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A b s t r a c t :  The determination of the linear complexity of the product 
of two shift-register sequences is a basic problem in the theory of stream 
ciphers. We present for the first time a lower bound for the linear com- 
plexity of the product of two shift-register sequences in the general case. 
Moreover, we provide information on the minimal polynomial of such a 
product. 

1 I n t r o d u c t i o n  

An important tool for the assessment of the suitability of keystreams for their 
use in stream ciphers is the concept of linear complexity (see Rueppel [7]). For 
a (linear feedback) shift-register sequence a, its linear complexity L(q) can be 
informally described as the length of the shortest (linear feedback) shift register 
that  generates a. More precisely, L(a) is defined as the degree of the minimal 
polynomial of a. Recall that  the minimal polynomial of a is, by definition, the 
monic polynomial of largest degree that divides all characteristic polynomials 
of a (compare with [5, Chapter 6]). The minimal polynomial of (r can also be 
described in terms of the generating function of a (see Lemma 1 below). 

Practical methods for the generation of keystreams employ various combinati- 
ons of shift-register sequences (see again [7]). To determine the linear complexity 
of such combined shift-register sequences, it essentially suffices to analyze the 
behavior of shift-register sequences under elementary operations such as term- 
wise addition and multiplication. If this behavior is known, then the effect of 
general Boolean combining functions can also be predicted. Since the treatment 
of the termwise sum of shift-register sequences is comparatively easy, the at- 
tention of researchers has focused on the linear complexity of the (termwise) 
product of shift-register sequences (see e.g. [1], [3], [4], [8]). In this paper we 
set ourselves the more ambitious task of providing information about the mini- 
mal polynomial of a product of shift-register sequences; naturally, this yields, in 
particular, results on the linear complexity of such a product. By determining 
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either the minimal polynomial itself or a factor of it, we obtain either an exact 
formula or a lower bound for the linear complexity of a product of shift-register 
sequences. Clearly, lower bounds on the linear complexity of keystreams are of 
great cryptographic relevance. 

Throughout this paper, IFq denotes a fixed finite field of order q and charac- 
teristic p. For an arbitrary field F and a monic polynomial f 6 F[z] let MR(f)  
be the set of all shift-register sequences in F with minimal polynomial f .  If 
F = IFq, then for simplicity we write M(f )  instead of MR(f) .  We denote the 
minimal polynomial of a shift-register sequence a in F by ma 6 F[z]. 

With this notation, the basic problem considered in this paper can be formu- 
lated as follows: given monic polynomials f ,  g E ]Fq[z], provide as much infor- 
mation as possible about the minimal polynomial mar 6 Fq [z] of the product 
sequence trr = (Sntn)n~=O in 1Fq, where ~ = (Sn)~=0 E M(f )  and r = (tn)~~ E 
M(g). Zierler and Mills [9] determined a polynomial Z( f ,g )  E Fq[z] that  is 
divisible by all minimal polynomials mar with cr 6 M(f )  and 7" E M(g). As a 
counterpart of this result, we obtain in Theorem 1 a polynomial A(f ,  g) E ]Fq [x] 
that  divides all polynomials mar with a 6 M ( f )  and r 6 M(g). Thus, we have 
the divisibility relations 

(1) A(f ,  g) [mar [ Z( f ,g)  for all a 6 M ( f )  and r 6 M(g). 

Certain polynomials f , g  E lFq[z] satisfy A(f ,g)  = Z( f ,g) ,  and in this case (1) 
implies 

mar = A( f ,  g) = Z( f ,  g) for all a E M ( f )  and r E M(g), 

which means that  the minimal polynomial of the product sequence ~rr is uniquely 
determined by the minimal polynomials of the individual sequences a and r 
(compare with Theorem 2). 

2 T h e  D e f i n i t i o n  o f  A ( f , g )  

To describe the polynomial A(f ,  g), we need the following definition. We write 
I~ for the set of positive integers and l~0 for the set of nonnegative integers. 

Def in i t ion .  For a, b E I~ we define a V b as the maximum value of i + j + 1 such 
that  the binomial coefficient (i+J) is not divisible by p, where i, j 6 l~0 with 
0 < i < a - 1  a n d 0 < j < b - 1 .  

From this definition we immediately obtain 

max(a, b) < a V b < a q - b -  1. 

Furthermore, we have 

a V b = a + b -  1 r a - 1  ~ 0 modp.  
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Let f and g be nonconstant monic polynomials over Fq. Without  a serious 
loss of generality, we can assume that f(0)  r 0 and g(0) r 0 (compare with [5, p. 
222]). Let E be the splitting field of fg  over Fg, let c q , . . . ,  C~r E E be the distinct 
roots of f with corresponding multiplicities a l , . . . ,  at, and le t /~I , . . . ,  ~8 E E be 
the distinct roots of g with corresponding multiplicities hi, �9 . . ,  b~. We put 

C =  { ( i , j )  E N 2 : l  <_i<r ,  l <_j<_s}. 

Let 71 , - . . ,  7~ be the distinct elements among the products al/~j with (i, j )  E C. 
We decompose C into the pairwise disjoint subsets 

We now define 

c d  = { ( i , j )  e c :  = for l < d < t ,  

t 

(2) A( f , g ) ( z )  = H * ( x - T a ) * "  e Fq[~], 
d = l  

where the asterisk indicates that the product is extended only over those d 
satisfying the following property: the set Ca contains a pair (i, j )  for which 
(a, -I-bj-  2~ a.-1 , ~ 0 m ~  for a l l (k , l )  E Cd with (k, l) r (i, j ) .  
Via this uniquely determined pair (i, j )  E Ca we then define 

ed = ai Vb i = ai +bj  - 1. 

As usual, an empty product, which may occur in (2), has the value 1. 

3 T h e  M a i n  R e s u l t  

The following theorem yields for the first time a generM lower bound for the 
linear complexity of the product of shift-register sequences. 

T h e o r e m  1. Let f ,  g E ]Fq [x] be nonconstant monic polynomials with f(0)g(0) r 
0 as in Section 2 and let ~r e M ( f )  and r e M(g).  Then the minimal polynomial 
m,,~ of the product sequence ~r  is divisible by the polynomial A(f, g) in (2). In 
particular, for the linear complexity L(ar)  of ar  we have 

L(ar )  > deg(A(f,  g)). 

For the proof of Theorem 1 we need two lemmas. The first lemma is taken 
from [6, Lemma 2]. We adopt the convention deg(0) = - c o .  

oo field F is a shift-register sequence with mi- L e m m a  1. A sequence (sn)n=o zn a 
nimal polynomial m E F[x] if  and only if  the generating function ~'~n~176 snx -n-1 
of (Sn)n~=0 is a rational function of the form h / m  with h E F[x], deg(h) < 
deg(m), and god(h, m) = 1. 
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L e m m a  2. Let F be an arbitrary field of characteristic p, let 4, j3 E F with 
4~ # o, and let a, b ~ r~. Then for all ~ ~ MF((~ - 4) ~ and 7- ~ MF((~ -- ~)b) 
the minimal polynomial mar E F[x] of the product sequence (rT- has the form 

(3) mar  (~) = (= - 4Z) ~ 

with a c E I~o that may depend on ~r and r and satisfies 0 < c < a V b. Further- 
[a+b-2~ more, we have c = a + b -  1 if  and only if  ~ a-1 J ~ 0 modp.  

Proof. The proof of [3, Lemma  3] provides also a proof of this lemma.  [] 

R e m a r k  1. If a runs through M F ( ( x - 4 )  a) and 7- runs through MF((x- - f l )b ) ,  
then not all possible values of c have to appear  in (3). However, if Xa-lJ--(a+b-2] 
0 modp ,  then the "extreme values" c = 0 and c = a V b are always attained.  
This can be shown by refining the proof of [3, Lemma  3]; compare with [2, Satz 
5.1]. 

Proof of Theorem 1. Let ~r and 7- be as in the theorem and let E be the splitting 
field of fg  over Fq. If  we view a and v as sequences in E,  then they can be written 
in the form 

o" = ~'~ o'/ and 7 - = ~ r j  
i=1 j = l  

with v'i E ME((x  - 4i) ~' ) for 1 < i < r and rj e M ~ ( ( z  - flj)b,) for 1 < J g s. 
Therefore 

(4) 6rT ~ ~ f f i T j  " 

(i,j)~c 

Let the rational function h/maT E Fq(z) C_ E(x)  be the generating function of 
~rr in reduced form. By Lemmas  1 and 2, the generating function of (riTj has 
the reduced form 

(~ - 4~&)~ 

where 0 < c~ i < ai V bj and hij E E[x] with deg(h/j)  < clj. Then,  by turning to 
generating functions, we see that  (4) leads to the identity 

mar(Z------3 -- 
( i , j ) E C  

in the rational function field E(x) .  Using the part i t ion of C into C x , . . . ,  Ct, this 
identity can be written as 

h(=) ' h ~ ( = )  
(5) = E 

d=l (i j)ec~ 
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To show that  A ( f ,  g) divides mo~, we consider 

hi j (x )  (6) z.., :.ra---5o,, 
(i,j)EC,l 

for a fixed d satisfying the following property: there exists a pair (i, j )  E Ca 
for which (a'+bJ-2~ a.-1 J ~ 0 modp  and a~ V bl < ai V bj for all (k, l)  E Ca with 
(k, l) # (i, j ) .  For this pair (i, j )  we then get by Lemma 2, 

cij : ai + bj - 1 : ai V bj = ea 

and 
ckt <_ ak V bt < ed for all (k, l) E Cd with (k, l) # (i, j ) .  

Consequently, the rational function in (6) has the form 

a(x ) ( x  -- 7a) + b(x) 
( x  - 7 3 )  o,  

with a ( x ) , b ( z )  E E[z] and b(z)  not divisible by x - 7d. In other words, this 
rational function is in reduced form. From (5) we can then infer that  rn~,.(x) 
contains the factor ( z -  7d) ~d . Altogether, we obtain that  the polynomial A ( f ,  g) 
in (2) divides mo~ in E[x]. 

In fact, A ( f ,  g) is even a polynomial over the ground field IFq. This can be 
shown by verifying that  if 7 is a root of A ( f ,  g) of multiplicity c, then every 
conjugate of 7 relative to ]Fq is also a root of A ( f , g )  of multiplicity c. The 
verification uses some nontrivial results of the theory of finite extensions of fields, 
but is otherwise straightforward; compare with [2, pp. 56-57]. [] 

4 F u r t h e r  R e s u l t s  a n d  R e m a r k s  

R e m a r k  2. In our notation the Zierler-Mills polynomial Z ( f ,  g) associated with 
f and g can be described as 

t 

z(L  g)(=) = - ra )"  e zq[=], 
d = l  

where 
zd = max (hi V bj) for 1 < d < t. 

(ij)~c~ 

We mention that  our definition of a V b for a, b E 1~ is equivalent to the one 
in [9]. The right-hand side of (5) can be written as a rational function with 
denominator Z ( f ,  g) since cij < al V bj, and so it follows that  m ~  is always a 
divisor of Z ( f ,  g). So as a byproduct we obtain an essential result of [9]. 
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T h e o r e m  2. Let f , g  E IFq[x] be as in Theorem 1 and suppose that every d with 
1 < d < t satisfies the following property: Ca contains a pair ( i , j )  for which 
(~,+~,-~ 

~ , _ ,  , ~ 0 modp and ak Vbz < a~ Vb~ for an(k,l) e C~ with (k,l) # (i,j). 
With this pair (i, j )  E Ca we put ed -- ai + bj - 1. Then for all a E M ( I )  and 
r E M(g) the minimal polynomial of ar  is given by 

t 

mot(x )  = H ( x  - 7d) e" E ]Fq[x]. 
d = l  

In particular, for all a E M(I) and r e M(g) the linear complexity of (rr has 
the value 

t 

L(ar)  = ~ ea. 
d = l  

Proof. Under the given conditions we have 

t 

A(f ,  g)(z) = Z( f ,  g)(z) = H (x - 7d) *' , 
d = l  

and so the theorem follows from the divisibility relations in (1). [] 

T h e o r e m  3. Let f , g  E IFq[Z] be as in Theorem 1 and suppose that the rs 
products aiflj with ( i , j )  E C are distinct. Put 

C (~  ( i , j )  E C :  - 0 m o d p  
ai - 1 

and C (1) = C \ C (~ Then for a l i a  E M ( f )  and 7" E M(g) the minimal 
polynomial of err has the form 

m~,(x)= II  ( x - ~ , ~ )  ~ II  ( x - ~ , ~ )  ~ 
(i,j)EC(o) ( i , j )ecO) 

where the cij E No may depend on ~ and r and satisfy 0 < cij <_ ai V bj for all 
(i, j )  E C (~ 

Proof. Since the products c~i~j with (i, j )  E C are distinct, each subset Ca in 
the partition of C is a singleton. Therefore, the polynomial in (2) is given by 

(7) A ( f , g ) ( z )  = H ( x -  cq~j) a'+b'-l, 
(i,j)EC(x) 

and for the Zierler-Mills polynomial we get 

z(f,g)(~) = 1-[ (~-  ~,Z~) ~'vb' 1-[ (~-  ~,ZJ) ~'+bj-' 
(~,j)~cr (i,/)~cm 

Consequently, the desired result follows from (1). [] 
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Note that both Theorem 2 and Theorem 3 contain [3, Theorem 1] as a special 
c a s e  �9 

o o  c o  R e m a r k  3. Consider the special sequences a -- (sn)n=o and r = (tn)n=o whose 
terms are given by 

sn -- and tn = ~ for n = 0, 1, 
i = l  a i  - -  1 i j = l  b j  - . . . .  

With the method employed in the proof of [3, Lemma 3], one can show that 
a E M ( f )  and v E M(g) and that, under the conditions of Theorem 3, the 
minimal polynomial ma~ is equal to the polynomial A( f ,  g) in (7). Theorem 2 
shows also that we can have mar "- A( f ,  g) and that mar = Z ( f ,  g) is possible as 
well. Therefore, the polynomials A(f ,  g) and Z( f ,  g) are in general best possible 
with respect to (1). 
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