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Abstract: It is argued that refinement, in which I/O signatures stay the same, precondition
weakened and postconditions strengthened, is too restrictive to describe all but a fraction of
realistic developments. An alternative notion is proposed called retrenchment, which a
information to migrate between I/O and state aspects of operations at different leve
abstraction, and which allows only a fraction of the high level behaviour to be captured at the
level. This permits more of the informal aspects of design to be formally captured and che
The details are worked out for the B-Method.

1 Idealised and Realistic Modelling: The Inadequacy of
Pure Refinement

Like all good examples of terminology, the word “refinement” is far too evocative
its use ever to have been confined to exactly one concept. Even within the formal m
ods community, the word is used in at least two distinct senses. The first is a strict s
An operationOC is a refinement of an operationOA iff the precondition ofOC is weaker
than the precondition ofOA and the relation ofOC is less nondeterministic than the re
lation of OA . The well known refinement calculus [Back (1981), Back (1988), Ba
and von Wright (1989), von Wright (1994), Morris (1987), Morgan (1990)] captur
this in a formal system within which one can calculate precisely.

However there is a second, much less strict use of the word. In formalisms such as
VDM [Spivey (1993), Hayes (1993), Jones (1990), Jones and Shaw (1990)], req
ments are frequently captured at a high level of abstraction, often involving for insta
divinenatural numbers ordivinereal numbers1, and neglecting whole rafts of detail no
appropriate to a high level view, in order that the reader of the high level descrip
“can see the wood for the trees”. Such descriptions are then “refined” to lower le
of abstraction where the missing details are filled in, typically yielding longer, more
tuous and much less transparent but much more realistic definitions of the syste
question. Indeed the complexity of such descriptions can often be comparable
greater than that of their implementations, a fact cited by detractors of formal met
as undermining the value of formal methods themselves, though this seems to us
like denigrating stereoscopic vision because the image seen by the left eye is of co
rable complexity to that seen by the right.

In truth the world is a complex place and developing descriptions of some part of
two distinct but reconcilable formalisms (the specification and implementation), ra

1. By divinenaturals, integers or reals, we mean the natural numbers, integers or real n
bers that God made, abstract and infinite, in contrast to the finite discrete approximat
that we are able to implement on any real world system. The latter we callmundanenatural
numbers, integers or real numbers.
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than just one, is always likely to help rather than hinder, even if the “more abstract”
scription is not significantly simpler than the other. (For an entertaining example o
undue weight attatched to the brevity of descriptions see Fig. 16.2 of [Wand and M
(1996)].)

In this paper we address the main problem posed by the second use of the “refine
word, namely that there is not a refinement relationship in the strict sense betwee
idealised high level specification, and the “real” but lower level specification. We w
use the B framework throughout the paper, but will frequently pretend that B cont
many more liberal types, à la Z or VDM , than it actually does. For instance we
assume available to us divine types such asD-NAT , D-INT , D-REAL as well as their
mundane counterpartsM-NAT , M-INT , M-FLOAT ; we can identifyM-NAT with the
normal B type ofNAT .

Let us illustrate with a small example, namely addition. In negotiating the requirem
for a proprietary operation with a customer we might write:

MACHINE My_Divine_Machine
VARIABLES aa , bb , cc
INVARIANT aa ∈ D-NAT ∧ bb ∈ D-NAT ∧ cc ∈ D-NAT

… …
OPERATIONS

MyPlus  =̂ cc := aa + bb ;
… …

In D-NAT , the + operation is the familiar one given by (say) the Peano axioms for
dition, and is an ideal and infinite operation, makingMyPlusequally ideal, but allowing
us to see the essence of what is required. Having assured ourselves and the cu
that we were on the right lines, we would want to describe more precisely what we c
achieve, writing say:

MACHINE My_Mundane_Machine
… …

VARIABLES aaa , bbb , ccc
INVARIANT aaa∈ M-NAT ∧ bbb∈ M-NAT ∧ ccc∈ M-NAT

… …
OPERATIONS

resp←— MyPlus  =̂
IF

aaa + bbb≤ MaxNum
THEN

ccc := aaa + bbb ||
resp := TRUE

ELSE
resp := FALSE

END ;
… …

My_Mundane_Machinecould never be a refinement ofMy_Divine_Machine. Partly
this is for trivial syntactic reasons, eg. we would have to write REFINEMEN
My_Mundane_MachineREFINESMy_Divine_Machine…. Apart from that, there are
three further important issues. Firstly the INVARIANT of the more concrete mach
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does not contain any refinement relation that would relate the abstract and concrete
ables.  This could easily be fixed if we were to write in the concrete INVARIANT s

INVARIANT aaa∈ M-NAT ∧ bbb∈ M-NAT ∧ ccc∈ M-NAT ∧
aa = aaa∧ bb = bbb∧ cc = ccc

assuming the obvious theory that allowed the identification of the mundane natura
a subset of the divine ones. Secondly the signatures ofMyPlusin the two machines are
different; this is not allowed in normal notions of refinement. Thirdly, since not all
vine naturals are refined to mundane ones, the standard proof obligation of refine

PAA,C ∧ INVA ∧ INVC ∧ trm(MyPlusA)
⇒ trm(MyPlusC) ∧ [MyPlusC] ¬ [MyPlusA] ¬ INVC

cannot possibly be satisfied, as theaaa+ bbb> MaxNumsituation yields incompatible
answers in the divine and mundane cases. (In the preceding the A and C subscript
to abstract and concrete respectively,trm(S) is the predicate under which operationSis
guaranteed to terminate, andPAA,C is the usual collection of clauses about the param
ters and constants of the two machines).

The latter two reasons in particular show that the primary motivation for classica
finement, i.e. that the user should not be able to tell the difference between usin
abstract or concrete version of an operation, does not hold sway here. What we a
ing is adding real world detail to a description in a disciplined manner in order to
understandability, not performing an implementation sleight of hand that we do no
tend the user to notice.

Sometimes the process of adding detail can nevertheless be captured, albeit perh
elegantly, within the classical notion of refinement. For example the following wo
be a valid refinement ifD-NAT were a valid type in B:

MACHINE Your_Divine_Machine
VARIABLES aa , bb , cc
INVARIANT aa ∈ D-NAT ∧ bb ∈ D-NAT ∧ cc ∈ D-NAT

… …
OPERATIONS

YourPlus  =̂ cc := aa + bb [] skip  ;
… …

END

REFINEMENT Your_Mundane_Machine
REFINES Your_Divine_Machine

… …
VARIABLES aaa , bbb , ccc
INVARIANT aaa∈ M-NAT ∧ bbb∈ M-NAT ∧ ccc∈ M-NAT ∧

aa = aaa∧ bb = bbb∧ cc = ccc
… …

OPERATIONS
YourPlus  =̂

IF
aaa + bbb≤ MaxNum

THEN
ccc := aaa + bbb
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END ;
… …

END

Thus as long as the extra detail is hidden at the lower level, one can conceal a c
amount of low level enrichment by specifyingskipas the whole or an optional part o
the higher level definition. This is frequently done in B when what one really want
do is to give a detailed description at (say) the implementation level, but one neve
less needs a specification of one sort or another because the B method always de
a machine at the top level of a development. Under such circumstances one writeskip
at the top level (usually omitting to define any abstract variables too), relying on the
that any operation (whose effect on the concrete variables does not entail any v
consequences on the abstract variables via the refinement invariant) refines it. In
one simply avoids the issue.

However we argue that such uses ofskip , though technically neat where they can a
complish what is desired, are somewhat misleading. They mix concerns in the fol
ing sense. The job of the abstract specification is to set out the idealised mod
clearly as possible. Matters are therefore not helped by occurences here and th
skip , whose purpose is to mediate between the abstract model and concrete mo
order that the relationship between them should be a refinement in the strict sens
fact theskipis signalling that the relationship between the abstract and concrete mo
is notone of pure refinement, but something more intricate. And thus a cleaner de
strategy would place the data that described this relationship in an appropriate pos
rather than clog up the abstract model withskips.

Situations much more involved than either of the above can arise routinely in the d
opment of certain types of critical system; in particular if the system in question m
model phenomena described in the real world by continuous mathematics. In such
es, system construction may well be founded upon a vast aggregate of conven
mathematics, perhaps supported by semiempirical considerations, and having an
racy requirement for calculations measured in percent rather than in terms of the
embedding ofM-FLOAT in D-REAL . In such cases, the derivation of the discre
model actually cast in software from the original high level model, is a complex proc
of reasoning steps, some more precise than others, and all in principle belonging
safety case for the implemented system, as justification for the purported validity
range of applicability of the low level discrete model. In these cases, current refinem
technology cannot speak about any but the last step or two, as the premise on wh
is founded, namely that the user should not be able to tell if it is the abstract or con
version of a system that he is using, is neither applicable nor relevant to most of the
tification.

The use ofskipto circumvent the gap between levels of abstraction is even less conv
ing than previously when starting from a continuous model. Suppose one is mode
Newton’s Second Law, which equates acceleration with force divided by mass. Ne
did not state “a := f / m [] skip” or anything similar, and the interpolation ofskips in the
statement of such continuous laws for the purposes stated is particularly unattra
and intrusive.

And yet it is very unsatisfying to say that the corroboration that formal methods can
fer in critical developments should be abandoned in such cases because the nature
reasoning involved is “out of scope” of the conventional notion of refinement. Ra
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we should look to enrich what we might accomplish by “refinement-like” concepts
the hope of bringing more useful engineering within the remit of formal methods.
the pressure to include software in more and more critical systems increases, an
pressure to verify such systems mechanically against state of the art methodolog
creases too, the market for such enrichments can only grow. Our conclusion then i
there is an identifiable need to search for more flexible ways of “refining” abstrac
quirements into implementable specifications. In Section 2 we introduce a libera
tion of refinement, retrenchment, as a step in this direction. Section 3 makes
proposal more precise by discussing the incorporation of retrenchment in the B-M
od, while Section 4 looks at scenarios involving the passage from continuous to dis
mathematics, scenarios that are gaining importance in the serious application of fo
methods to real world safety critical systems; places indeed where the notion o
trenchment is particularly likely to prove useful.  Section 5 concludes.

2 Retrenchment

A refinement as everyone knows, weakens the precondition and strengthens the
condition of an operation. Since an operation is specified by a precondition/postco
tion pair, to go beyond refinement to relate an abstract operationOA and a concrete
operationOC , either the precondition ofOC must be stronger than or unrelated to th
precondition ofOA , or the postcondition ofOC must be weaker than or unrelated to th
postcondition ofOA , or both.  There are no other possibilities.

Retrenchment is, very loosely speaking, the strengthening of the precondition an
weakening of the postcondition though technically it’s more subtle than that. Th
like the opposite of refinement, except that we avail ourselves of the opportunity to
eralise the connection between abstract and concrete operations even more widel
instance not only will we allow changes of data type in the state component of an o
ation, we will also allow flexibility in the input and output components. Thus we allo
inputs and outputs to change representation between abstract and concrete oper
and moreover we allow information to drift between I/O and state aspects during
trenchment. Thus some data that was most conveniently viewed as part of the in
the abstract level say, might be best recast as partly input data and partly state at a
concrete level, or vice versa. Similar things might occur on the output side. This gre
flexibility in involving properties of the inputs and outputs in the relation between v
sions of an operation, gives more leeway for building realistic but complex specifi
tions of real systems out of oversimplified but more comprehensible subsystems.

These things go way beyond what is conceivable in refinement. Correspondingly
usual way of controlling refinement, via a joint invariant, will be inadequate as a me
of expressing the properties of this more liberal situation. We will need to split up
“local invariant” and “retrieve relation” in the joint invariant, and a couple of extra pre
icates per operation, one for the before-aspect and one for the after-aspect, and
necessary to relate the two in a general manner, a means of declaring logical var
with both of these predicates as scope.  We see this in detail in the next section.

Of course this means that the litmus test of conventional refinement, that the corre
dence between states at different levels of abstraction, and the identity of the input
outputs of corresponding operation instances, can be extended to a similar corre
dence for sequences of operation applications, no longer applies if information ca
moved between the I/O and state aspects of an operation in a retrenchment. Whe
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a state of affairs holds, then there will usually be additional properties of histories o
two systems in question that are of interest in the overall understanding of the pro
being solved. These sequence-oriented properties might typically include livenes
other fairness properties [see eg. Abadi and Lamport (1991)]. We do not pursue
aspects in the present paper, any more than fairness properties are covered by c
tional formal methods of the model oriented kind, though further work may reveal
desirability of doing so.

It must be borne in mind that despite the similarities in the terminology in which i
phrased, the retrenchment technique proposed here is intended to be regarded in
tirely different light than conventional refinement. Refinement has as its objective a
of black box role. The user does not need to enquire into the contents of the refine
black box, and the mathematical soundness of the notion of refinement guarantee
he is never wrong-footed by not doing so, since the observable behaviour of a re
ment is always a possible behaviour of the abstraction. Retrenchment on the other
has as its objective very much a white box role. Retrenchment is a conscious dec
to solve a different problem, and this must always be a deliberate engineering dec
deemed acceptable under prevailing circumstances. We envisage that the ext
which any particular retrenchment step can be justified on entirely self-contained m
ematical grounds will very much vary from application to application; we imagine m
will not be able to be so justified without input from non-mathematically-derivable r
world considerations. (For example, mathematics canexpressthe fact that the mundane
naturals are finite, but it cannotderivethis fact from some convincingly self-evident ab
stract criteria.)

3 Incorporating Retrenchment in the B-Method

The B-Method [Abrial (1996), Lano and Haughton (1996), Wordsworth (1996)] is a
mantically well founded and structurally rich methodology for full-lifecycle form
software development. As such it provides an ideal framework into which to embed
retrenchment concept, since it already provides syntactic structure for expressing t
finement relation between specifications and implementations. Retrenchment will
a mild generalisation of this.

3.1 Syntax for Retrenchment

We propose the following outline syntax for retrenchment constructs where the sq
brackets indicate that LVARA is optional:

MACHINE Concrete_Machine_Name ( params )
RETRENCHES Abstract_Machine-or-Refinement_Name

… …
INVARIANT J
RETRIEVES G

… …
OPERATIONS

out ←— OpName ( in )  =̂
BEGIN T  [  LVAR A  ]  WITHIN P  CONCEDESC  END ;

… …
END
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In the above, we propose that the retrenchment construct be a MACHINE, as a retr
ment, being a decision to solve a new problem, should have a MACHINE as its top
statement. The RETRENCHES clause relates the retrenching machine to th
trenched construct that it remodels. We propose that the latter be either a MACH
or a REFINEMENT for maximum flexibility. The RETRENCHES clause is similar
the REFINES clause in standard B, in that it opens the retrenched construct and m
its contents visible in the retrenching machine for the purpose of building predicate
volving the contents of both. We assume that the name spaces of retrenching a
trenched constructs are disjoint aside from the operation names, which must adm
injection from operation names of the retrenched construct to operation names o
retrenching machine. (The reason we do not demand a bijection is that, given tha
wish to allow the retrenched construct to be a proper oversimplification of the retre
ing machine, there may well be operations of the retrenching machine that do not m
sense at the more abstract level of the retrenched construct. Such operations co
modelled at the abstract level by byskips of course, but we would just as soon not d
so. Having an injection instead of a bijection on operation names can lead to intere
repercussions at the level of simulation, as indicated below.)

The retrenching machine can be parameterised (in contrast to refinements), so the
STRAINTS clause of the retrenching machine becomes in principle a joint predicat
volving parameters of both retrenching and retrenched constructs if there is a ne
express a relationship between them.

Being a machine, we propose that all the familiar machine structuring facilities:
CLUDES, USES, SEES, PROMOTES, EXTENDS, are available to the retrenching
chine in the normal way. These aspects of machine construction are orthogonal
retrenching idea.

Like machines but unlike refinements, the INVARIANT clause of a retrenching m
chine is a predicate in the local state variables only. Joint properties of state vari
of both retrenching and retrenched constructs are held in the RETRIEVES claus
they need to be treated a little differently compared to refinements.

The main difference between ordinary machines and retrenching machines appe
the operations. We propose to call the body of an operation of a retrenching mach
ramified generalised substitution. A ramified generalised substitution BEGINT
LVAR A WITHIN P CONCEDESC END , consists of a generalised substitutionT as
for any normal operation, together with its ramification, which consists of the follo
ing: the LVAR A clause which can declare logical variablesA whose scope is both the
WITHIN P and CONCEDESC clauses; the WITHINP clause which is a predicate tha
defines the logical variablesA and can strengthen the precondition ofT by involving the
abstract state and input; and the CONCEDESC clause which is a predicate that ca
weaken the postcondition ofT by involving the abstract state and output and the logic
variablesA .

As mentioned in the previous section, global properties of system histories might
be expected to play a more significant role in a retrenchment than is usually the ca
a refinement. There may thus be good reason to include a “SIMULATIONΘ” clause
in a retrenchment construct, whereΘ describes a relationship between sets of sequen
of operations at the two levels of abstraction, and including where appropriate rela
ships between values of input and output for corresponding operation instances.
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ever in the general case, one might well have to incorporate properties of the sys
environment, and so we do not pursue such a possibility in this paper.

3.2 Proof Obligations for Retrenchment

In order to discuss the proof obligations for retrenchment in detail, consider the foll
ing two machines. For simplicity we will assume that these machines contain no
SERTIONS or DEFINITIONS which could be dealt with in the standard way.

MACHINE M ( a ) MACHINE N ( b )
RETRENCHES M

VARIABLES u VARIABLES v
INVARIANT I ( u ) INVARIANT J ( v )

RETRIEVES G ( u , v )
INITIALISATION X ( u ) INITIALISATION Y ( v )
OPERATIONS OPERATIONS

o ←— OpName ( i )  =̂ p←— OpName( j ) =̂
S ( u , i , o ) BEGIN

END T ( v , j , p )
LVAR

A
WITHIN

P ( i , j , u , v , A )
CONCEDES

C ( u , v , o , p , A )
END

END

For these machines there will be the usual machine existence proof obligations (u
one postpones them till machine instantiation time as in standard B). Moreover
point out that if the CONSTRAINTS clause of the retrenching machine is a joint pr
icate, then if there are a number of retrenchments and refinements in a developme
CONSTRAINTS proof obligations will grow to encompass all of them simultaneous
as∃x.P ∧ ∃x.Q ⇒/ ∃x.(P ∧ Q) ; i.e. the values that witness joint machine existence
two adjacent retrenchment steps need not be the same ones for the middle machin
do not foresee this as a major difficulty as a realistic development is unlikely to con
very many retrenchment steps.

There will be standard operation proof obligations viewing bothM andN as machines
in isolation. These include showing that the initialisationY establishesJ , i.e. that
PAN ⇒ [ Y(v) ] J(v) ; and thatOpNamein machineN preservesJ , disregarding the re-
trieve and ramifications inN , i.e. thatPAN ∧ J(v) ∧ trm(T(v, j, p)) ⇒ [ T(v, j, p) ] J(v)
. There is also a standard “refinement style” obligation to prove that both initialisat
establish the retrieve relationG , i.e. thatPAM,N ⇒ [ Y(v) ] ¬ [ X(u) ] ¬ G(u, v) .

The most interesting proof obligations are the retrenchment ones. For a typical ab
operationOpNamegiven abstractly bySand retrenched to a ramified operation give
by BEGINT … , this reads as follows.

PAM,N ∧ (I(u) ∧ G(u, v) ∧ J(v)) ∧ (trm(T(v, j, p)) ∧ P(i, j, u, v, A))
⇒ trm(S(u, i, o)) ∧ [ T(v, j, p) ] ¬ [ S(u, i, o) ] ¬

(G(u, v) ∨ C(u, v, o, p, A))
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We regard this statement as a definition of the semantics of retrenchment, as oppo
refinement where the corresponding statement in Section 1 supports a more abstra
mulation, based upon set transformer or relational inclusion etc., (see eg. Abrial (1
Chapter 11).  We base our definition on the following.

Let us reexamine refinement for a moment. In refinement, the objective is to ensur
the concrete system is able to emulate the abstract system, and in general there
a many-many relationship between the steps that the abstract and concrete syste
able to make such that this is true. In particular, whenever an abstract operation is
to make a terminating step, the corresponding concrete operation must be prepa
make a terminating step, which is the first conjunct of the refinement proof obligat
Furthermore, whenever a concrete operation actually makes a step, the result m
not incompatible with some step that the corresponding abstract operation could
made at that point. For this it is sufficient to exhibit for every concrete step, an ap
priate abstract step: the second conjunct. Thus the∀Conc-Op∃Abs-Op… structure of
the second conjunct comes from ensuring that no concrete step “does anything wr

Retrenchment is different since the abstract and concrete systems are definitely in
patible. The white box nature of retrenchment implies that the relationship betwee
stract and concrete systems should be viewed first and foremost as an enhancem
the description of the concrete system, for that is the purpose of retrenchment.
trenchment proof obligation ought to reflect this.

As before, there will in general be a many-many relationship between those step
the abstract and concrete systems are able to make, that we might want to regard
lated. Since in a retrenchment, it is the more concrete system that is considered
important, in the hypotheses of the proof obligation, it is the concretetrm condition for
an operation that is present. We strengthen this by the WITHIN clauseP to take into
account aspects arising from the abstract state, abstract and concrete inputs, and
low further fine tuning of the related before-configurations above and beyond that g
by the RETRIEVES clauseG , if required.

What then ought the conclusions of such a proof obligation to assert? Thetrm condition
for the corresponding abstract operation is the obvious first thing. And the obvious
ond thing would speak about results in related steps. For these we would requir
truth of the RETRIEVES clauseG , but weakened by the CONCEDES clauseC to take
into account aspects arising from the abstract state, abstract and concrete output,
allow deviations from strictly “refinement-like” behaviour to be expressed. We m
say which pairs of abstract and concrete after-configurations should be (G ∨ C )-related
in the proof obligation. The essentially arbitrary nature of the many-many relation
tween steps makes expressing it verbatim within the proof obligation impractical
certainly not mechanisable. We are left with the possibility of stating some stylised
relation of this relation, obvious candidates being subrelations of the form∀–∃–… of
which there are two possibilities to consider, namely∀Abs-Op∃Conc-Op(G ∨ C) and
∀Conc-Op∃Abs-Op(G ∨ C) .  We discuss these in turn.

If we take the∀Abs-Op∃Conc-Op(G ∨ C) form, we must consider four things. Firstly
this form makes the resulting proof obligation resemble a refinement from concre
abstract systems (aside fromP andC of course), taking us in a direction we do not in
tend to go. Secondly, the∀Abs-Oppart forces us to say something about all possib
abstract steps. There may be many of these that are quite irrelevant to the more d
tive concrete system, since the abstract system is intended to be merely a simpl
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guide to the concrete one; the necessity of mentioning them, or excluding them vi
P clause, would be an unwelcome complication. Thirdly, this form doesnot make us
say something about all possible concrete steps, limiting its usefulness as an enh
ment to the description of the concrete system. And fourthly, we have not identified
negative criterion that we must ensure the abstract system fulfils, as was the ca
concrete systems in refinement. All of these considerations mitigate against ado
the∀Abs-Op∃Conc-Op(G ∨ C) form.

So we turn to the∀Conc-Op∃Abs-Op(G ∨ C) form. Here we consider three points
Firstly, we are not required to say something about all abstract steps, which in vie
the remarks above we regard as beneficial. Secondly, we must say something ab
concrete steps, which helps to enhance the description of the concrete system
which we thus regard as good. In particular we must consider for any concrete
whether it is: (a), excluded from consideration becauseP is not validated; (b) included
but requires essential use ofC to satisfy the obligation; (c), included but does not requi
C . The third point follows on from (c): there may well be sensible portions of the st
and I/O spaces in whichP andC are trivial. In such places, when bothtrm clauses hold,
it will be possible to derive from the truth of the retrenchment obligation, the truth
the refinement obligation; this would tie in neatly with the joint initialisation proof o
ligationPAM,N ⇒ [ Y(v) ] ¬ [ X(u) ] ¬ G(u, v) mentioned above. Such a state of affair
supports our intention that retrenchment is regarded as a liberalisation of refinemen
it is like refinement “except round the edges”.

The heuristic reasoning above aimed to justify a proof obligation that is simple and
venient to mechanise and to use in real designs; and in the light of the preceding rem
we see that saying that retrenchment is merely a “the strengthening of the precon
and the weakening of the postcondition” is deceptively simplistic. The current lac
a more abstract underlying model for retrenchment is not regarded as a fundament
stacle to its usefulness, though such a model would clearly be of great interest. In
as the third point above indicated, we can expect at minimum, various special cas
retrenchment to lend themselves to deeper mathematical treatment. It might be
there is no “best” such theory and that increasing ingenuity will reveal increasin
complex special cases. The inevitable consequence of this would be, that treate
standalone fashion, the special cases would generate standalone proof obligation
increasingly complex and thus less practically convenient nature. Such an outc
would strongly support our strategy of defining retrenchment directly via a simple p
obligation.  These fascinating matters will be explored more fully elsewhere.

3.3 Composability of Retrenchments

We have deliberately designed retrenchment to be a very flexible relation between
chines, to afford designers the maximum convenience and expressivity in constru
complex solutions to complex problems by reshaping oversimplified but more com
hensible pieces. We indicated above that the mathematics of retrenchment will be
complex that that of refinement and we do not embark on a full discussion here.
ertheless we show here that retrenchments compose to give retrenchments. To s
suppose machineN ( b ) is retrenched to machineO ( c ) whose structure is defined by
“schematically alphabetically incrementing”N ( b ) , i.e. by replacing in the schematic
text ofN ( b ) above, occurrences ofN , b , M , v , J , G , Y , p , j , T , P , C , by occurrences
of O , c , N , w , K , H , Z , q , k , U , Q , D , respectively. The retrenchment proof obli
gation forN andO then becomes:
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PAN,O ∧ (J(v) ∧ H(v, w) ∧ K(w)) ∧ (trm(U(w, k, q)) ∧ Q(j, k, v, w, B))
⇒ trm(T(v, j, p)) ∧ [ U(w, k, q) ] ¬ [ T(v, j, p) ] ¬

(H(v, w) ∨ D(v, w, p, q, B))

From this and the preceding proof obligation we can show in a relational model th

PAM,N,O ∧ (I(u) ∧ (∃ v • G(u, v) ∧ J(v) ∧ H(v, w)) ∧ K(w)) ∧
(trm(U(w, k, q)) ∧ (∃ v , j , A • G(u, v) ∧ J(v) ∧ H(v, w) ∧
  P(i, j, u, v, A) ∧ Q(j, k, v, w, B)))

⇒ trm(S(u, i, o)) ∧ [ U(w, k, q) ] ¬ [ S(u, i, o) ] ¬
((∃ v • G(u, v) ∧ J(v) ∧ H(v, w)) ∨
  (∃ v , p • G(u, v) ∧ D(v, w, p, q, B)) ∨
  (∃ v , p , A • C(u, v, o, p, A) ∧ H(v, w)) ∨
  (∃ v , p , A • C(u, v, o, p, A) ∧ D(v, w, p, q, B)))

This corresponds to the retrenchment:

MACHINE O ( c )
RETRENCHES M
VARIABLES w
INVARIANT K ( w )
RETRIEVES ∃ v • G ( u , v ) ∧ J( v ) ∧ H ( v , w )
INITIALISATION Z ( w )
OPERATIONS

q←— OpName( k ) =̂
BEGIN

U ( w , k , q )
LVAR

B
WITHIN

( ∃ v , j , A • G ( u , v ) ∧ J( v ) ∧ H ( v , w ) ∧
P ( i , j , u , v , A ) ∧ Q ( j , k , v , w , B ) )

CONCEDES
( ∃ v , p • G ( u , v ) ∧ D ( v , w , p , q , B ) ) ∨
( ∃ v , p , A • C ( u , v , o , p , A ) ∧ H ( v , w ) ) ∨
( ∃ v , p , A • C ( u , v , o , p , A ) ∧ D ( v , w , p , q , B ) )

END
END

We take this as the natural definition of composition of retrenchments, and we note
it is built out of the syntactic pieces of the component retrenchments in such a ma
that composition of retrenchments will be associative.

We point out straight away that the above is not the only possible definition: an e
variation on what is given includesJ(v) in the three existentially quantified clauses o
the CONCEDES clause of the composition. This works because the stronger cla
arise naturally when the two original proof obligations are combined, so the given f
is entailed by the stronger form. We dropped theJ(v) in all of them because designer
are likely to be most interested in the interaction of the WITHIN and CONCED
clauses in practical situations and the additional presence ofJ(v) is likely to be seen only
as a complicating nuisance.
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We observe that the composed retrenchment is a different retrenchment than th
tained by alphabetically incrementingN ( b ) , even though the same machineO ( c ) is
involved. This is best understood from a categorical perspective. We could define a
egoryMchRet say, of machines and retrenchments, in which machines (given by the
mal syntactic data for machines, and assuming (for convenience) that the machine
uniquely identifies the machine) constitute the objects, and abstract retrenchments
en by the syntactic data of the names of the retrenched and retrenching machine
retrieve clause, and the ramification data) constitute the arrows. Roughly speakin
law of composition of retrenchments, is the associative law of composition of arrow
this category1. The fact that there may be many different retrenchments to a given
chine reflects the fact that there may be many different arrows to an object in a cate
even many from the same source object. The concrete syntax proposed for retr
ments mixes object and arrow aspects in a single construct, and a good case co
made for their separation, especially since the connection between retrenched a
trenching machines is looser than in refinement. It is this categorical perspective
caused us to separate the local INVARIANTJ from the RETRIEVE relationG in the
definition of a retrenchment. And one could say much the same things about the
refinement notion of course.

3.4 Simple Examples

With the preceding machinery in place, we can redo the earlierMy_Divine_Machine/
My_Mundane_Machineexample properly as a retrenchment. We give first a minim
but self contained version ofMy_Divine_Machine :

MACHINE My_Divine_Machine_0
VARIABLES aa , bb , cc
INVARIANT aa ∈ D-NAT ∧ bb ∈ D-NAT ∧ cc ∈ D-NAT
INITIALISATION aa := 3 || bb := 4 || cc := 5
OPERATIONS

MyPlus  =̂ cc := aa + bb
END

And now we give a retrenchment of i t a long the l ines of the or igin
My_Mundane_Machine .

MACHINE My_Mundane_Machine_1
RETRENCHES My_Divine_Machine_0
VARIABLES aaa , bbb , ccc
INVARIANT aaa∈ M-NAT ∧ bbb∈ M-NAT ∧ ccc∈ M-NAT
RETRIEVES aa = aaa∧ bb = bbb∧ cc = ccc
INITIALISATION aaa := 3 || bbb := 4 || ccc := 5
OPERATIONS

resp←— MyPlus  =̂
BEGIN

1. We say “roughly speaking”, because there are minor irritations concerning the identi
in such a syntactic category since eg.TRUE∧ TRUEis semantically but not syntactically
the same asTRUE. One can circumvent these by: having merely formal identities, or b
allowing empty formulae in the syntax, or by defining the arrows as equivalence classe
syntactic data which identify eg.φ ∧ TRUE with φ .  We will not go into details.
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IF
aaa + bbb≤ MaxNum

THEN
ccc := aaa + bbb ||
resp := TRUE

ELSE
resp := FALSE

END
LVAR

CC
WITHIN

CC = ccc
CONCEDES

aa = aaa & bb = bbb & CC = ccc
END

END

We are able to describe the case in which the variableccc is not changed, with the help
of the logical variableCC , noting that the CONCEDES clause refers to the after co
dition of the variables involved and thatCC is not substituted. This situation is evident
ly outside the scope of normal refinement. To illustrate the flexibility of th
retrenchment concept we give another, different retrenchment ofMy_Divine_Machine:

MACHINE My_Mundane_Machine_2
RETRENCHES My_Divine_Machine_0
VARIABLES aaa
INVARIANT aaa∈ M-NAT
RETRIEVES aa = aaa
INITIALISATION aaa := 3
OPERATIONS

resp , ccc←— MyPlus ( bbb )  =̂
BEGIN

IF
aaa + bbb≤ MaxNum

THEN
ccc := aaa + bbb ||
resp := TRUE

ELSE
ccc := 0 ||
resp := FALSE

END
WITHIN

bb = bbb
CONCEDES

(resp = TRUE⇒ cc = ccc) & (resp = FALSE⇒ ccc = 0)
END

END

Note that in this version, the status ofbb has been changed to that of an input and t
status ofcc has been changed to that of an output, thus obviating the need to take
properties into account in the RETRIEVES clause. The WITHIN and CONCED
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clauses instead take on the jobs of relatingbbandbbb, andccandcccrespectively; and
in this simple example the RETRIEVES clause always holds anyway.

These two examples are rather trivial. Nevertheless they are small enough to
some of the technical details of retrenchment clearly. In the next section we will dis
a more convincing scenario, albeit only superficially for lack of space.

4 Continuous and Discrete Systems

In this section we discuss the prospects for applying retrenchment in the develop
of systems that need to model physical aspects of the real world, both in general
and with regard to specific examples.

4.1 Modelling the Real World

As the application of formal methods for system development in the real world con
ues to grow, the interest in applying them to systems which capture the properti
physical situations requiring continuous mathematics for their description grows l
wise. See for example [Maler (1997), Alur, Henzinger and Sontag (1996)]. In the b
of such work the continuous component is time, and the problem is to describe and
trol a one dimensional dynamics typically governed by laws of the form

ḟ = Φ(f , e)

wheref is a (tuple of) quantities of interest,ḟ is the tuple of their first order time deriv-
atives, andΦ(f , e) is a tuple of formulae in thef and the external inpute . In addition
the typically smooth evolution of the system according to the above law is punctu
from time to time with certain discrete events which interrupt the overall continuity
the system’s behaviour. Over the years, a large amount of work has been direc
taming the difficulties that arise.

However there are also increasingly problems that involve applied mathematics of
ferent kind. Dose calculation in cancer radiotherapy is a typical case in point [Jo
and Cunningham (1976), Khan (1994), Cunningham (1989), Hounsell and Wilkin
(1994)]. Here the problem to be solved centres on the Boltzmann transport equ
[Huang (1963)], a three dimensional nonlinear integro-differential equation that
scribes the electron (or X-ray) density. Not only is this not a typical one dimensio
problem, but there are no known exact solutions or calculation techniques for this e
tion applicable to the kind of spatial configurations of interest in practice; solution
practical examples rely on heuristic techniques whose efficacy is gauged by compa
with experiment. No formal technique is ever going to be able to “justify” the pro
dures undertaken, on the basis of primitive axioms, in the same way that simple c
lations with natural numbers are justified on the basis of the Peano axioms in a mo
theorem prover.  But that is not to say that automated support is out of the questi

The fact that continuous mathematics has been done with rigour for a century or
is good evidence that what has been done there is formalisable. The paucity of
lished material in this area is more a question of logicians’ and computer scientists
norance of and/or distaste for the subject than any issue of principle. In fact contin
mathematics has received some attention from the mechanical theorem proving
munity lately [Harrison (1996)]. The cited work shows that a formal approach to a
ysis is entirely feasible, but is a big job. The sheer breadth of applied mathematics
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may be needed in applications makes it clear that simply formalising a large gen
purpose body of continuous mathematics that would serve as a foundation for “all”
mal developments where such mathematics is required is an unrealistic propositi

The alternative, to reinvent the core continuous mathematics wheel formally as a
cursor to the more specialised reasoning required in a specific application is equall
realistic. Not only would the cost of rederiving any significant piece of appli
mathematics from first principles be prohibitive, but many different developme
would overlap significantly in the mathematics needed despite the remarks above
this would lead to wasteful duplication.

Moreover applied mathematics does not work by deriving everything from first prin
ples. Rather, it reaches a certain stage of maturity, turns the results obtained into
bra, and uses the equations of that algebra as axioms for further work. Thus it s
reasonable for computerised developments that depend on such mathematics to s
suitable suite of already known results as axioms (whether these be formally deriv
merely results that have achieved equivalent status through years of successful u
capture these as axioms in the theory underlying the development, and to use th
support the specifics of the development. Where one starts from in the vast sea of e
mathematics to select an axiom basis which will be both useful in providing good s
port for the development at hand, and also tractable for automated reasoning tech
gy, would become a matter for engineering judgement.

Even the heuristic semi-empirical reasoning alluded to above can be incorporat
such an approach. Suppose for example that it is believed that within certain boun
applicability, such and such a parametrised expression can, by suitable choice of p
eters, yield a function that is within such and such an error margin of a solution to a
ticular nonlinear integro-differential equation (say). Then that belief can be expre
as a rule in the system and its use controlled by the same theorem proving environ
that supports the rest of the development.

At the moment, to the extent that developments incorporating the passage from co
uous to discrete mathematics are attempted at all using a formal approach, wha
sees is a little disconcerting. Typically some continuous mathematics appears, de
ing the problem as it is usually presented theoretically. When this is done, there co
a violent jolt. Suddenly one is in the world of discrete mathematics, and a whole
set of criteria come into play. There is almost never any examination of the condit
under which the discrete system provides an acceptable representation of the co
ous one, and what “acceptability” means in the situation in question. But surely th
questions are of vital importance if the discrete model is truly to be relied on. Res
from mathematics which have investigated the reliability of discrete approximation
continuous situations have shown that there are useful general situations in whic
discrete approximation can be depended on. Such results ought to make their wa
the justification of the appropriate development steps in real world applications w
ever possible. Evidently incorporating them into strict refinement steps is too muc
ask in general, and the greater flexibility of the retrenchment formalism we prop
seems to us to be much better suited to the task in hand.

4.2 A Furnace Example

We describe in outline a hypothetical situation in which the flexibility of retrenchm
comes into its own. Suppose we have undertaken to control an ultraefficient furn
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into which pulverised solid fuel is injected along with preheated air. Magnetic fie
help to keep the resulting burning ionised gas evenly suspended throughout the vo
of the combustion chamber in order to maximise efficiency, and away from the wal
order to prevent them from disintegrating at the high temperatures used. The obje
is to keep the temperature as high and as evenly distributed as possible for efficie
sake, to keep the hot gas away from the walls, and to ensure that fluctuations d
cause explosive hot spots to arise that could give rise to shock waves which could
age the combustion chamber. A number of sensors in the combustion chamber
periodically on the temperature and electromagnetic flux in their vicinity. The phy
of the situation is described by the partial differential equations of magnetohydro
namics. Needless to say it is not possible to solve these equations in closed form
want to model this situation in order to develop software that will control the magn
fields and inflow of air and fuel, so as to maximise efficiency while keeping the sys
safe.

The top layer of the model simply reflects the classical mathematics of the prob
Thus suppose that the vessel occupies a volumeΩ , with boundary∂Ω . The problem
is then to control the flow of ionised gas, given by its temperatureθ , mass densityρ ,
pressurep , adiabaticityγ , velocityv , and current densityJ , by adjusting the applied
magnetic fieldM , air inputa , and fuel inputs . The current values and rates of chang
of the physical quantities act as inputs, and the outputs are to be the future values
physical variables andM , a , s , such that over a finite ensuing period, the behaviour
the system is safe; i.e. no instabilities arise, and the ionised gas stays away from th
id parts of∂Ω .  In B terms, one could have a single operation

θ … M , a , s ←— furnace_control ( θ , ρ , p , γ , v , J , θ̇ , ρ̇ , ṗ , γ̇ , v̇ , J̇ )

whose body was a relation which specified the future behaviour and the control out
against the input data. The substitution could be a typical ANYθ … M , a , sWHERE
MHD_EQNsEND construct, where the bodyMHD_EQNscould simply quote the con-
junction of the standard magnetohydrodynamic equations for the system with the
sired bounds on future behaviour. This is specification at its most eloquent as
system is not capable of being solved in closed form, and the operationfurnace_control
would alter no state since we are at the textbook level of reasoning. Indeed the req
relation could be captured in B constants, were it not for the desire to have an oper
to retrench ultimately into an IMPLEMENTATION.

The intermediate layer of the model is a discretisation step in which continuous f
tions over space and time are replaced by finite sets of values at a grid of points i
combustion chamberΩ .  So the operation would become something like

θi … M i , ai , si ←— furnace_control( θi , ρi , pi , γi , vi , Ji , θi
˙ , ρi˙ , pi˙ , γi̇ , vi̇ , Ji

˙ )

where the subscripts range over a suitable grid. Furthermore, while the top layer si
states the desired properties of the outputs, the intermediate layer now gives them
more concrete function of the inputs, reflecting the structure of the finite element ca
lations needed to generate actual numerical answers, though not necessarily in fu
tail. The retrenchment between these layers would, if done thoroughly enough, c
the detailed justification for the discretisation. This would include bounds on the
mitted fluctuations of the continuous system in order that it can still be adequately
resented by the discrete system, as evidently not all violently fluctuating behaviour
be faithfully mirrored within a fixed grid. The mathematics required for the WITHI
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and CONCEDES clauses, and to properly discharge the relevant proof obligations
first principles, would be demanding to say the least. It is likely that if this were a g
uine development, some heuristic rules would be invoked to discharge the proof ob
tions, expressing accumulated engineering wisdom in such situations.
retrenchment would then be doing little more than documenting the arguments, bu
manner consistent with the rest of the development, and capable of some mech
checking.  There is still no state, so we still have pure I/O.

The lowest layer of the model takes the idealised finite element scenario above, an
lates it to the actual configuration of input and output devices in the real system. T
the only inputs at this level will be temperature and electromagnetic flux sensor r
ings, and the only outputs will be the control parameters to the air and fuel injectors
magnetic field controls.  The signature will thus look like

M j , aj , sj ←— furnace_control ( θj , Jj )

wherej ranges over the actual input and output devices, and the remaining data o
intermediate model is committed to state variables of the machine. This arrange
is justified on the basis that the system changes sufficiently slowly that an iterative
culation of the required future behaviour can be done much faster and more accu
starting from the previous configuration, than ab initio from just the inputs. Furth
more, the model at this layer could stipulate numerical bounds on the values o
mathematical variables which occur, in order to ease the transition to computatio
efficient arithmetic types later. The retrenchment from the layer above to this one
be rather easier than was the preceding retrenchment step, as the relationship be
the I/O and state variables of the present model, and the I/O of the model above
consist of straightforward algebraic formulae, leading to relatively simple proof obli
tions. In particular the∀Conc-Op∃Abs-Op(G ∨ C) form of the retrenchment proof ob-
ligation enables the drawing up of a suitableC cognisant of these bounds rather mor
easily than the opposite form.

At this point we have reached the level that a conventional formal development m
have started at. The operation of interest has reached a stage where its I/O signatu
the information in its state has stabilised, so what remains is in the province of no
refinement. Such refinements could address the efficiency of the algorithms use
ploiting architectural features of the underlying hardware if appropriate, and could
address the precise representation of the state. We are assuming that the bounde
ematical types used in the model are such that casting them down to actual hard
arithmetic types can be done within a refinement; if not then another retrenchm
would be required.

Surveying the above, we see how much of the reasoning that would otherwise fall
side of the remit of formal development has been brought into the fold by the use o
trenchment. Admittedly this was a hypothetical example, and not worked out in
detail, but the outline above shows us how the engineer’s model building activity
be organised within a formal process, and the ultimate very detailed and obscure m
that is cast into implementation, may be made more approachable thereby. The w
development process also reveals the mathematically most challenging parts for
they are, and documents to what extent they have been resolved through utilising
deep results on discretisability from real analysis, or the adoption of pragmatic e
neering rules of thumb.
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5 Conclusions

In the preceding sections we have argued that refinement is too restrictive to des
many developments fully, and have proposed retrenchment as a liberalisation of it.
objective was to allow more of the informal aspects of design to be formally captu
and checked. We described the technical details of what retrenchment is within B
considered some basic formal properties such as the proof obligations and compo
ity, and discussed some examples.

Much of what we said regarding the applicability of retrenchment to realistic situati
assumed the incorporation of ideal and richer types into B; this merits further dis
sion. Take the reals. Because the reals are based on non-constructive feature
finitistic approach to them will display weaknesses regarding what can be deduced
different approaches will make different tradeoffs. (M-FLOAT is one possibility, and
we could also mention different theories of constructible reals, as well as approa
that exploit laziness (in the functional programming sense) to yield so called com
able exact reals.) The B attitude, to design a conservative framework for developm
has the merit that a laudable degree of completeness of coverage can be achieved
method. However to address many types of real world problem, this conserva
would need to be relaxed. It seems to us that the best way forward is to consider a
certified libraries to B, offering a variety of theories for richer types (eg. various ty
of reals), to give users the foundations for the applications they need. These ide
tions could be retrenched away in the passage to an IMPLEMENTATION.

The lack of richer types in B is also felt at the I/O level, as B I/O only permits sim
types to occur which thus can force premature concretisation. In this regard our
bears comparison with [Hayes and Sanders (1995)] who focus exclusively on I/O
pects, and who show how describing the I/O of an operation in excessively conc
terms, can lead to obscure specifications. Their decomposition of operations into a
put abstraction phase, an abstract operation phase, and an output concretisation
corresponds to a special case of retrenchment in which there is no mixing of I/O
state aspects, but where the WITHIN and CONCEDES clauses permit translation
one I/O format to another. One can see this as further affirmation of the inadequa
pure refinement as the only mechanism for turning abstract descriptions into con
ones, as was indicated in Section 1.

The present work, the first on retrenchment, raises more questions than it solves
true value of any development technique can only be judged by its usefulness in
tice. For that, a significant body of case studies must be developed, and then
whose livelihood depends on doing developments right, must come to a verdict, e
explicitly or implicitly, on whether the technique offers a worthwhile improvement
current practice or not. Retrenchment should be subjected to such critical apprai
order to prove its worth. The authors envisage retrenchment as being useful both in
tinuous problems as discussed in the preceding section, and in entirely discrete
tions too, where the complexity of the real system is built up in digestible steps f
simpler models. We have given enough of the basic theory of retrenchment in thi
per, to enable such application work and its evaluation to proceed. The other fac
retrenchment needing to be pursued, the underlying theory, aspects of which wer
cussed at the end of Section 3.2, is under active investigation and the results will b
ported in future papers.
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