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Preface 

Proof Verification and Approximation Algorithms - Hardly any area in theoret
ical computer science has been more lively and flourishing during the last few 
years. Different lines of research which had been developed independently of 
each other over the years culminated in a new and unexpected characterization 
of the well-known complexity class .NP, based on probabilistically checking cer
tain kinds of proofs. This characterization not only sheds new light on the class 
.NP itself, it also allows proof of non-approximability results for optimization 
problems which, for a long time, had seemed to be out of reach. This connection, 
in turn, has motivated scientists to take a new look at approximating .NP-hard 
problems as well - with quite surprising success. And apparently, these exciting 
developments are far from being finished. 

We therefore judged "Proof Verification and Approximation Algorithms" an 
ideal topic for the first in a new series of research seminars for young scientists, 
to be held at the International Conference and Research Center for Computer 
Science at SchloB Dagstuhl in Germany. This new series of seminars was estab
lished by the German Society for Computer Science (Gcsellschaft fiir lnformatik, 
GI) with the aim of introducing students and young scientists to important new 
research areas and results not yet accessible in text books or covered in the 
literature in a comprehensive way. 

When we announced our seminar we encountered considerable interest and re
ceived numerous responses. We were able to select 21 qualified doctoral students 
and postdocs. Each participant then was requested to give a lecture, usually 
based on several research articles or technical reports, and to submit, in prelim
inary form and before the workshop began, an exposition of the topic assigned 
to him/her. The actual workshop then took place April 21-25, 1997 at SchloB 
Dagstuhl. All participants were very well prepared and highly motivated. We 
heard excellent talks and had many interesting and stimulating discussions, in 
the regular sessions as well as over coffee or some enlightening glass of wine after 
dinner. 

This volume contains revised versions of the papers submitted by the partici
pants. The process of revision involved, among other things, unifying notation, 
removing overlapping parts, adding missing links, and even combining some of 
the papers into single chapters. The resulting text should now be a coherent 



VI 

and essentially self-contained presentation of the enormous recent progress facil
itated by the interplay between the theory of probabilistically checkable proofs 
and approximation algorithms. While it is certainly not a textbook in the usual 
sense, we nevertheless believe that it can be helpful for all those who are just 
starting out to learn about these subjects, and hopefully even to those looking 
for a coherent treatment of the subject for teaching purposes. 

Our workshop was sponsored generously, by Special Interest Group 0 (Fachbe
reich "Grundlagen der Informatik") of the German Society for Computer Science 
(GI) and by the International Conference and Research Center for Computer 
Science (Internationales Begegnungs- und Forschungszentrum fiir Informatik, 
IBFI) at Schlof3 Dagstuhl. We owe them and the staff at Schlof3 Dagstuhl many 
thanks for a very successful and enjoyable meeting. 

Miinchen, Berlin 
September 1997 

Ernst W. Mayr 
Hans Jiirgen Promel 
Angelika Steger 



Prologue 

Exam time. Assume you are the teaching assistant for some basic course with s 
students, s very large. The setup for the exam is as follows: 

(1) The exam consists of q yes/no questions. 

(2) A student passes if and only if he or she answers all questions correctly. 

You assume that, on average, you'll need at least half a second to check the 
correctness of each answer. Since you expect the number of students to be close 
to one thousand (it is a very popular basic course!) and since the number of 
questions will be several hundred, a rough estimate shows that you are going to 
spend almost a whole week grading the exam. Ooff. 

Is there a faster way? 

Certainly not in general: in the worst case you really might have to look at all 
s · q answers in order to rule out a false decision. But what if we relax the second 
condition slightly and replace it by 

(2') A student definitely passes the exam if he or she answers all questions 
correctly. A student who does not answer all questions correctly may pass 
only with a small probability, say ~ 10-3 , independently of the answers he 
or she gives. 

Now you suddenly realize that the grading can actually be done in about 45s 
seconds, even regardless of the actual number q of questions asked in the exam. 
That is, a single day should suffice. Not too bad. 

How is this possible? Find out by reading this book! And enjoy! 
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Introduction 

During the last few years we have seen quite spectacular progress in the area 
of approximation algorithms. For several fundamental optimization problems we 
now actually know matching upper and lower bounds for their approximability 
(by polynomial time algorithms). 

Perhaps surprisingly, it turned out that for several of these problems, including 
the well-known MAx3SAT, SETCOVER, MAXCLIQUE, and CHROMATICNUMBER, 
rather simple and straightforward algorithms already yield the essentially best 
possible bound, at least under some widely believed assumptions from complex
ity theory. The missing step for tightening the gap between upper and lower 
bound was the improvement of the lower or non-approximability bound. Here 
the progress was initiated by a result in a seemingly unrelated area, namely 
a new characterization of the well-known complexity class .NP. This result is 
due to Arora, Lund, Motwani, Sudan, and Szegedy and is based on so-called 
probabilistically checkable proofs. While already very surprising and certainly 
interesting by itself, this result has given rise to fairly general techniques for de
riving non-approximability results, and it initiated a large amount of subsequent 
work. 

On the other hand, as if this so-to-speak "negative" progress had inspired the re
search community, the last few years have also brought us considerable progress 
on the "positive" or algorithmic side. Perhaps the two most spectacular results 
in this category are the approximation of MAXCUT using semidefinite program
ming, by Goemans and Williamson, and the development of polynomial time 
approximation schemes for various geometric problems, obtained independently 
by Arora and Mitchell. 

These notes give an essentially self-contained exposition of some of these new 
and exciting developments for the interplay between complexity theory and ap
proximation algorithms. The concepts, methods and results are presented in a 
unified way that should provide a smooth introduction to newcomers. In partic
ular, we expect these notes to be a useful basis for an advanced course or reading 
group on probabilistically checkable proofs and approximability. 
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Overview and Organization of this Book 

To be accessible for people from different backgrounds these notes start with 
three introductory chapters. The first chapter provides an introduction to the 
world of complexity theory and approximation algorithms, as needed for the sub
sequent treatment. While most of the notions and results from complexity theory 
that are introduced here are well-known and classical, the part on approximation 
algorithms incorporates some very recent results which in fact reshape a number 
of definitions and viewpoints. It also includes the proof by Trevisan [Tre97] that 
MAX3SAT is APX -complete. 

The second chapter presents a short introduction to randomized algorithms, 
demonstrating their usefulness by showing that an essentially trivial randomized 
algorithm for MAXE3SAT (the version of MAX3SAT in which all clauses have 
exactly three literals) has expected performance ratio 8/7. Later on, in Chapter 7, 
this ratio will be seen to be essentially best possible, assuming 1' =1- NP. 

Concluding the introductory part, the third chapter describes various facets 
and techniques of derandomization, a term coined for the process of turning 
randomized algorithms into deterministic ones. Amongst other things in this 
chapter it is shown that the algorithm for MAxE3SAT is easily derandomized. 

Chapters 4 to 10 are devoted to the concept of probabilistically checkable proofs 
and the implications for non-approximability. Chapter 4 introduces the so-called 
PCP-Theorem, a new characterization of NP in terms of probabilistically check
able proofs, and explains why and how they can be used to show non-approxima
bility results. In particular, the nonexistence of polynomial time approxima
tion schemes for A'PX-complete problems and the non-approximability of MAX
CLIQUE are shown in detail. A complete and self-contained proof of the PCP
Theorem is presented in Chapter 5. Chapter 6 is devoted to the so-called Parallel 
Repetition Theorem of Raz [Raz95] which is used heavily in subsequent chapters. 

At the 1997 STOC, Hastad [Has97b] presented an exciting paper showing that 
the simple algorithm of Chapter 2 for approximating MAxE3SAT is essentially 
best possible. Chapter 7 is devoted to this result of Hastad's. The chapter also 
introduces the concept of long codes and a method of analyzing these codes 
by means of discrete Fourier transforms. These tools will be reused later in 
Chapter 9. 

Chapter 8 surveys the new reduction techniques for optimization problems using 
gadgets, a notion for the first time formally introduced within the framework of 
approximation algorithms by Bellare, Goldreich, and Sudan [BGS95). 

MAXCLIQUE cannot be approximated up to a factor of n1
-E unless NP = Z1'1'. 

This result, also due to Hastad [Has96a), is based on a version of the PCP
Theorem using so-called free bits. This concept, as well as Hastad's result, are 
described in Chapter 9. 
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As the final installment in this series of optimal non-approximability results, 
Chapter 10 presents the result of Feige [Fei96] stating that for SETCOVER the 
approximation factor of ln n achieved by a simple greedy algorithm is essentially 
best possible unless NP ~ DTIME(n°(1oglogn)). 

The last three chapters of these notes are devoted to new directions in the devel
opment of approximation algorithms. First, Chapter 11 surveys recent achieve
ments in constructing approximation algorithms based on semidefinite program
ming. A generalization of linear programming, semidefinite programming had 
been studied before for some time and in various contexts. However, only a few 
years ago Goemans and Williamson [GW95] showed how to make use of it in 
order to provide good approximation algorithms for several optimization prob
lems. 

While the PCP-Theorem implied that no APX-complete problem can have a 
polynomial time approximation scheme unless NP = P, it is quite surpris
ing that many such problems nevertheless do have such approximation schemes 
when restricted to (in a certain sense) dense instances. Chapter 12 exemplifies 
a very general approach for such dense instances, due to Arora, Karger, and 
Karpinski [AKK95a]. 

The final chapter then presents one of the highlights of the work on approxima
tion algorithms during recent years. It is the development of polynomial time 
approximation schemes for geometrical problems like the Euclidean traveling 
salesman problem, independently by Arora [Aro96, Aro97] and Mitchell [Mit96]. 

Notations and Conventions 

Areas as lively and evolving as proof verification and approximation algorithms 
naturally do not have a standardized set of definitions and notations. Quite often 
the same phrase has a slightly different meaning in different papers, or different 
symbols have identical meaning. In these notes, we have striven for uniform 
notation and concepts. We have tried to avoid any redefinition of terms, and 
thus we sometimes had to choose between two (or more) equally well established 
alternatives (e.g., should approximation ratios be taken to always be ~ 1, or 
~ 1, or depending on the type of approximation problem?). 

We have also tried to avoid phrases like "reconsidering the proof of Theorem x 
in Chapter y we see that it also shows that ... ". Instead, we have attempted to 
prove all statements in the form in which they'll be needed later on. We hope 
that in this way we have been able to make the arguments easier to follow and 
to improve readability of the text. 

Finally, we want to explicitly add some disclaimers and an apology. The intention 
of these notes certainly is not to present a survey, detailed or not, on the history 
of research in proof verification or approximation algorithms. This means, in 
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particular, that more often than not only the reference to a paper with the best 
bound or complexity is given, omitting an entire sequence of earlier work without 
which the final result would appear all but impossible. Of course, numerous 
citations and pointers to work that had a major impact in the field are given, 
but there are doubtlessly many omissions and erroneous judgments. We therefore 
would like to apologize to all those whose work does not receive proper credit in 
these notes. 
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