
HAL Id: inria-00074093
https://inria.hal.science/inria-00074093

Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting Explicit Disambiguation of Multi-Methods
Eric Amiel, Eric Dujardin

To cite this version:
Eric Amiel, Eric Dujardin. Supporting Explicit Disambiguation of Multi-Methods. [Research Report]
RR-2590, INRIA. 1995. �inria-00074093�

https://inria.hal.science/inria-00074093
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

ap por t

de r ech er ch e

1995

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Supporting Explicit Disambiguation of
Multi-Methods

Eric Amiel, Eric Dujardin

N ˚ 2590
Juin 1995

PROGRAMME 1

Architectures parallèles,

bases de données,

réseaux et systèmes distribués

Supporting Explicit Disambiguation of Multi-Methods

Eric Amiel
�

, Eric Dujardin
�

Programme 1 — Architectures parallèles, bases de données, réseaux
et systèmes distribués

Projet Rodin

Rapport de recherche n2590 — Juin 1995 — 23 pages

Abstract: Multiple inheritance and multiple dispatching are two sources of ambiguities
in object-oriented languages. Solving ambiguities can be performed automatically, using
techniques such as totally ordering the supertypes of each type or taking the order of the
methods’ arguments into account. Such implicit disambiguation has the drawback of being
difficult to understand by the programmer and hiding programming errors. Conversely,
solving ambiguities can be left up to the explicit intervention of the programmer. The most
common explicit disambiguation technique consists in defining new methods for ambiguous
invocations. However, finding ambiguities and adding as few methods as possible is a
difficult task, especially in multi-method systems. In this report, we show that there always
exists a unique minimal set of method redefinitions to explicitly disambiguate a set of multi-
methods. We propose an algorithm to compute the minimal disambiguation set, together
with explanations: for each method that is to be added, the programmer is given the set of
methods that caused the ambiguity.

Key-words: method dispatch, multi-methods, multiple inheritance, ambiguities,topological
sort

(Résumé : tsvp)

�

amiel@rodin.inria.fr, Eric.Dujardin@inria.fr

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

Téléphone : (33 1) 39 63 55 11 – Télécopie : (33 1) 39 63 53 30

Un outil pour supporter la désambiguïsation explicite des
multi-méthodes

Résumé : L’héritage multiple et la sélection multiple représentent deux sources d’ambiguïté
dans les langages orientés-objets. La résolution des ambiguïtés peut se faire automatique-
ment, en utilisant des techniques basées sur un ordre total entre les supertypes, et l’ordre
des arguments des multi-méthodes. Ces désambiguïsations implicites ont l’inconvénient
d’être difficile à comprendre pour le programmeur, et de cacher des erreurs de programma-
tion. À l’inverse, la résolution des ambiguïtés peut être laissée à la charge du programmeur.
La technique de désambiguïsation la plus courante est de définir de nouvelles méthodes
pour les invocations ambigües. Cependant, il est difficile de trouver les ambiguïtés et
d’ajouter un nombre minimal de méthodes, notamment dans les systèmes supportant les
multi-méthodes. Dans cet article, nous montrons qu’il y a toujours un unique plus pe-
tit ensemble de redéfinitions de méthodes permettant de désambiguïser explicitement un
ensemble de multi-méthodes. Nous proposons un algorithme pour calculer le plus petit
ensemble de désambiguïsation, ainsi que des explications : à chaque méthode à définir
est associé l’ensemble des méthodes qui ont causé l’ambiguïté.

Mots-clé : sélection des méthodes, multi-méthodes, héritage multiple, ambiguïtés, tri
topologique.

Supporting Explicit Disambiguation of Multi-Methods 3

1 Introduction

Ambiguities are a well-known problem of any classification system supporting multiple inhe-
ritance. They plague semantic networks in artificial intelligence as well as class hierarchies
in many object-oriented languages. Multiple inheritance ambiguities occur when it is im-
possible to decide from which superclass to inherit a property, i.e. an instance variable or
a method. Consider a class hierarchy where class TeachingAssistant (TA) is a subtype1 of
two superclasses Student and Employee and has one subclass ForeignTA. Assume that
both Student and Employee define a method vacation2 which computes the number of days
of vacation. Then, any invocation of vacation on a TA or ForeignTA is ambiguous, as it is
impossible to know which method must be called, Student’s or Employee’s vacation.

Multi-methods add another kind of ambiguity. Indeed, run-time method selection looks
for the method whose arguments most closely match those of the invocation. Ambiguities
may arise if two methods most closely match different subsets of an invocation’s argu-
ments. Consider the above class hierarchy with two multi-methods � 1

�������	��

��������
��
and

� 2
�	��

��������
��������

and invocation � �����������������
. With respect to the first argument, � 1 is

a closer match than � 2, while the reverse holds for the second argument. Thus, the invo-
cation � �����������������

is ambiguous, as are all invocations whose arguments are of class
TA or ForeignTA.

There are two ways to eliminate ambiguities: implicit and explicit disambiguation. Implicit
disambiguation consists in automatically solving ambiguities in the place of the programmer.
For example, CLOS defines a total order on all the superclasses of each class to eliminate
multiple inheritance ambiguities [DHHM92]. In the above example, if Student precedes
Employee in TA’s definition, then invoking vacation on a TA results in the invocation of the
vacation method of Student. Implicit disambiguation of multi-methods ambiguities is based
on taking the order of the arguments into account: in this way, � 1

����������

��������
��
is a closer

match than � 2
�	��

��������
��������

, because its first argument is more specific than � 2’s.

Explicit disambiguation, used in languages like C++ [ES92], Eiffel [Mey92] and Cecil
[Cha93], consists in requiring the programmer to solve ambiguities. One way of achieving
this consists in redefining the method for ambiguous invocations. For example, if the
programmer redefines vacation for TA, invoking vacation on a TA is no longer ambiguous.
Note that this redefinition also solves ambiguities for ForeignTA. In the same way, defining
a method � 3

�������������
solves the multiple dispatching ambiguity between � 1 and � 2 for

all invocations with arguments of class TA or ForeignTA.

Implicit disambiguation is increasingly being criticized for mainly two reasons: first,
the way it solves ambiguities can be difficult to understand and counter-intuitive in some
cases. This is particularly obvious for multiple dispatching ambiguities where the order of

1In this report, we indifferently use subtyping and inheritance, class and type, although we are primarily
interested in the typing aspects.

2For the rest of the report we consider ambiguous methods as they capture the case of instance variables
through encapsulation.

RR n2590

4 E. Amiel & E. Dujardin

the arguments is taken into account. Second, ambiguities can actually reveal programming
errors, which implicit disambiguation hides.

On the other hand, explicit disambiguation imposes some burden on the programmer
who faces two problems: first, (s)he must find which methods are ambiguous and with
respect to which class(es) of argument(s). Second, (s)he must determine which methods
must be added. Indeed, if carefully chosen, very few method redefinitions can solve all
ambiguities at the same time. However, adding a method to solve an ambiguity may
sometimes result in the creation of a new ambiguity. Unfortunately, to our knowledge,
no system assists the programmer in the task of explicit disambiguation. Such help is
especially needed for multi-method systems, notably because multi-methods are more
complex to master than mono-methods and suffer from two kinds of ambiguities, increasing
the potential number of ambiguities.

In this report, we address this need by showing that there always exists a unique minimal
set of method redefinitions to explicitly disambiguate a set of multi-methods. We propose an
algorithm which computes the minimal disambiguation set and provides explanations: for
each method that is to be added, the programmer is given the set of methods that caused
the ambiguity. In our example, the algorithm outputs vacation(TA)3 as the method that must
be added and � vacation(Student), vacation(Employee) � as the explanation.

The report is organized as follows. Section 2 surveys previous work on ambiguities.
Section 3 defines the problem we address and gives an overview of our solution. Section 4
presents our disambiguation algorithm. Section 5 deals with implementation issues, notably
optimization and complexity. We conclude with future work in section 6.

2 Background on Disambiguation

2.1 Basic Definitions

In traditional object-oriented systems, methods have a single specially designated argument
– called the receiver or target – whose run-time type is used to select the most specific ap-
plicable method to execute. Such methods are called mono-methods. Multi-methods, first
introduced in CommonLoops [BKK � 86] and CLOS [BDG � 88], generalize mono-methods
by considering that all arguments are targets. Multi-methods are now a key feature of seve-
ral systems such as Kea [MHH91], Cecil [Cha92], Polyglot [DCL � 93], and Dylan [App94].
Following [ADL91], we denote subtyping by � . Given two types

�
1 and

�
2, if

�
1 � �

2, we
say that

�
1 is a subtype of

�
2 and

�
2 is a supertype of

�
1.

A generic function is defined by its name and its arity (in Smalltalk parlance, a generic
function is called a selector). To each generic function � of arity

�
corresponds a set

3For the rest of the report, we use the functional notation as we consider multi-method systems.

INRIA

Supporting Explicit Disambiguation of Multi-Methods 5

of methods ��� ��� 1� ������� ������ ��� 	 � , where
��
� is the type of the � th formal argument, and

where
	 � is the type of the result. We call the list of argument types

��� 1� ������� ��� �� � of method
��� the signature of ��� 4. An invocation of a generic function � is denoted � ��� 1 ���
��� ��� � �

,
where

��� 1 ������� ��� � �
is the signature of the invocation, and the

�

’s represent the types of

the expressions passed as arguments. Finally, the method selected at run-time for some
invocation is called the Most Specific Applicable (MSA) method.

2.2 Method Ordering and Ambiguity

The basis of method specificity is a precedence relationship called argument subtype pre-
cedence in [ADL91]: a method �
 is more specific than a method ��� , noted �
�� ��� , if
all the arguments of �
 are subtypes of the arguments of ��� . However, in the presence of
multiple inheritance or multiple dispatching, argument subtype precedence may be unable
to totally order applicable methods for some invocations, yielding several conflicting MSA
methods. Such invocations are then ambiguous.

��� � � � ���

Multiple Dispatching Ambiguity

��

����� ��
�� ����� �"! ���

���

�%$ ��
 �&� � 1(
��

��������

)# �%$ ��
 �&� � 2(
� ����� �"! � �)

Multiple Inheritance Ambiguity

� 1(
��

��������

,
���

)
� 2(

���
,
��

��������

)

Figure 1: Ambiguities

Example 2.1 : Consider the type hierarchy and methods of Figure 1. Argument subtype
precedence can order neither # �%$ ��
 �'� � 2 w.r.t. # �%$ ��
 �'� � 1 (multiple inheritance ambiguity),
nor � 2 w.r.t. � 1 (multiple dispatching ambiguity). Thus, invocations # �%$ ��
 �'� �������������������
and � �����������������

are ambiguous. (

2.3 Disambiguation Techniques

As noted in [Cha92], “the key distinguishing characteristic of method lookup (
�����

) is how
exactly ambiguities are resolved”. Techniques to solve ambiguities can be classified in two
categories: implicit and explicit disambiguation.

2.3.1 Implicit Disambiguation

Implicit disambiguation consists in augmenting the power of argument subtype precedence
to automatically resolve ambiguities. To solve multiple inheritance ambiguities, the subtype

4For our purposes, we do not include the return type in the signature.

RR n2590

6 E. Amiel & E. Dujardin

relationship, � , is complemented by a precedence relationship, � , that strictly orders all
the supertypes of a type. The supertypes ordering is generally local to each type (local
supertypes precedence) as in Loops [SB86], CommonLoops [BKK � 86], Flavors [Moo86],
Orion [BKKK87] and CLOS [BDG � 88]. To solve multiple dispatching ambiguities, the formal
arguments of the rival methods are examined in some given order, e.g. left-to-right, and
the comparison stops as soon as an argument of one method strictly precedes the corres-
ponding argument of the other method. [ADL91] extensively covers the different ways to
augment argument subtype precedence to avoid ambiguities.

Example 2.2 : Assume local supertype precedence establishes that
��

��������
 � � ����� �"! � �

and left-to-right argument examination is chosen. Then, the ambiguities of Figure 1 are
resolved and # �%$ ��
 �&� � 1 has precedence over # �%$ ��
 �'� � 2 and � 2 has precedence over � 1.(

Note that dispatch based on a local supertypes precedence ordering of methods may
select a method in an unintuitive way. Indeed, CLOS, Loops and Dylan do not support
monotonicity [DHHM94]. Monotonicity captures the intuitive property that, if a method is not
the MSA for some signature, it cannot be the MSA of a more specific signature. To address
the anomalies created by local supertypes precedence, [DHHM94] proposes a monotonous
supertypes linearization algorithm.

C++ [ES92] implicitly solves some multiple inheritance ambiguities by using the static
type of the receiver object: the inheritance path between the corresponding class, and the
class of the receiver at run-time, takes precedence.

Example 2.3 : Consider the example in Figure 2 and a C++ invocation
�
-> � � �

, where�
is a variable of type ��� . If

�
points to an instance of class

�
at run-time, then � 2 takes

precedence. However, invocation
�
-> � � �

, where
�

is of type
� � , is still ambiguous. (

..........................

��

..........................

�
..........................

�
..........................

�
..........................

�
�

�

�

	

� 1(
�
)

� 2(�)
� 3(�)

Figure 2: Example Type Hierarchy and Methods

This disambiguation scheme also appears in [CG90] with the points of view, in Fibonacci
[ABGO93] with its roles, in O2 [O292] and in Self 2.0 with its sender path tiebraker rule
[CUCH91]. However, these techniques go against the need to “ensure that the same
function is called for an object independently of the expression used to access the object”,
as stated in [ES92].

INRIA

Supporting Explicit Disambiguation of Multi-Methods 7

As argued in [LR89], [Sny86b], [DH89] and [Cha92], implicitly solving ambiguities raises
several serious problems. First, ambiguities may be the result of programming errors.
Implicit disambiguation prevents the detection of such errors. Second, it makes programs
hard to understand, maintain and evolve. This is particularly obvious for multiple dispatching
ambiguities where the order of the arguments is taken into account. Finally, there are
ambiguities that implicit disambiguation cannot resolve according to the programmer’s wish,
because it is not fine enough.

Example 2.4 : Consider the type hierarchy and methods of Figure 3. Assume the pro-
grammer would like # �%$ ��
 �'� � 1

�	��

��������
��
to be the MSA method for ambiguous invocation# �%$ ��
 �'� ����������� and

 �������
2
� � � � � �"! � ��� to be the MSA method for ambiguous invocation
 �����������������

. Such disambiguation cannot be automatically performed by ordering super-
types

��

��������

and

� ����� �"! � � . (

�

��� � � � ���� ����� �"! �����

��������

� ��� � ��� �����

���

�%$ ��
 �'� � 1(
��

��������

)# �%$ ��
 �'� � 2(
� � � �"! ���)

 ��� ���
1(
��

��������

)
 ��� ���
2(

� ����� �"! � �)

Figure 3: Example Type Hierarchy and Methods

2.3.2 Explicit Disambiguation

The second way of solving ambiguities is explicit disambiguation. In this approach, the
programmer him/herself solves ambiguities at the level of either invocations or methods.

Explicit Disambiguation at the Invocation Level

In C++, multiple inheritance ambiguities can be resolved on a per invocation basis and in
two different ways. First, the programmer can explicitly force a particular method to be
the MSA method for some invocation by prefixing the invocation by the name of a class
followed by the scoping operator “::”. The MSA method for the invocation is then statically
determined to be the MSA method for that class, bypassing late binding.

Example 2.5 : Consider the type hierarchy of Figure 2. The C++ invocation
�
-> � � �

,
where

�
is of type

� � , is ambiguous. The programmer can resolve the ambiguity by writing�
-> � :: � � �

. This statically binds the invocation to the method applicable to class � ,
namely the method defined in class

�
. (

RR n2590

8 E. Amiel & E. Dujardin

Type casting, i.e. type coercion, is the second way of explicitly resolving ambiguities at
the invocation level in C++. Contrary to the scoping operator, type casting preserves late
binding.

Example 2.6 : Consider again the type hierarchy of Figure 2. The programmer can resolve
the ambiguous invocation

�
-> � � �

by writing
� � ��� � ��� -> � � �

, making use of the implicit
disambiguation rule described above. This forces

�
to be considered as referring to the �

part of an
�

object. Late binding is preserved: the method that actually gets executed is
the one defined in class � . (

Explicit disambiguation at the invocation level provides the finest control over ambigui-
ties. However, it imposes a heavy burden on the programmer who must disambiguate every
ambiguous invocation. Moreover, the scoping operator suspends late binding. This can be
dangerous when the type hierarchy or the methods evolve:

Example 2.7 : Consider again the type hierarchy of Figure 2. If the programmer disam-
biguates invocation

�
-> � � �

by writing
�
-> � :: � � �

and then, a new method is defined in
class � , then the disambiguation must be rewritten

�
-> � :: � � �

. (

Explicit Disambiguation at the Method Level

A programmer can perform explicit disambiguation of methods by either selecting or adding
methods. Method selection consists in explicitly declaring which of the conflicting methods
takes precedence for all invocations. It is supported in Traits [CBLL82], Trellis [SCB � 86]
and CommonObject [Sny86a]. Eiffel [Mey92] performs method selection by either renaming
all conflicting methods but one and using a “select” statement or undefining all conflicting
methods but one. O2 [O292] automatically performs renaming of conflicting methods by
prefixing them with the name of the class.

The second way of performing explicit disambiguation at the method level consists in
adding new methods so that argument subtype precedence is sufficient to totally order
applicable methods for any invocation. The augmented set of methods then satisfies a
condition, described in [LR89], and called regularity in Zelig [DS92] and consistency in
Cecil [Cha93]. This disambiguation policy is used in Extended Smalltalk [BI82], Zelig
[DS92], Self 3.0 [ABC � 93], and Cecil [Cha93].

Example 2.8 : Consider again the type hierarchy and methods of Figure 1. To eliminate
ambiguities, it is enough to define two new methods: # �%$ ��
 �'� � 3

�������
and � 3

�������������
. (

The new methods may perform specific code or just serve the purpose of resolving
an ambiguity, by explicitly calling another method of the same generic function using a
scoping operator like Cecil’s “@@” or C++’s “::”, or a special construct like “call-method” in
CommonObject.

INRIA

Supporting Explicit Disambiguation of Multi-Methods 9

Example 2.9 : Cecil [Cha92] has the resend construct to explicitly call another me-
thod of the same generic function. Given the type hierarchy and methods of Figure 1,# �%$ ��
 �'� � 3

�������
can resolve the ambiguity in favor of # � $ ��
 �'� � 1

�	��

��������
��
as follows:

method vacation(c1@@TA) � resend(c1@@Student) � (
Explicit disambiguation by addition of methods encompasses the functionality of expli-

cit disambiguation by selection without making it necessary to incorporate the selection
declarations in the late binding mechanism.

2.4 Conclusion

From some recent language updates, it appears that language designers increasingly favor
explicit disambiguation, because of the problems associated with implicit disambiguation.
For example, Self 3.0 [Se393] has abandoned prioritized inheritance, a kind of local super-
types precedence, together with the sender path tiebraker implicit disambiguation rule. The
priority mechanism is described as being “of limited use, and had the potential for obscure
errors”. Cecil does not include implicit disambiguation either. Dylan borrows CLOS’s linear
ordering of supertypes, but does not assume any order on the multi-method’s arguments,
leaving room for multiple dispatching ambiguities and requiring explicit disambiguation.

3 Problem Statement and Overview of the Solution

The problem with explicit disambiguation is the burden it imposes on the programmer who
faces two problems: first, (s)he must find which methods are ambiguous for which si-
gnature(s). Second, (s)he must determine which methods must be added to solve the
ambiguities. An obvious solution is to define a method for each and every ambiguous
signature. However, this results in the creation of a potentially huge number of disambi-
guating methods, whereas carefully choosing for which signatures to redefine methods can
solve several or even all ambiguities at the same time. Consider the type hierarchy and
methods of Figure 4. Signatures

�
�
��� � � �

�
��� � � ��� ��� � ����� ��� �

are ambiguous because
of methods � 1

������� �
and � 2

� � � � � . However, defining a method � 4
�

�
��� �

is enough to
solve these four ambiguities.

Finding the minimal set of disambiguating methods is further complicated by the fact
that adding a method to solve some ambiguity can actually result in the creation of a new
ambiguity. Indeed, in the type hierarchy of Figure 4, invocation � � � ��� �

is initially not
ambiguous, with � 3

� � ��� �
as its most specific applicable method. However, the addition

of method � 4
�

�
��� �

to solve the � �
�
��� �

ambiguity makes � � � ��� �
ambiguous, as � 3

now conflicts with � 4.

Unfortunately, to our knowledge, no system assists the programmer in the task of explicit
disambiguation by method addition. Such help is especially needed for multi-methods

RR n2590

10 E. Amiel & E. Dujardin

� 1(
�����

)

� 2(�
� �)

� 3(�
���
)

� � ��� ��

� ���

� ��� �� �
��� 	

�� �� �

 �

� ��� �� �
�

� �

��

�

�

� �

��
��

�

Figure 4: Reference Type Hierarchy and Methods

systems, notably because multi-methods are more complex to master than mono-methods
and suffer from two kinds of ambiguities, increasing the potential number of ambiguities.

To help explicitly disambiguate multi-method systems, we propose to provide the pro-
grammer with a disambiguation tool that can be integrated into the interpreter, compiler or
programming environment. This tool takes as input the signatures of a generic function’s
methods. Its output is the minimal set of signatures of the methods that must be added in
order to eliminate ambiguities. Moreover, for each new method’s signature, the tool outputs
the set of methods that created the ambiguity as an explanation to the programmer.

Our disambiguation algorithm is based on two results: (i) the minimal disambiguation
set is unique and (ii) it is included in a set of signatures called the pole signatures. The
algorithm is composed of two steps. The first step consists in computing the pole signatures,
using the signatures of the initial set of methods as follows. Multiple inheritance ambiguities
are explicitly solved for each argument position, i.e. the set of types appearing at a given
position is augmented with the minimal set of types needed to eliminate multiple inheritance
ambiguities. This process yields a set of pole types or poles for each argument position.
The set of pole signatures is the Cartesian product of the sets of poles at each argument
position.

Example 3.1 : Given the methods of Figure 4, the set of poles on the first argument
position is the union of � ��� � � � � and � �

� � � . � ��� � � � � is the set of types appea-
ring in the first argument position, and � �

� � � is the minimal disambiguation set. The
poles of the second argument position are only the types appearing in the second ar-
gument position, � � ��� � , as this set is not ambiguous. The pole signatures are then

� ����� � � ��� � � � � ��� � � � � ��� �
� � � � � � � � � ��������� � � � � ��� � � � � ��� � ���

�
��� � ��� � ��� � � . (

The second step of the disambiguation algorithm is the following: for each pole signature,
the algorithm computes the MSA method of the corresponding invocation. If there are more
than one MSA method, then the invocation is ambiguous and a method with that signature
must be added to the initial set of methods with the signatures of the conflicting MSA
methods for explanation. In order to minimize the number of methods to add and to detect

INRIA

Supporting Explicit Disambiguation of Multi-Methods 11

ambiguities created by the addition of a method, the algorithm processes the pole signatures
in a total order that is compatible with argument subtype precedence, from the most general
to the most specific signatures.

Example 3.2 : The pole signatures given above are already ordered in a way that is
compatible with argument subtype precedence from the most general to the most specific
signature. The first pole signature for which there is more than one MSA is

�
�
��� �

with
� 1

������� �
and � 2

� � � � � as conflicting MSA methods. A new method � 4
�

�
��� �

is thus
added with � 1

������� �
and � 2

� � � � � as explanation. The next and last signature,
� � ��� �

,
also has more than one MSA method, namely � 3

� � ��� �
and the newly added � 4

�
�
��� �

.
Hence, a new method � 5

� � ��� �
is added with � 3

� � ��� �
and � 4

�
�
��� �

as explanation and
the algorithm ends. (

Notice that the algorithm tests for ambiguity a number of signatures that is much smaller
than the total number of well-typed invocations. In the example of Figure 4, there are
34 different well-typed invocations and the algorithm only needs to test 7 signatures (the
signatures of the three methods � 1, � 2, and � 3 can be skipped as they are obviously not
ambiguous).

4 Disambiguation Algorithm

Before presenting the disambiguation algorithm, we first give some definitions and the
theoretical result on which the algorithm is based.

4.1 Definitions

For the rest of this report, we call � the set of existing types, and we consider a generic
function � of arity

�
, whose methods are � 1

������� � ��� . We also consider a set
��� � � 1

������� � � � �
such that for all � , � � is the signature of � � , i.e.

� � ����� 1� ������� ��� �� � .
We first review some notations and results introduced in [AGS94]. Here is the formal
definition of a pole type that is used to solve multiple inheritance ambiguities at each
argument position:

I-Pole. A type
��� � is an � -pole of generic function � , � � � 1

������� ��� � , denoted � � � � � �
� �����
,

iff:
	 � � � 1

������� � � � s.t.
�
���
�

or � � � �
� � ����� ���"� � ��� � �
� ����� � and
����� � ����� 1

The first part of the conjunction corresponds to the types appearing at the � -th argument
position (primary poles), while the second part defines which types must be added to solve

RR n2590

12 E. Amiel & E. Dujardin

multiple inheritance ambiguities (secondary poles). The set of � -poles of � is denoted
� � � �
� � � � �"� � � � � �
� ����� � . The set of pole signatures is denoted

� � � ��� � �
��

 � 1

� � � �
� .

Example 4.1 : Going back to Figure 4, � is a 1-pole because of the ambiguity created by
the 1-poles

�
and � . In the same way,

�
is a 1-pole because of � and � . (

Signature Specificity. A signature
� ����� 1 ������� ��� � � � � �

is more specific than a signature� � ������� 1 ������� ���
� � � � � �
, noted

� � � �
, iff for all � in � 1

������� ��� � ���
 � �
�
 �
By analogy with methods, if

� � � �
,
� �

is said to be applicable to
�
.

We assume the existence of a total order on
� � � ��� � , denoted by � , and compatible

with argument subtype precedence, i.e. � ��� � � � � � � ��� � � � � � � ��� � � � � �
. Such an order

always exists and can be found using a topological sort [Knu73].

Conflicting Signatures. Given a set of signatures
� ��� � �

, the set of conflicting signatures
of

���
w.r.t. a signature

� � � , noted
$ � �	� � � $�
 � � � � � �	� � � , is defined as follows:

$ � �	� � � $
 � � � � ����� � �
� � � � � � � � � � � � � �	
 � �
If
� �

is a set of method signatures and
�

the signature of an invocation, then
$ � �	� � � $�
 � � � � � �� � �

represents the signatures of the most specific applicable methods for the invocation.
This is a generalization of the notion of MSA method that takes ambiguities into account. It
is used both to test a signature for ambiguity and to determine the origin of the ambiguity
as an explanation.

Ambiguity of a Signature Set, Ambiguous Signature. A set of signatures
� ��� � �

is
ambiguous iff there exists a signature

��� � such that � $ � �	� � � $�
 � � � � ����� � � � � 1.
�

is then
said to be an ambiguous signature w.r.t.

� �
.

Disambiguation Set. Given a set of signatures
� �	� � �

, � � � �
is a disambiguation set

of
���

iff
� ��
 � is not ambiguous.

4.2 Main Theorem

Assuming that the pole signatures have been computed, we define a sequence of signatures� � � � ��� � in the following way:

� � � � 1
� � ����� � � � � � � ��� � � � $ � �	� � � $
 � � � � ��� � � 1

������� � � � � � ��� 1 � .

� � ��� � ,
� � � 1

� � � � � � � � � � � ��� � � � � � �
and � $ � �	� � � $�
 � � � � ��� � � 1

������� � � � � � ��� 1 � .

INRIA

Supporting Explicit Disambiguation of Multi-Methods 13

As each signature
� � is found by applying � ��� �

, building
� � � � � � � from this definition is

achieved by going over
� � � ��� � in the order of � , starting from the most generic signatures.

Note that testing the ambiguity of a signature at stage � � 1 is done using all preceding
signatures, not just the first � ones.

Theorem 1 � ��

� = � � � � ��� � � is finite, and is the minimal disambiguation set of
�

.

Proof: see Appendix A.

Example 4.2 : Consider again the types and methods in Figure 4. The original signature
set is

� � � ������� � ��� � � � � ��� � ��� � � , and � ��

� � � � �
��� � ��� � ��� � � . (

4.3 Main Algorithm

As explained in Section 3, the disambiguation algorithm takes place in two steps: first, the
poles of every argument position are computed to yield the pole signatures in an order
compatible with argumetn subtype precedence, then the minimal disambiguation set is
computed by iterating over the set of pole signatures. The algorithm in Figure 5 invokes
a subroutine that builds the ordered list of pole signatures, and then performs the second
step of this process. We describe the ordering of pole signatures in the next section, and
pole computation is isomorphic to the second step of the disambiguation algorithm. Indeed,
computing the poles amounts to determining the minimal disambiguation set of the types
appearing as arguments: the types of the hierarchy are iterated over in an order compatible
with argument subtype precedence; for each type, the most specific applicable poles are
computed. If there are more than one most specific applicable pole, then the type becomes
a secondary pole. Note that, as for the second step of the main algorithm, the order in
which types are considered guarantees the minimality of the disambiguation set.

From the definition of
� � � � , it is straightforward to build an algorithm that produces � ��

�

by going over
� � � ��� � in the order of � and adding ambiguous signatures to the original

set of signatures to test following signatures. Moreover, the set of conflicting signatures is
associated with each ambiguous signatures as an explanation.

The algorithm assumes the existence of two subroutines: OrderedPoleSignatures(
�
)

returns the list of pole signatures in an order that is compatible with argument subtype pre-
cedence and

$ � �	� � � $�
 � � � � ����� � returns the signatures in
�

that conflict as most specific
applicable to

�
.

Example 4.3 : Back to Figure 4, let us assume that OrderedPoleSignatures(
�
) re-

turns
������� � � ��� � � � � � � � � � � � � �

� � � ��� � � � � � ������� � ��� � ��� � � � � ��� � � �
�
��� � ��� � � � � �

.
First,

�
�
��� �

is found to be ambiguous as it has
������� �

and
� � � � � as conflicting signatures.�

�
��� �

is thus added to � and
� �

�
��� � � � ������� � ��� � � � � � � to result. Then,

� � ��� �
is

found to be ambiguous, with
� � ��� �

and
�

�
��� �

as conflicting signatures.
� � ��� �

is thus

RR n2590

14 E. Amiel & E. Dujardin

Disambiguation algorithm
input: a set of methods �
output: a list �������	��
 of 2-tuples (disambiguation signature,conflicting signatures)

Step 1: Computation of the Ordered Pole Signatures��

signatures(�) ; /* method signatures */�

OrderedPoleSignatures(

�
) ;

Step 2: Computation of �������� with explanations
�
�� ; /* disambiguation signatures */
�������	��

�� ;

for � in
�

do����� �!
#"%$'&)(�+* "
,* &	- (��. � / �) ;
if 0 �����1� 032 1 then /* � is ambiguous in

� / � */
insert � into � ;
add (�4. ����� �) to �'���5�6��
 ;

return(�������	��
) ;

Figure 5: Disambiguation Algorithm

added to � and
� � � ��� � � � � � ��� � ���

�
��� � � � to result, which is then returned as the

minimal disambiguation set with associated explanations. (
Note that the algorithm is also applicable to languages that use implicit disambiguation to

solve multiple inheritance ambiguities, but leave multiple dispatching ambiguities to explicit
disambiguation. The only requirement is that the method ordering be monotonous. This
unfortunately rules out Dylan [App94].

Finally, in testing pole signatures for ambiguity, the disambiguation algorithm can also
fill the dispatch table of the generic function, presented in [AGS94]. Indeed, the dispatch
table stores the MSA method of all pole signatures: if

$ � �	� � � $�
 � � � yields a singleton set,
then the single element is the signature of the MSA method.

5 Implementation And Complexity

5.1 Ordering the Pole Signatures

Ordering the pole signatures in an order that is compatible with argument subtype prece-
dence comes down to turning a partially ordered set into a linear list. A classical algorithm
is given in [Knu73]. The basic idea is to pick as first element one that has no predecessor,
remove this element from the original set to append it to the originally empty list, and start
over until no elements are left. In the case of pole signatures, it is necessary to scan the
set of pole signatures to find that a given signature has no predecessor. Hence, ordering
the pole signatures has a complexity of 7 � � � � � ��� � � 2 � .

INRIA

Supporting Explicit Disambiguation of Multi-Methods 15

However, it is possible to obtain a complexity of 7 � � � � � ��� � � � if the poles of each
argument position,

� � � �
� , are themselves sorted in an order compatible with argument
subtype precedence. Indeed, it is easy to show that it suffices to produce the signatures in
the lexicographic ordering generated by the total orders on the poles.

Example 5.1 : The table in Figure 6 represents the pole signatures of the methods and types
of Figure 4. The order on 1-poles (resp. 2-poles) in lines (resp. columns) is compatible with
argument subtype precedence. A total order of

� � � ��� � is a path through this table. Such
a path is compatible with argument subtype precedence, if it traverses each signature

�

before the signatures on the right and below
�
. The path given by a lexicographic ordering,

as shown in Figure 6 satisfies the condition. For example, the signatures that are more
specific than

� � � � � are all included in the grayed area. (
� � � � 	

�

Figure 6: Order of Pole Signatures

5.2 Computing the Conflicting Signatures

The computation of the conflicting signatures consists in finding the most specific applicable
signatures. In the case of a totally ordered set, there is a single smallest element, and the
cost to find it is linear in the number of elements of the set. Unfortunately, signatures are
only partially ordered, increasing the complexity to the square of the number of signatures
to compare. As

�
 � ��

� is a superset of the set of applicable signatures, the worst-case
complexity of

$ � �	� � � $�
 � � � is 7 � � �
 � � 2 � . However, this complexity can be lowered when
there is no ambiguity, i.e. there is a single most specific applicable signature.

The basic idea of our optimization is to store
�
 � in a total order � . To compute$ � �	� � � $�
 � � � � �����
 � �

, the signatures in
�
 � are examined in the order � starting from

the smallest, i.e. most specific signatures. If there is a single MSA
� � , then it is the first

signature
� � applicable to

�
. Moreover, a single loop over the ordered

�
 � is enough
to prove it, bringing the complexity down to 7 � � �
 � �). Indeed, if there is a single MSA
method

� � , we have :

� � ��� � �
 � � � ���
 � � � ���
 � � � � ����� � � �

RR n2590

16 E. Amiel & E. Dujardin

On the other hand, if the iteration finds another applicable signature that is not more
generic than

� � , then
�

is ambiguous and the complexity is 7 � � �
 � � 2 � .
Example 5.2 : Assume a new method � 4

� � ��� � is added to the schema of Figure 4, so that
�

is now a 2-pole. Assume that
�

�
��� �

and
� � ��� �

have already been found to be ambi-
guous and added to � . Signature

�
�
��� �

must now be tested for ambiguity. Using the lexico-
graphic order represented in Figure 6 to sort

�
 � yields
��� � ��� � ��� � ��� � � �

�
��� � ��� � ��� � �

������� � ��� � � � � � . The first signature applicable to
�

�
��� �

is
�

�
��� �

and no following signa-
tures is more generic than it. Hence

�
�
��� �

is not ambiguous. On the other hand, when� � ��� �
is tested for ambiguity,

� � ��� � , then
� � ��� �

are found to be applicable to
� � ��� �

, and� � ��� ���� � � ��� � . Hence
� � ��� �

is ambiguous (
$ � �	� � � $
 � � � � � � ��� � �
� � � � ��� � � � � ��� � �). (

6 Future Work

Three issues are worth future investigation: detecting ambiguous invocations, mixing me-
thod addition with method selection and incremental disambiguation.

Detection of Ambiguous Invocations

In some languages like C++ [ES92] or Cecil [Cha93], ambiguities are checked on a per
invocation basis, and not at the method level. The question asked is: does the program
contain an actual (compile time) or potential (run-time) ambiguous invocation ? Disambi-
guating on a per invocation basis is a lengthy and costly process as it involves testing every
run-time signature of every invocation for ambiguity, i.e. determining whether there is a
single MSA method or multiple conflicting MSA methods for that signature. To speed up
this process, pole signatures can be used and in particular, the dispatch table scheme des-
cribed in [AGS94]. It consists in using tables to efficiently map the set of run-time signatures
to the much smaller set of pole signatures. The MSA method of each pole signature can
be quickly fetched by an array access to the dispatch table. If there are multiple conflicting
methods for some pole signatures, this can be indicated in the dispatch table.

Mixing Method Addition and Method Selection

Another interesting research direction consists in studying how disambiguation by method
selection can be mixed with disambiguation by method addition. Indeed, whenever the
disambiguation algorithm finds the first ambiguous signature

�
, it could pause and ask the

programmer to choose between two alternatives: add a new method with signature
�

or
add a method selection clause, saying “select method �
 for signature

�
”, where �
 is one

of the conflicting methods. This is especially relevant in the case where the new method
only serves as a forwarder to one of the conflicting methods. The algorithm would then
look for the next ambiguous signature. Interestingly, choosing method selection instead
of method addition is not indifferent: adding a method selection clause can actually solve

INRIA

Supporting Explicit Disambiguation of Multi-Methods 17

more ambiguities and lead to a smaller set of ambiguous signatures depending on which
conflicting method is chosen.

�� �� ��� � ���

�� � � ���

� 1(
�
)

� 2(�)
� 3(�) � �

��

�
Figure 7: Conflicting Method Selection

Example 6.1 : Consider the schema in Figure 7. In the case of disambiguation by method
addition, two disambiguation methods � �

�
�

and � � � �
must be added. The conflicting

signatures for
� � �

are
� � � and

�
�
�
. Assume that instead, a selection clause is added

when finding ambiguous signature
�

�
�
. If the user selects � 1

�����
for

�
�
�
, � 2

� � � cannot
be selected for � � � �

because of the monotonicity property [DHHM92]. The applicable
methods for � � � �

are then � 1
�����

and � 3
� � � , and the latter being more specific than

the former, � � � �
is not ambiguous as in the case of method addition. Note that

� � �
is

ambiguous if the programmer selects � 2
� � � for

�
�
�
. (

Incremental Disambiguation

As the type hierarchy and the methods may evolve, especially during application develop-
ment, it is interesting to investigate if it is possible to compute the minimal disambiguation
set based on the evolution operations performed on the type hierarchy and methods.

7 Conclusion

In this report, we addressed the problem of supporting programmers in the task of explicitly
disambiguating multi-methods by method addition. This process involves finding a set of
disambiguating methods as small as possible. We proved that there always exists a single
minimal disambiguation set, and proposed an algorithm to compute it. This algorithm is
efficient in that it avoids testing all possible invocations for ambiguity, examining instead a
much smaller set of signatures, the pole signatures. Moreover, this algorithm associates
to each disambiguating method the set of conflicting signatures that caused the ambiguity.
This provides explanations and allows implementation of a disambiguating method as a
forwarder to one of the conflicting methods.

Future work involves extending the algorithm to allow explicit disambiguation by mixing
method addition with method selection. Moreover, pole signatures can be used to optimize
checking ambiguities on a per invocation basis. Finally, we are interested in studying the

RR n2590

18 E. Amiel & E. Dujardin

relationship between the minimal disambiguation set and evolution operations on the type
hierarchy and methods.

Acknowledgments: We would like to thank Eric Simon and Marie-Jo Bellosta for their
insightful comments on earlier versions of this report.

References

[ABC � 93] O. Agesen, L. Bak, C. Chambers, B.-W. Chang, U. Hölzle, J. Maloney, R. B.
Smith, D. Ungar, and M. Wolcsko. The Self 3.0 Programmer’s Reference
Manual. Sun Microsystems and Stanford University, 1993. Available by ftp
from self.stanford.edu as /pub/Self-3.0/manuals/progRef.ps.gz.

[ABGO93] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model with
roles. In Proc. Intl. Conf. on Very Large Data Bases, 1993.

[ADL91] R. Agrawal, L. G. DeMichiel, and B. G. Lindsay. Static type checking of multi-
methods. In Proc. OOPSLA, 1991.

[AGS94] E. Amiel, O. Gruber, and E. Simon. Optimizing multi-methods dispatch using
compressed dispatch tables. In Proc. OOPSLA, 1994.

[App94] Apple Computer. Dylan Interim Reference Manual, June 1994. Available by ftp
from ftp.cambridge.apple.com in /pub/dylan/dylan-manual.

[BDG � 88] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. Keene, G. Kiczales, and D. A.
Moon. Common Lisp Object System specification. SIGPLAN Notices, 23, Sept.
1988.

[BI82] A. H. Borning and D. H. H. Ingalls. Multiple inheritance in Smalltalk-80. In Proc.
AAAI, 1982.

[BKK � 86] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik, and F. Zdybel. Com-
monLoops: Merging Lisp and object-oriented programming. In Proc. OOPSLA,
1986.

[BKKK87] J. Banerjee, W. Kim, H.J. Kim, and H. F. Korth. Semantics and implementation
of schema evolution in object-oriented databases. In Proc. ACM SIGMOD Intl.
Conf. on Management Of Data, 1987.

[CBLL82] G. Curry, L. Baer, D. Lipkie, and B. Lee. Traits : An approach to multiple-
inheritance subclassing. In Proc. ACM SIGOA Conference on Office Automation
Systems, 1982.

INRIA

Supporting Explicit Disambiguation of Multi-Methods 19

[CG90] B. Carré and J.-M. Geib. The point of view notion for multiple inheritance. In
Proc. ECOOP/OOPSLA, 1990.

[Cha92] C. Chambers. Object-oriented multi-methods in Cecil. In Proc. ECOOP, 1992.

[Cha93] C. Chambers. The Cecil language, specification and rationale. Technical Report
93-03-05, Dept of Computer Science and Engineering, FR-35, University of
Washington, March 1993.

[CUCH91] C. Chambers, D. Ungar, B.-W. Chang, and U. Hoelzle. Parents are shared
parts of objects : inheritance and encapsulation in SELF. Lisp and Symbolic
Computation, 4(3), 1991.

[DCL � 93] L. G. DeMichiel, D. D. Chamberlin, B. G. Lindsay, R. Agrawal, and M. Arya.
Polyglot: Extensions to relational databases for sharable types and functions in
a multi-language environment. In Proc. Intl. Conf. on Data Engineering, 1993.

[DH89] R. Ducournau and M. Habib. La multiplicité de l’héritage dans les langages à
objets. Technique et Science Informatiques, January 1989.

[DHHM92] R. Ducournau, M. Habib, M. Huchard, and M.L. Mugnier. Monotonic conflict
resolution mechanisms for inheritance. In Proc. OOPSLA, 1992.

[DHHM94] R. Ducournau, M. Habib, M. Huchard, and M.L. Mugnier. Proposal for a mono-
tonic multiple inheritance linearization. In Proc. OOPSLA, 1994.

[DS92] S. Danforth and E. Simon. The Next Generation of Information Systems -
from Data to Knowledge, chapter A Data and Operation Model for Advanced
Database Systems. Springer Verlag, 1992.

[ES92] M. A. Ellis and B. Stroustrup. The annotated C++ reference manual. Addison-
Wesley, Reading, Mass., 1992.

[Knu73] D. Knuth. The Art of Computer Programming, Fundamental Algorithms, Second
Edition. Addison-Wesley, 1973.

[LR89] C. Lecluse and P. Richard. Manipulation of structured values in object-oriented
databases. In Proc. Intl. Workshop on Database Programming Languages,
1989.

[Mey92] B. Meyer. EIFFEL : The Language. Prentice Hall Intl., 1992.

[MHH91] W. B. Mugridge, J. Hamer, and J. G. Hosking. Multi-methods in a statically-typed
programming language. In Proc. ECOOP, 1991.

[Moo86] D. A. Moon. Object-oriented programming with Flavors. In Proc. OOPSLA,
1986.

RR n2590

20 E. Amiel & E. Dujardin

[O292] O2 Technology. The O2 User’s Manual, 1992.

[SB86] M. Stefik and D. G. Bobrow. Object-oriented programming: Themes and varia-
tions. The AI Magazine, 6(4), 1986.

[SCB � 86] C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpot. An introduction to
Trellis/Owl. In Proc. OOPSLA, 1986.

[Se393] Self 3.0 - about this release. Available by ftp from self.stanford.edu as
/pub/Self3.0/manuals/aboutThisRelease.ps.gz, 1993.

[Sny86a] A. Snyder. CommonObjects : An overview. Sigplan Notices, 21(10), 1986.

[Sny86b] A. Snyder. Encapsulation and inheritance in object-oriented programming lan-
guages. In Proc. OOPSLA, 1986.

8 Appendices

A Proof of Theorem 1

We first introduce the following definition :

Well-typed signatures. � � � � - � !"� ����� � �
� � � � � � � 	 � � � 1
������� � � � s.t.

� � � � �
To prove Theorem 1, we start from a slightly different definition of the sequence

� � � � ,
as follows :

� � � � 1
� � ��� � � � � � � � � -� !"� ��� � � � $ � �	� � � $
 � � � � ��� � � 1

������� � � � � � ��� 1 �
� � ��� � ,

� � � 1
� � ��� � � � � � � � � -� !"� ��� � � � � � �

and � $ � �	� � � $�
 � � � � ��� � � 1
������� � � � � � ��� 1 �

In this definition, we take � � � ��� � � � in � � � � -� !"� � � � instead of
� � � ��� � . We use this

definition to prove that
� � � � is finite and that it is the smallest disambiguation set. Then we

prove that it is included in
� � � ��� � , which shows that both definitions of

� � � � are equivalent.

A.1 Finiteness

To prove that � � � � � ��� � is finite, it suffices to remark that it is included in � �
, which is

finite. For the rest of the report, � the index of the last element of the sequence
� � � � .

INRIA

Supporting Explicit Disambiguation of Multi-Methods 21

A.2 Lemma

This lemma basically expresses that the way � ��

� is built “does not leave ambiguous
signatures behind” :

Lemma 8.1 � � � � � + 1
������� � � � ��� � � � � � � - � !"� � � � s.t.

�
is ambiguous w.r.t. � � 1

������� � � � �
and

� � � � �
Proof : Let � � � and

� � � � � � -� !"� � � � . We assume that
�

is ambiguous w.r.t. � � 1
������� � � � �

and
� � � � . In the following, we prove that

� � � � 1
������� � � � � , to conclude that the assumption

is false.
We have � $ � �	� � � $�
 � � � � ��� � � 1

������� � � � � � ��� 1, i.e. � ��� � � � � � ��� � � and
� �
 � ����� 1. Ob-

viously the members of this minimum are strictly more generic than
�
, hence � � � � � � � � ��� � �

and
� � � � � ��� 1. Let us consider � � � � ����� � � and

� � � � � . Two cases may occur :

� � � � � ����� � � and
� � � � � ��� , which implies that

� � � � � 1.

We show that
�

is ambiguous w.r.t.
�

. � being compatible with � ,
� � s.t. � �	� ���

and
� � � �

. Hence the members of
$ � �	� � � $�
 � � � � ��� � � 1

������� � � � � � are in
�

, i.e.
�

is
ambiguous w.r.t.

�
.

From
� � � � � 1 and the construction of

� � � 1, it follows that
� � � � � 1.

� � � � � � �
� � � and
� � � � � � ��� : let � � � � ����� ������� ��� � � and

� � � � � . � � � � � since� � � � � � � � � �
�
. Thus

� � � � 1 exists, and
� � � � � � � � � � 1.

We show that
�

is ambiguous w.r.t. � � 1
������� � � � � � . � being compatible with � ,

� �
s.t. � � ��� and

� � � �
. Hence the members of

$ � �	� � � $�
 � � � � � � � � 1
������� � � � � � are in

� � 1
������� � � � � � , i.e.

�
is ambiguous w.r.t. � � 1

������� � � � � � .

By construction of
� � � � 1, follows that

� � � � � � 1.

Hence
� � � � 1

������� � � � � , which implies that
�

in not ambiguous w.r.t. this set, in contra-
diction with the assumption. This concludes the proof of Lemma 8.1.

A.3 � ��

� is a Disambiguation Set

To prove that � ��
�� is a disambiguation set, let us assume the existence of
� � � � � � -� !"� � � �

ambiguous w.r.t.
�
 � ��
�� . We show that

� � ���
, and then we apply Lemma 8.1 to conclude

that the assumption is false.

If
�
� � �

we have � � � � � � � � -� !"� � � � � �
� � � �
and � $ � �	� � � $�
 � � � � � � � � � 1

������� � �
� � � ��� 1 � ����
, i.e.

� �
� 1 exists, in contradiction with the construction of � . Thus

� � ���
.

As a consequence,
�

is ambiguous w.r.t. � � 1
������� � ��� � and

� � ���
, in contradiction with

Lemma 8.1. Hence
�
 � ��

� is not ambiguous, and � ��

� is a disambiguation set.

RR n2590

22 E. Amiel & E. Dujardin

A.4 � ��

� is the Smallest Disambiguation Set

We prove that � ��
�� is included in every disambiguation set.

Let � ���� � 1

������� � ���� � be a disambiguation set. For convenience, we note that for all � ,
� � � ,

���� � � � . Thus, � ���1
������� � ���� � is not ambiguous. We prove by induction on � , that

� � � � � � 1
������� � � � � � � 1

������� � � � ��� � ���1
������� � ���� � . This induction hypothesis obviously holds

for � � 1 ������� � � by construction of
� ���� � ���	� 1
������
 ��
 .

Assuming it is true for some � � � , we take � such that � ���� � �%$ � �	� � � $�
 � � � � � � � 1
� � ���1

������� � ���� � � .���� is unique because � ���1
������� � ���� � is not ambiguous. Let us show that

���� � � � � 1. We first
show that

���� � � � � � 1
� ���� is ambiguous w.r.t. � � 1

������� � � � � 1 � , then we apply Lemma 8.1.

By construction of
� � � 1, � ��� � � � � � ��� � � and

� �
 � � � 1 ��� � 1. From the induction
hypothesis, the elements of this minimum are in � ���1

������� � ���� � . By construction of
���� , they

are strictly more generic than
���� (were one of them equal to

���� , it would be the single most
specific signature). Hence

� �� is also ambiguous w.r.t. � � 1
������� � � � � .

Note that this last implication does not hold if the precedence ordering of methods is not
monotonous. Argument subtype precedence is monotonous, because the ordering is � ,
the same w.r.t. all signatures.

Let us assume that
���� � � � � 1 :

� � � 1 is not applicable to
���� , hence

���� is ambiguous w.r.t.
� � 1

������� � � � � 1 � . As
���� � � � � 1, we apply Lemma 8.1 to show that this assumption is false.

Finally
����
 � � � 1 and

���� �� � � � 1 implies
���� � � � � 1, thus � � 1

������� � � � � 1 ��� � ���1
������� � ���� � ,

which concludes our proof.

A.5 � ��

� is Made of Poles

We first recall some results mainly introduced in [AGS94].

Influence of a Pole. For all � in � 1
������� ��� � , and all

���
in
� � � �
� ,

� �	� � ����� $ �
� ��� � � � � � � � � � � � �
and � � �� � � � � �
� ��� �� � ��

or
� � � � �� � �

Ith Dynamic Argument. � ! � � ��� $
� � � ��� ��� 	 � � � 1
������� � � � s.t.

� � �
� �
Note that � ��� 1 ������� ����� � � � � � � -� !"� ��� � � � � � � 1

������� ��� � ����
 �
� ! � � ��� $
� .

Theorem 2 Let � � 1� ������� ������ � be
� � � �
� . Then � � �	� � ����� $ �
�

(
� 1�) ������� �����	� � ����� $ �
�

(
����
) �

is a partition of � ! � � � � $
� .

The latter theorem allows to define the following functions :

Pole of a Type, Poles of a Signature. For all � in � 1
������� ��� � , all

�
in � ! � � � � $
� , and all��� 1 ������� ��� � �

in � � � � -� !"� � � � , we define :

��� � �"
� �����
��� � � s.t.
� � � � � � �"
� and

��� � �	� � ����� $ �"
� ��� � �
��� � � � � ��� 1 ������� ��� � � �
��� � � � � 1� ��� 1 � ������� � ��� � � �� ��� � � �

INRIA

Supporting Explicit Disambiguation of Multi-Methods 23

We also introduce the following lemma :

Lemma 8.2 � � � � � � � -� !"� � � � � � � � � � � � ��� � � � �
 � � � �
 ��� � � � (�) �
Proof : Let

� ����� 1 ������� ��� � � � � � � � -� ! � � � � ,
� � � � � � � � � ��� ����� 1� ������� ��� �� �

, and
� � � � � � ��� � � � � ����� 1 ������� ��� � �

.
Let us show that � � � � 1

������� ��� � � �
 � � � � �"
� ���
 � .
Let � � � 1

������� ��� � . We have
�

 �

because
� �
 �

.

From the definition of
� �	� � ����� $ �
�

, as
�
 � � �	� � ����� $ �
� ���
� �

,
�
 � � � � �
� , and

�
 � �

,

we have
� � � �

. Thus
� � � � �

, which concludes the proof of Lemma 8.2.

To show that � ��
�� � � � � ��� � , we prove by induction that � � � � � � � 1
������� � � � � � � � � ��� � .

This is true for � � � from the definitions of an � -pole and of
� � � ��� � , because

�
1
������� � � � are

the signatures of � 1
������� � � � .

Assuming the induction hypothesis holds for some � � � , we show that
� � � 1

� � � � ��� � ,
by proving that

� � � 1
� ��� � � � � � � � 1

�
.

Let
� � � � 1 be ��� � � � � � � � 1

�
. We show that

� � � � 1

� � � � 1
� � � � � 1 is ambiguous w.r.t.

� � 1
������� � � � � 1 � � , then we apply Lemma 8.1.

By construction of
� � � 1, we have � � � � � � � � � � � � and

� �
 � � � 1 ����� 1. By the induction
hypothesis, these signatures of

$ � �	� � � $�
 � � � � � � � 1
� � � 1

������� � � � � � are in
� � � ��� � . From Lemma

8.2, they are strictly more generic than
� � � � 1 (were one of them equal to

� � � � 1, it would be the
single most specific signature). Hence

� � � � 1 is ambiguous w.r.t. � � 1
������� � � � � . As above, this

last implication does not hold if the precedence ordering of methods is not monotonous.

Let us assume that
� � � � 1

� � � � 1 :
� � � 1 is not applicable to

� � � � 1, hence
� � � � 1 is ambiguous

w.r.t. � � 1
������� � � � � 1 � . Moreover

� � � � 1 � � � � 1, hence we can apply Lemma 8.1 to show that
this assumption is false.

From
� � � � 1

 � � � 1 and
� � � � 1

�� � � � 1, it follows that
� � � � 1

� � � � 1, thus � � 1
������� � � � � 1 � �� � � ��� � . This concludes our proof.

RR n2590

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

