lemma 9 and Lemma 10 to obtain the decidability result. The following rule
transforms sorted semi-linear equational theories into sorted shallow equational
theories.

Definition 11. The transformation

o TS0 S () | = AL,
S1(x1)s vy Smlem) [| =T(1)
( )7 || %A[plv"'vpn/y]

provided ¢ is a non-variable subterm, z; € vars(t) for all ¢, vars(¥) Nvars(t) = B,
|pi| = 2 for all 4, the positions py, ..., p, refer to all positions g of ¢ in A with
lg| = 2, T is a new monadic predicate and y is new to the replaced clause is
called flattening.

Lemma 12. Ezhaustive application of flattening to a (sorted) semi-linear equa-
tional theory terminates, results in a sorted shallow equational theory and pre-
serves satisfiability.

Proof. Termination follows from the fact that the transformation replaces a
clause by two clauses with fewer function symbols. No transformation is ap-
plicable to a clause that is a shallow declaration or a sorted shallow equation,
since all terms at depth two of such atoms are always variables (if they exist). On
the other hand, if the direct subterm of an atom is not shallow, it has a subterm
at depth two which is not a variable and therefore the transformation applies.
Hence, the transformation terminates in a sorted shallow equational theory.

By an induction argument it is sufficient to show that a single step of the
transformation preserves satisfiability and results in a sorted semi-linear equa-
tional theory. The crucial property is that vars(¢t)Nvars(A[p1, ..., pn/y]) = 0. We
show this by contradiction. Assume that after an application of the transforma-
tion there is a variable z occurring in ¢ and A[py, ..., p,/y]. By construction this
can only be the case if z has an occurrence in A that is not inside an occurrence
of t in A. So z occurs in some term s # t with A|, = s, |¢| = 2, contradicting
that the clause is semi-linear to which the transformation is applied. For the
same reason, the result of an application of the transformation is again a sorted
semi-linear equational theory and x; & vars(A[p1,...,pn/y]) for all j.



Theorem 13. Unifiability in semi-linear equational theories is decidable.

Proof. By Lemma 12 we can effectively translate semi-linear equational theories
into sorted shallow equational theories preserving satisfiability. By Lemma 9
these theories can be effectively saturated by sorted superposition and by
Lemma 10 unifiability is decidable with respect to saturated sorted shallow equa-
tional theories.

Application of the transformation to the example presented in the intro-
duction yields the sorted shallow equational theory considered in the previous
section.

4.1 Applications

Any equational theory E can be transformed into a semi-linear equational theory
E’ by replacing non-linear variable occurrences with fresh variables. Then F’ is
an upper approximation for / in the sense that <z» C <%, i.e., non-unifiability
in £’ implies non-unifiability in E. Furthermore, by Theorem 13, non-unifiability
in E' is decidable. Ganzinger, Meyer & Weidenbach (1997) showed that in this
case non-unifiability in £’ can be used to effectively direct the search of a theorem
prover in finding proofs with respect to E. One of our future goals is to improve
the performance of SPASS (Weidenbach 1997) using this technology. Note that
flattening applied to an arbitrary equational theory where we keep some S; (z;) in
the transformed clause if z; € vars(Alpy, ..., pn/y]) is already a transformation
that generates an appropriate approximation.

5 Extensions, Limitations and Related Work

5.1 Extensions

A possible extension is to apply our method to compute the (eventual) solu-
tion of a unification problem in a semi-linear theory. Sort Constraint Resolution
simulates sorted unification. Unification in shallow sort theories is known to be
NP-complete and of unification type finitary. This implies that unification in
sorted shallow equational theories is NP-hard and also of unification type fini-
tary, if we consider well-sorted unifiers. The results of Theorem 13 in Section 4
obviously extend to sorted semi-linear equational theories.

The standard equations in (Nieuwenhuis 1996) include one form which is not
embedded by the semi-linear case: the form f(...,g(x),...) & « where ¢ has to
be a unary function symbol, assuming additional restrictions on the positions
of linear terms and non-linear shallow variables in other equations. Obviously,
the subterm g(z) cannot be transformed into a sort declaration. However, we
can show that unification in those theories can still be decided by sorted super-
position using basic strategies on so-called semi-standard equations. We call an
equation f(t1,...,t,) & @ semi-standard if f(t1,...,t,) is semi-linear and more-
over, there is one unary symbol g such that for all ¢; with « € vars(t;) we have



that t; = g(#). An equational theory F is called semi-standard if E only contains
semi-linear equations or semi-standard equations of the form f(t1,...,%,) ~ =
where only one ¢; can be of the form g(z).

Theorem 14. Unifiability in semi-standard equational theories is decidable.

The procedure in the proof of Lemma 12 which transforms a semi-linear the-
ory into a sorted shallow theory can be extended to work for a semi-standard the-
ory. The resulting system may contain clauses of the form @ || — f(t1,...,t,) &
z where the equation is a so-called semi-shallow equation. The generalization of
shallow equations to semi-shallow equations is similar to the extention of semi-
linear equations to semi-standard equations. In the transformation procedure
occurrences of subterms of the form g(z) are not abstracted into sorts. More-
over, equations s A&/ ¢ where vars(s) N vars(t) = @ are transformed into sorted
clauses of the form @ | — = & y to ensure that non-collapsing equations share
at least one variable between both sides. The saturation of semi-shallow theo-
ries still terminates by imposing basic restrictions on subterms of the form g(x)
which have been introduced by unifiers into the equational part of a clause and
which cannot be moved to the sort constraint.

E-unification remains decidable in the according saturated set shown by an
analogous of Lemma 10. The problem is that the maximal term depth can be
increased by one while the number of variables does not change. However, the
according termination ordering can be generalized in a way that basic and non-
basic regions of a clause are distinguished. Further detailes can be found in the
technical report (Jacquemard et al. 1998).

5.2 Limitations

We present a generalization of semi-linear equational systems which cannot be
treated with the methods of Sections 3.3 and 4.

The combination of associativity for one function symbol and a linear (!) shal-
low sort theory already yields an undecidable unification problem. This can be
seen by a reduction of the emptiness of the intersection of context free languages
to this problem.

Pseudo-linear theories generalize sorted semi-linear equational theories in a
way that multiple occurrences of a variable in an equation are allowed, pro-
vided that they occur at the same depth. For instance f(h(x),g(z)) ~ g(g(z)) is
pseudo-linear (though not semi-linear) and f(h(z),g(x)) = g(«) is not. However,
emptiness of some sort with respect to the combination of a linear (1) shallow sort
theory and a pseudo-linear equational theory is already undecidable as shown in
the following proposition.

Proposition 15 (Jacquemard et al. 1998). The blank accepting problem for
a non-deterministic Turing machine can be reduced to the emptiness of the in-
tersection (%))(Ll) N Ly where Ly and Ly are two recognizable word languages
and E is an equational word system with equations of the form aa’ & bb'.



Note that this kind of theory is an even simple case of a pseudo-linear equa-
tional system. The word problem in pseudo-linear word systems is decidable
since pseudo-linear word equations are length preserving.

5.3 Related Work

Oyamaguchi (1990) shows that the word problem for right-ground TRS is un-
decidable whereas the word problem in left-linear and right-ground TRS is de-
cidable in polynomial time. In the undecidability proof for right-ground systems
Oyamaguchi used rewrite rules with non-linear variable occurrences at different
depth.

Fassbender & Maneth (1996) investigate decidability of E-unification in
theories induced by TRS called top-down tree transducers. Syntactic restric-
tions based on separated function and constructor alphabets are assumed. E-
unification in top-down tree transducers with only one function symbol in the
alphabet is shown to be decidable. Due to the constructor-based restrictions
the results are difficult to compare to semi-linear theories. Otto, Narendran &
Dougherty (1995) show that E-unification is decidable in equational theories
axiomatized by monadic, confluent string-rewriting systems.

Kaji et al. (1997) show the recognizability of the right-closure of a certain
class of right-linear, confluent TRS applied to a linear term. The variables oc-
curring both in the left and right hand side of a rule [ — r are assumed to be
linear in | and, moreover, | and the subterms of r are related under additional
restrictions which can be effectively computed. The techniques presented in Sub-
section 3.1 provide a decision method for some restricted unifiability problems
modulo the above systems. Actually, the problem addressed in (Kaji et al. 1997)
is more general because they deal with “constrained substitutions” which range
in some recursively defined (recognizable) set of terms.

Comon et al. (1994) investigate the properties of non-linear shallow theories
which are an instance of semi-linear equational theories. Shallow presentations
can be transformed into equivalent cycle-syntactic presentations for which de-
cidability of unification has been shown. The first-order theory of the quotient
algebra T(F')/ =, is also shown to be decidable where F is finite and F is shallow.
However, the proof techniques are entirely different to our approach.

Nieuwenhuis (1996) generalizes the result of Comon et al. (1994) to so-called
standard theories. Standard theories extend non-linear shallow theories in a
way that non-ground terms containing linear (non-significant) variables are al-
lowed in certain restricted positions in both sides of the equations. An equation
f(s1,---y8n) = g(t1,...,tm) may contain linear terms s;, respectively ¢;, where
all other equations with top symbol f, respectively g, must have linear terms
in position 4. Non-linear variable occurrences are limited to shallow positions .
The saturation-based methods are closely related to our work. The decidabil-
ity results are also obtained by termination analyses of saturation under basic
superposition.

L Another extension included in standard theories is discussed in Section 5.



Limet & Réty (1997) show the decidability of E-unification in theories rep-
resented by a particular class of confluent, constructor-based TRS. The set of
possibly infinite solutions is represented by Tree Tuple Synchronized Grammars.
A TRS is transformed into such a grammar which then simulates narrowing.
The additional restrictions on the TRS are purely syntactic. However, semi-
linear systems are difficult to compare to the constructor-based systems in this
approach.

6 Conclusions and Future Work

We have shown that unifiability modulo a sorted shallow equational theory is
decidable by means of saturation methods under sorted superposition. With the
help of a transformation procedure this result extends to (sorted) semi-linear
equational theories. Our result strictly embeds previous work concerning shal-
low theories by Comon et al. (1994). It can be obviously extended into sorted
equational theories and also into a generalization of Nieuwenhuis (1996). How-
ever, we currently do not have any complexity results concerning the decision
procedure or the number of generated mgus. The presented theory is already
included in the first-order theorem prover SPASS (Weidenbach 1997) that can
therefore be used for experiments with respect to the presented results.

Let us conclude with another possible improvement of this work. Sorted shal-
low equational theories generalize Rec— tree automata. To subsume the whole
class Recy (Bogaert & Tison 1992), it is necessary to add syntactic disequa-
tions to clauses while preserving decidability results concerning membership and
emptiness problems. This may have interesting applications in call-by-need nor-
malization strategies for TRS. Durand & Middeldorp (1997) use tree automata
techniques both to apply a call-by-need strategy based on the detection of needed
redexes and to characterize the class of rewrite systems for which it is effective.
The key idea is, given a rewrite system R, to recognize the closure (?)) (NFs)
by § of the set of ground S-normal-forms, where § is a certain approximation of
R. If we approximate R into a non-linear shallow system &, the above set could
be a recognized sorted shallow equational theory with syntactic disequalities,
generalizing Recx automata. Thus, with the appropriate extension of the theory
of needed-redexes, more general call-by-need normalization strategies for some
classes of non-linear rewrite systems could be obtained.
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