
Migrating Objects in
Electronic Commerce Applications

Marko Boger
Hamburg University - Department of Computer Science - Distributed Systems Group

Vogt-Ktilln-Strasse 30, 22527 Hamburg
boger @ informatik.uni-hamburg.de

Phone: ++49 +40-5494 2343 Fax: ++49 +40-5494 2328

Abstract. Electronic Commerce is a field of application that is distributed by
nature where different parties share information and work concurrently and co-
operatively on objects, potentially distributed over a large scale network like
the Intemet. In such an environment client/server architectures reach the limit
of their capability. Non-centralized distributed architectures with object and
code migration are more suitable. This paper presents a distributed extension to
Java named Dejay. Its aim is to simplify the design and development of such
distributed systems. Concurrency and distribution are expressed using the same
mechanism, virtual processors. These processors represent one thread of con-
trol. They contain groups of objects and manage their synchronization and mi-
gration over distributed networks. It is used as an implementation language for
distributed electronic commerce applications.

Keywords: Java, Distribution, Migration, Concurrency, Electronic Commerce

1 Introduct ion

Electronic Commerce is an evolving application field for distributed systems where
industry and research still investigate for an appropriate implementation platform.
The requirements are immense: security aspects, fault tolerance, runtime problems,
heterogeneity of hard-, middle and software are just a few problems that need to be
dealt with. This makes the search for a suitable implementation platform very diffi-
cult.

The two single most often cited technologies in this context today are Java and
CORBA. Both are well suited for client/server architectures but have shortcomings in
distributed applications that require object or code migration. In CORBA this is sim-
ply not possible. Java offers techniques for code migration. Object migration is possi-
ble but very inconvenient. Some extensions to Java like JavaParty [Philippsen 97] or
Voyager [ObjectSpace 97] exist that ameliorate this but can also not deliver a suffi-
cient solution. One of the main unsolved problems is the grouping of objects that are
to be migrated together.

This paper first investigates the needs in electronic commerce and other distributed
applications that are not met by current technologies, the migration of objects. Differ-
ent concepts for object migration, fine grained object migration and virtual objects,
are discussed and their shortcomings pointed out. As a new approach, the paper pres-

230 Marko Boger

ents an extension to Java called Dejay. It incorporates migration and concurrency
with the mechanism of virtual processors. This mechanism is a very expressive yet
simple way to group objects and migrate such groups as whole. This mechanism
replaces thread mechanism given by Java. Overall Dejay simplifies the development
of distributed programs.

2 The need for migration of objects
Today's programming paradigm for Internet or intranets and applications like elec-
tronic commerce on such nets is client/server. Java as well as CORBA lend them-
selves to this paradigm. But many applications exist that are distributed by nature. In
these applications it does not suffice to hand over remote references and transmit data
of simple data types as in CORBA or copy objects as in Java RMI. What is missing is
the ability to migrate objects or groups of objects. Such a mechanism would ease or
even enable the development of distributed applications. It would increase usability as
well as designability of such systems. Examples come from many application areas
like robot-systems, computer aided manufacturing, process control, distributed simu-
lations or workflow systems.

An example in the field of electronic commerce is an electronic contract system. An
electronic contract is the electronic version of a usual business contract. A contract
involves different parties that need access to it at different places and times. The ad-
vantages of an electronic contract are at least threefold. First, for such a contract
electronic media can be used. It could simply be sent via Internet from one party to
another. But it could also contain a program that could help filling out forms or check
the validity of entered data. Second, it can be selfpresenting. While a written docu-
ment has only one view, such an electronic contract can have different views, reveal-
ing differently important information to different parties. Third, it can be active. The
contract itself can control the forthcoming of its execution. It could control deadlines
and give according messages or warnings. It could be specification as well as con-
troller of a workflow.

These examples would benefit greatly from the ability to move objects or groups of
objects from one site to another. The contract for example is composed of different
components of objects. These objects and their code need to move to where it is
needed, i.e. to present itself or to check the forthcoming of a workflow. If desired
only one component needs to be moved, for example only the component presenting
a delivery address to the computer of an expediter. This is where current client/server
systems fail. With CORBA it is not possible to move objects. In the case of CORBA
the introduction of object mobility is conceptually extremely difficult, since CORBA
systems allow different implementation languages on different sites, making different
object representations unusable. The OMG is working on suggestions to solve this
problem but so far with little success. Java allows for simple object movements but
does not provide a simple solution and is not sufficient for complex systems. Using
RMI the movement of an object requires an object factory of appropriate type and
the passing of all relevant state information to create a copy of the original object on a
different site. Nevertheless Java allows the migration of code to a different site at

Migrating Objects in Electronic Commerce Applications 231

runtime and offers easy to use network communication facilities, what makes Java a
good starting point to build a system that supports object migration.

2.1 Mobile Objects

In object-oriented systems the most obvious subject of migration is the object itself.
Several research projects have addressed object migration, the most frequent ap-
proach being to keep the distribution as transparent as possible and only moving ob-
jects where explicitly requested. The most known and one of the first projects fol-
lowing this concept is Emerald, developed at the University o f Washington [Emerald
87], [Jul 89]. Emerald was specifically designed for the needs in a network of
autonomous computers connected by a local area network in a homogeneous envi-
ronment. Objects in Emerald are referenced throughout the distributed system; a call
to a remote reference is a remote method invocation. This makes the network trans-
parent to the programmer if this is desired. But to achieve an efficient implementation
objects can be moved to the place they are referenced from and can then answer
method calls on the same machine. An object can be moved from one machine to
another at any time, even while one or more methods are being executed.

This mechanism has attracted a lot of attention. It is widely agreed that it demon-
strates the general suitability of the object-oriented approach to distributed systems. It
has been adopted in several different object-oriented languages like Trellis/DOWL
[Achauer 93] and Beta [Brandt 94]. Also in Java several projects are adopting the
approach of a fine granularity, making it possible to move objects of an arbitrarily
small (or big) size. Examples of this are JavaParty [Philippsen 97] or Voyager [Ob-
jectSpace 97].

The problem that arises using fine grained distribution is the following: when moving
an object, what other objects should also be moved? Objects communicate with other
objects. Moving one object to a machine where it is often accessed, i.e. to reduce
network communication, can result in an eventually larger network communication if
the moved object needs to communicate to objects that where not moved. Emerald
proposes to build groups of objects that are to be moved together by attaching objects
to each other. When declaring an attribute of a class, this attribute can be marked by
the keyword attached. This attachment is recursive and transitive but not symmetric.

The design of attachment relations is a tedious and error-prone work. The code needs
to be changed explicitly , spoiling distribution transparency and the ease of design
and maintenance. Emerald and its successors have shown that distribution transpar-
ency is feasible. But they have also shown that in order to achieve efficient imple-
mentations object migration is necessary and that objects need to migrate in groups.
Nonetheless, they can not provide a sufficient solution to grouping.

2.2 Virtual Objects

In usual distributed languages the call to a remote object is transparent, as in Java's
RMI and in CORBA. A project proposing to drop this distribution transparency is
Voyager from ObjectSpace [ObjectSpace 97]. Voyager is an ambitious project that

232 Marko Boger

aims at setting a new standard for distributed programming, integrating as well as
replacing other techniques like RMI, CORBA and Agents. It is based on and com-
pletely written in Java. It offers a compiler that can automatically prepare any class in
Java source or byte code for distributed computing. Besides propositions for autono-
mous migration, persistence, security, CORBA-integration and multicasting, Voyager
introduces a different approach for referencing and migrating remote objects.

In Voyager the difference of a call to a local and to a remote object is made explicit.
Any Java class can be compiled by a Voyager compiler to produce what Voyager
calls a virtual class. For example a class C would be compiled to the virtual class VC.
This virtual class implements a superset of the interface of the original class; an in-
stance of this class, the virtual object, serves as a local representative of a remote
object of class C. This is very similar to proxies or to stubs used in RMI or CORBA,
but while proxies or stubs are hidden from the view of the programmer, in Voyager
these virtual objects are explicitly used. A remote object is never called directly. In-
stead its local representative, the virtual object is called, that in its turn handles the
remote call (an instance c of the virtual class VC of the remote enabled class C as
shown in Figure 1). This means giving up distribution transparency without changing
the syntax of a method call. Yet a reference to a remote object is different to a local
object since its type is of a virtual class.

Machine X Machine Y Machine Z

5-vq
I IObiect s VObiects [~ v l a c h i n e

Figure 1: Different Reference types in Voyager

Voyager supports object migration by adding a moveTo method to each virtual object
that, when called with an IP address or host name as argument, will move the refer-
enced object to the specified machine. Assume we have an object a of class A on
machine X as in Figure 1. This object can be moved to machine Z by sending it the
method call a.moveTo(Z). The question is what happens to references and referenced
objects. A virtual object can simply be copied to machine Z without affecting the rest
of the system. If object a has a reference to a normal object, say b of class B, then b
needs to be copied too, so that the reference is still correct. But if a changes the state
of b then this change can not be seen on the original copy of b (see Figure 2). In order
to avoid this problem all references from an object that is to be moved need to be of
virtual type. If this rule is not obeyed inconsistencies will occur. Concluding it can be
noted that Voyager does offer object migration and - if used carefully - at a fine
grained level. But it offers no grouping mechanism (like attachment in Emerald). It is

Migrating Objects in Electronic Commerce Applications 233

the programmers responsibility to avoid problems caused by migration. This way the
development of distributed systems remains a difficult and error-prone work.

Machine X Machine Y Machine Z

'X

i c : V C i
. . . . i

l"-']Obiects VObjects I~Vlachine

Figure 2: After moving a, two copies of b exist. Inconsistencies possible!

2.3 Virtual Processors

If the object is not the proper subject of migration since its granularity is too small,
then what is the proper subject of migration? An interesting approach is the migration
of a thread like in [Mathiske 96]. I consider this as too close to hardware concepts and
would like to present a similar but more abstract concept, the concept of virtual proc-
essors.

A virtual processor is an autonomous thread of control capable of supporting the
sequential execution of instructions on one ore more objects. This is an abstraction of
the concepts of a physical processor, heavy weight processes and light weight proc-
esses, often called threads. It can be implemented by either of these and the objects
that are executing within a virtual processor should not be aware of the form of im-
plementation used. Every object is assigned to exactly one virtual processor but a
virtual processor can contain several objects. Objects with tight couplings can be
assigned to one processor, making this concept a grouping mechanism for objects.
This concept is introduced by [Meyer 97] and is currently being implemented as an
extension to the programming language Eiffel. Meyer shows that this concepts inte-
grates well with object-orientation, synchronization and inheritance. In his approach
objects are automatically assigned to a virtual processor by a runtime mechanism.
Similar to the concept of virtual objects in Voyager, it is differentiated between local
and remote references, here by introducing a new keyword separate to the language.

Meyer does not explicitly use this mechanism for object migration but primarily for
expressing concurrency. The language he uses, Eiffel, has so far not been ready for
code migration making migration of virtual processors troublesome. Nevertheless,
this mechanism is well suited for migration if the underlying system supports code
migration, like Java, and object migration, like Voyager. I propose to incorporate this
mechanism to Java and Voyager and to extend this notion to migration, as explained
in the following section.

234 Marko Boger

3 Dejay - A m e c h a n i s m for Dis tr ibut ion in Java

Dejay is an extension to Java, aiming at simplifying the programming of distributed
systems. It is part of the research project on electronic commerce COSMOS at the
University of Hamburg and is intended as implementation platform for distributed
electronic commerce applications such as distributed and collaborative contracting
tools and other applications. It is especially intended for problems that are distributed
by nature and run in an environment where communication is sufficiently reliable and
fast but too costly to be neglected. Such environments are the Internet, extra- and
intranets as well as local area networks.

The syntax of Dejay is very similar to that of Java. In fact, Dejay is based on a subset
of Java; the threading mechanism of Java is completely replaced and all keywords
concerning threads are not allowed in Dejay. A compiler translates Dejay to Java
code. Therefore Dejay is compatible with Java; existing Java classes and objects can
be called from Dejay. Also Dejay classes and objects can easily be integrated from
other Java classes.

The mechanism that replaces Java threads is that of virtual processors. It is used to
model concurrency and to group and migrate objects at the same time. By this, a
considerable simplification of Dejay compared to Java is achieved and a simple and
secure migration mechanism is provided. Every object is created in and controlled by
exactly on processor. If only one thread of control is needed the use of processors
remains completely implicit. If several treads of control are needed a processor is
created for each one. This can be done either on the same machine or on several dif-
ferent machines connected by a network. Processors can be moved at runtime and all
objects contained within it are automatically moved with it. Objects can reference
other objects in the same processor as in usual Java. They can also reference and use
objects in different processors independent of its location. But references to objects in
different processors are marked. For this the mechanism of Voyager, virtual classes,
is used. A reference to an object outside of its own processor has to be of virtual type,
which is checked by the Dejay compiler.

3.1 Creation

A processor is a Voyager object and can be created on any reachable remote machine
running Voyager. To create it remotely the constructor of a virtual processor is passed
the name of the intended machine.
// create a processor on local machine x
Processor pl = new Processor();

// create a processor on a remote machine Y
VProcessor p2 = new VProcessor(Y);

In Dejay each object belongs to and is managed by a processor. Objects can be called
from outside the processor by using their virtual objects. But the processor executes
calls in a sequential manner. This greatly simplifies synchronization. No synchroni-
zation is needed between objets contained in the same processor since there is only
one thread of control. Synchronization between objects in different processors is

Migrating Objects in Electronic Commerce Applications 235

much simpler than in Java. Objects are always used exclusively. Using high level
constructs for synchronization allows the efficient support by the compiler. Similar to
the replacement of pointers in C++ by references in Java, or the use of garbage col-
lection instead of explicit memory allocation, the replacement of low level synchroni-
zation mechanisms like semaphores by high level mechanisms simplifies the lan-
guage and allows automatic generation of efficient code. Different mechanisms for
expressing synchronization constraints are currently being investigated, including that
of Eiffel [Meyer 97] using pre- and postconditions as wait conditions, of Java using
an extended synchronized keyword, separate synchronization specifications or syn-
chronizers as discussed in [Frolund 97].

An object can be instantiate in the usual Java fashion. In this case it belongs to the
same virtual processor as the object calling the constructor. Objects can also be cre-
ated on a different virtual processor. In this case a local representative is created in a
similar way as in Voyager. This local representative is passed the reference to a re-
mote processor and will instantiate an object on the processor specified. To differen-
tiate between a local and a remote reference, remote references have to be of a virtual
type. Within class A we can write
/ / create an object on same processor
B b = new B();
b. some_method () ;

// create an object on processor Y
VC c = new VC(Y);
c. some_method () ;

which will result in the situation shown in Figure 3. On machine X another processor
and object of class D with some virtual references is added.

Machine X

I

-::c.-',~ I - " ' " ~ . .
~- . I -I I . . " ' -
I I ~ ' - a ~ I - ' - ,
'
I I
' :

!
I I I

['--]Objects

P Local reference

Machine Y Machine Z

I

I
I
I
I
I

-"~.k- �9

I 1

~ V l a c h i n e '---"Processor

. ~ Virtual reference

Figure 3: Objects and References in Dejay

3.2 Migration

A virtual processor can be moved from one machine to another simply by calling a
moveTo method. As argument this method accepts an IP address, a host name or a
reference to another virtual processor. It then migrates all contained objects to the
specified machine or the machine running the specified virtual processor, respec-

236 Marko Boger

tively, and leaves a forwarder behind, so that calls to this virtual processor will be
redirected to the new location. If no argument is given, it moves to the machine of the
calling object. Sending an object contained in a processor the moveTo message will
also result in the movement of the entire processor and all its contained objects.
// move processor pl to machine Z
pl.moveTo (Z) ;

//equivalent: move a to Z
a. moveTo (Z)

Machine X

! !

Machine Y

I
I

I
I

- . ~ . .

I _ _ I
I

! !

Machine Z

[---IObiects :""~VObjects ~ V l a c h i n e E_-]Processor

Local reference ~ Virtual reference

Figure 4: After moving a one copy of b exists. No inconsistencies.

In this way no inconsistencies can occur. No extra copies like in Voyager are needed.
All references remain valuable. Migration becomes simple and secure. Objects are
always moved as group, keeping related objects together. Communication between
objects belonging to different processors is the same, whether the processes reside on
the same or on different machines. But moving the processors to the same machine
can reduce communication costs by an order of magnitude.

3.3 Concurrency
The mechanism of processors is also used to express concurrency. Concurrency can
be used to perform actions in parallel. This requires several physical processors. Or it
can be used to control different threads of control on one physical processor, only
simulating parallelism, for example to have one thread actively waiting for input
while others continue. In Java these are two distinct concepts. The first requires
communication via sockets or RMI, while the second is that of threads. In Dejay they
are unified to one concept. If two processes run on the same machine, execution is not
parallel but only simulates it. If one of them is moved to a different machine it turns
to real parallelism.

In Dejay method calls can be synchronous or asynchronous. In Java method calls can
only be synchronous. Calling a method on a remote object, i.e. using RMI, will result
in long waiting times since the calling object will block until the result is returned. To
simulate asynchrony in Java a new thread needs to be spawned to handle the call and
await the result. This makes asynchronous calls tedious and error-prone to develop.

Migrating Objects in Electronic Commerce Applications 237

But a simple mechanism for asynchronous calls is vital for distributed programming.
Only using asynchrony true parallelism on different machines can be achieved.
Therefore, Dejay incorporates and facilitates the use of asynchronous calls. It relies
on the mechanism of Voyager but extends it to further ease the use of asynchrony.

In Voyager each call to a remote object is handled by a messenger object. Voyager
offers different types of messengers. The default is a synchronous messenger that
returns a result when the call to a remote object is completed. It does not appear ex-
plicitly in the code and requires no further preparations. It has the look and feel of
normal Java method calls. To make asynchronous calls an asynchronous messenger
object is passed as additional parameter to the call. The call returns immediately with
a reference to the messenger. The actual result of the call can be looked up later by
querying the messenger object.

Dejay extends this notion to a mechanism called wait-by-necessity and is similar to
the mechanism discussed in [Meyer 97]. By default all calls to objects in different
processors are asynchronous. This remains completely transparent to the programmer.
But the thread of control continues directly after the call is set off. It stops and waits if
the result of the call is actually used.
// create an object on processor Y and use it
VC c = new VC(Y);
result = c.some_method(); // asynchronous, continues immediately
// do other calculations

//'use results
some_var = result.some_operation(); // blocks until result is delivered

This makes the use of concurrency transparent and simple. Yet, if the programmer
needs to have direct control over the call mechanism, he can explicitly fall back on
the mechanism of Voyager.

3.4 Design

Dejay is from the start tailored to support and simplify the design of distributed appli-
cations. A new modeling and design method and suitable models to express
concurrency and distribution and a graphical tool are currently being developed hand
in hand with Dejay.

In current analysis and design methods like OMT, Booch or UML, little attention is
paid to concurrency and distribution. The general approach is to develop a class (or
object) model that depicts the dependencies and relations of classes. These are in-
heritance, association and aggregation. Other models like scenarios, use cases, state
models or data flow models help finding the methods and interfaces needed in the
class model. Nonetheless, the development is centered around the class model. Un-
fortunately the class model can not express concurrency, since concurrency does not
appear on class level. It appears on object level. Objects only exist at runtime and are
therefore not an appropriate means to model concurrency at design time. But refer-
ences to objects and method calls can be used. They are dynamically linked to objects
at runtime, but their type is known at compile time. In Dejay the type of a reference to
a remote object is clearly differentiated from a local reference. Also each remote

238 Marko Boger

reference points to an object in a remote processor. Processors are used to express
distribution as well as concurrency. Using Dejay, a model expressing concurrency
and distribution can therefore be built upon these references. Our model is further
described in [Boger 96].

3.5 Implementation

The implementation relies heavily on Voyager. The class VProcessor is produced by
compiling the class Processor using the Voyager compiler. This Processor class
maintains a queue of incoming calls and dispatches them one at a time,, retaining
other calls until the dispatched call is done and the result is returned, thereby insuring
a sequential processing. It creates a new Voyager daemon which is completely under
its control. Each time a call is dispatched from the queue the call is simply handed
over to this Voyager daemon. The Processor is a relatively thin layer encapsulating
the Voyager mechanism.

The Processor class is the only class directly compiled by the Voyager compiler. All
other classes within a Dejay system are compiled by the Dejay compiler. For the
construction of virtual classes it internally relies on the Voyager compiler but changes
its output to redirect calls to the appropriate virtual processor.

Machine X

~ 1 7 6 - ~

(VProzessor)
"'~-~. ~ 1 7 6 1 7 6

Machine Y

Processor

~...

VObiects

Figure 5: Implementation structure

The compiler of Java is constructed using Open Java [Tatsubori 97]. It allows the
extension of Java through a metaobject description protocol. This replaces the need
for constructing a compiler from scratch and thus makes the development of a Java
dialect relatively simple.

4 R e l a t e d W o r k

It has repeatedly been discussed that Java, as is, is not very well suited for distribution
[Philippsen 97],[Brose 97b]. Therefore there is a great interest in Java-based or Java-
extending solutions that aim at improving the distribution abilities of Java.

Migrating Objects in Electronic Commerce Applications 239

JavaParty [Philippsen 97] improves the mechanism of RMI by slightly extending the
Java language and providing a new compiler. Different to Dejay it is intended for fast
local nets or massively parallel machines.

Interesting but also specialized to small and fast networks is the concept of virtual
memory. A famous project in this area is Linda, where tuples of data can be written
into and read from a globally accessible memory called tuplespace. Sun is working on
an integration of the Linda approach to Java, called JavaSpace.

A couple of projects only use Java as platform for portability and implement a com-
pletely different language on top. Some of these are focused on functional program-
ming [Hall 97] or scripting languages, like Ambit [Cardelli 97].

The described system has very close relations to mobile agent systems, especially
those based on Java like Mole, Aglets, Odyssey or Voyager [Cockayne 97]. Mobile
agent systems are intended for autonomous movement of programs to environments
that are insecure, unknown and not trusted. Dejay is not primarily designed for such
environments but tries to simplify the design of closed distributed applications. It can
therefore avoid a lot of the overhead and problems that mobile agent systems have to
deal with. Nevertheless, I believe that Dejay can be extended for such environments.

5 Summary
This world is a distributed world and real objects move in this real world. We model
this world with software objects and we have long started to do this in a distributed
environment. Many problems need to be solved to achieve this goal, including
concurrency control, synchronization, movement of code, distributed resource alloca-
tion, distributed garbage collection, efficiency, security and others. Java is a well
suited programming language to tackle this problem but has so far not succeeded in
solving this problem. The paper pointed out that the granularity of movement is an
important issue and presented different approaches. A fine grained approach where
the subject of movement is the object itself like in Emerald is problematic, mainly
because the grouping of objects becomes a tedious and error-prone work. The con-
cept of virtual objects as followed in Voyager was discussed. It has many advantages
but also does not solve the problem of grouping objects.

This paper proposes an approach where the subject of movement is a virtual proces-
sor. This eases the grouping and management of objects and simplifies synchroniza-
tion and concurrency. Dejay, a new programming language extending Java, following
this approach is presented. It combines the approach of virtual processors with the
concept of virtual classes on top of Java. Dejay is intended as a language for distrib-
uted applications in networks of computers. In Dejay grouping and migration of ob-
jects and concurrency are expressed using the same concept of virtual processes. This
makes the design and development of distributed systems simpler as compared to
using Java or Voyager. Dejay is part of an ongoing project in electronic commerce,
COSMOS, at the University of Hamburg and will be used as implementation lan-
guage for distributed electronic commerce applications.

240 Marko Boger

6

[Achauer 93]

[Boger 96]

[Brand 94]

[Brose 97a]

[Brose 97b]

[Cardelli 97]

[Cockayne 97]

[Emerald 87]

[Frolund 97]

[Hall 97]

[Jul 89]

[Mathiske 96]

[Meyer 97]

[ObjectSpace 97]

[Philippsen 97]

[Tatsubori 97]

References

B. Achauer: "The DOWL Distributed Object-Oriented Language".
Communications of the ACM, Sept. 1993.

M. Boger, H.W. Gellersen: "On Models in Object-Oriented Methods-
Critique and a new Aproacht to Reversibility". Technology of Object-
Oriented Languages and Systems, TOOLS 19, Paris, Feb. 1996.

S. Brandt, O. Lehrman Madsen: "Object-Oriented Distributed Pro-
gramming in BETA". Feb. 1994.

G. Brose: "JacORB: Implementation and Design of a Java ORB". Proc.
DAIS'97, IFIP WG 6.1 International Working Conference on Distrib-
uted Aplications and Interoperable Systems, Cottbus, Germany, Chap-
man&Hall, Oktober 1997.

G. Brose, K.-P. L6hr, A. Spiegel: "Java does not Distribute". Proc.
TOOLS Pacific "97, Melbourne, Australia, November 1997.

L. Cardelli: "Ambit". http://www.luca.demon.co.uk/Ambit/Ambit.html,
1997.

W.R. Cockayne, M. Zyda: "Mobile Agents". Manning Publications,
Greenwich, 1997.

N. Hutchinson, R. Raj, A. Black, H. Levy, E. Jul: "The Emerald Pro-
gramming Language Report". Technical Report 87-10-07, University
of Washington, Washington, 1987.

S. Frolund: "Coordinating Distributed Objects". The MIT Press, Cam-
bridge, Massachusetts, 1997.

D.A. Hall: "Applying Mobile Code to Distributed Systems". Doctoral
dissertation, University of Cambridge, Cambridge, June 1997.

E. Jul" "Object Mobility in a Distributed Object-Oriented System".
Doctoral dissertation, University of Washington, Washington, 1989.

B. Mathiske, F. Matthes, J.W. Schmidt: "On Migrating Threads". Jour-
nal of Intelligent Information Systems, 1996.

B. Meyer: "Object-Oriented Software Construction, 2 "J Ed.". Prentice
Hall, New Jersey, 1997.

ObjectSpace: "Voyager Core Technology".
Http://www.objectspace.com/voyager/1997.

M. Philippsen: "JavaParty - Transparent Remote Objects in Java".
Concurrency: Practice and Experience, November 1997.

M. Tatsubori 97: "OpenJava". http://www.softlab.is.tsukuba.ac.jp/
LANG/mich/openjava/, November 1997.

