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Abstract.  An efficient unconditionally secure authentication scheme 

with arbitration is presented which is also secure against attacks by the 

arbiter. Arguments are presented that suggest this scheme is almost 

optimal with respect to codeword lengths, and when many messages are 

sent the amount of key data per message approaches, at worst, 1/3 more 

than the best possible. An improved unconditionally secure 

authentication scheme without arbitration is also briefly presented. 

1 Introduct ion  

Authentication in message transmission means that the receiver can reliably identify 

the sender and be confident that the message has not been altered or substituted in 

transit. Well known examples of  authentication schemes are the RSA signature 

scheme [5], and the use of block ciphers, like DES, to provide integrity check values 

[3]. However the level of security these schemes actually provide have not been 

proven. In the case of the RSA scheme the level of security depends on the difficulty 

of factoring large integers. However, the difficulty of factoring remains unknown. 

Block ciphers, by their very nature, have properties that make integrity check 

functions that use them difficult to analyse precisely. In contrast unconditionally 

secure authentication schemes (sometimes called authentication codes) have a level of 

security that does not depend on any unproven assumptions (see [2], [9], and the 

survey, article [8]). 

For a given probability of successful attack the efficiency of an unconditionally secure 

authentication scheme may be considered in terms of the computations required by 

sender and receiver, the amount of shared key, and the length of codewords used to 

convey source messages. The following scheme is closely related to that of [9] but 



245 

requires about 1/4 of the key data and 1/2 of  the authentication computations while 

maintaining the same codeword lengths. 

2 Improved Unconditionally Secure Authentication 

Let p be a prime number. Let a message M be divided up into w bit words m 1, m2, 

. . . .  mn, such that 2 w < p. It is suggested that p be chosen to be close to a power of 

2 for efficient calculation of products modulo p (see [4]). For example p = 231-1 and 

w = 30 are suitable values. Let a l ,  a2 . . . . .  aj+2 where j = [log2(n)],  be integers 

modulo p that form a secret shared key between a sender and receiver. The 

authentication function F of the message M is defined below. The sequences so, Sl, 

. . . .  sj are initialised by so = M and defined recursively in a way that approximately 

halves the length of successive si. All the arithmetic below is modulo p, and the 

value of F is in the range 0 to p -  1. 

= ( m l ,  m2, m3 . . . . .  mn). 

l f s  i = (r 1 , r 2 , r 3 ..... rt) define 

= ~(ai+lrl + r2, ai+lr3 + r4 ..... ai+lrt.l + rt) teven,  

Si+l [(ai+lrl + r  2, ai+lr3 + r  4 ..... ai+lrt. 2 +ft.  1, r t )  todd .J  

Let sj  = (v). Then 

F ( M ,  p, a 1, a 2 . . . . .  aj+ 1, a j+2)= aj+lV + aj+ 2. 

In this scheme the value of the authentication function F is simply appended to the 

message M and sent with it. Thus the authentication function is used like a message 

authentication code (mac) or integrity check value (icv). The theorem below indicates 

the strength of the integrity mechanism in terms of the likelihood of replacing, in 

transit, a message and the corresponding icv with a legitimate, but different, message- 

icy pair. The proof of the theorem is omitted as it is very similar to the proof of a 

similar result of [9] (see p 272). 

Theorem. Let  M and M'  be any two unequal message strings o f  n words and y, g any 

f ixed  integers. I f  al ,  a2 ..... aj+2 where j =/'log2(n) 7, are independent and uniformly 

distributed random numbers modulo p, 
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Probabi l i ty[F(M' ,  p, a 1, a 2 ..... a j+ 1, aj+2) - y ( m o d p )  

/ F ( M ,  p, a 1, a 2 ..... aj+ 1, a j + 2 ) -  g (modp)]  < | l ~  
P 

Note that the amount of key required in the calculation of F is at most log2(n)+3 

integers modulo p or (log2(n)+3)log2(p) bits. Also the calculation of F requires at 

most n multiplications modulo p and n additions modulo p. In any multiplication 

based scheme this is probably the fewest number of multiplications possible since 

presumably every block of message needs to be multiplied at least once by the 

authentication function. In comparison the scheme suggested in [9] requires about 

41og2(n)log2(p) bits of key, and involves approximately 2n multiplications and 3n 

additions modulo p. In both the scheme of [9] and the one presented here many 

messages may be sent by re-using the same al, a2 ..... aj+l and using a new value of 

aj+2 for each message (see[9]). This gives an average amount of key approaching just 

one integer modulo p, or log2(p) bits, per message. Nevertheless, the computational 

advantage of the scheme given here remains. 

3 Improved Authentication With Arbitration 

Although authentication schemes protect against attacks from outsiders, they may not 

protect against misuse by the sender or receiver. For example, having sent a 

message, the sender may later wish to deny having sent it. Or the receiver of a 

message may wish to alter or replace a legitimately received message, and claim it to 

be authentic. In this situation a dispute may arise between the sender and receiver. In 

[6] (see also the full paper [7]) a solution to this problem is provided with the 

participation of a third party called an arbiter. However as the author points out the 

arbiter can impersonate the sender in a way that the receiver will not detect. This 

problem is eliminated in the scheme of [1], but this scheme is not nearly as efficient 

as that of [9]. The scheme presented below answers a question of [1] by providing an 

arbitrated scheme with comparable efficiency to that of [9]. 

Let a sender, receiver, arbiter and some hostile outsider be denoted by Sally, Ray, 

Alice, and Oliver, respectively. Sally wishes to send messages to Ray and for this 

communication to be unconditionally secure against the following attacks: 
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Attack 1. Alice or Oliver generates a message, or alters one in transit, and attempts 

to send this to Ray as if it came from Sally. In this attack Ray or Sally do not defer 

to Alice. 

Attack 2. Ray generates a message, or alters one received from Sally, and attempts to 

claim that it was sent by Sally. In this case Alice is defered to in an attempt to detect 

this attack. 

Attack 3. Sally sends a message that is accepted by Ray as coming from Sally, and 

later attempts to deny that the message was sent by her. AS in Attack 2, Alice is 

defered to in an attempt to detect this attack. 

The following scheme has similarities to that of  [1] but contains important 

modifications that enhance the efficiency. As in [1] the scheme involves a number of 

phases. In the key sharing phase information is securely exchanged and certain 

calculations made by Ray, Sally, and Alice. In the transmission phase Sally sends 

one or more messages to Ray, Ray receives these messages and subjects them to a 

verification procedure designed to verify their authenticity. It is important for 

practical reasons that Alice has no involvement in the transmission phase. Finally in 

case of a dispute of Type 2 or 3, Alice is requested to resolve the situation. 

As before, a message M is represented in terms of w-bit words ml,  m2 . . . . .  mn, and 

a prime number p > 2 w is chosen. In the scheme described sufficient key is 

exchanged among Ray, Sally and Alice to allow Sally to send Ray any t messages, 

each consisting of n words of w bits. The essential notion behind the construction is 

the use of hyperplanes in n+t+3 space with arithmetic over the field modulo p. These 

hyperplanes are specified by n+t+3 numbers (not all zero) r l ,  r2 . . . . .  rn, Sl, s2 . . . . .  

st, a, b, c, between 0 and p - l ,  corresponding to the n+t+2 dimensional hyperplane 

rlVl + r2v2 + . . . .  +rnVn+SlWl+ s2w2+... +stwt+ax+by+cz = 1, with axes Vl, v 2 . . . .  

, Vn, wl,  w2 . . . . .  wt, x, y, z. This hyperplane will also be expressed as an n+t+3 

tuple in square brackets, ie. [rl, r2 . . . . .  rn, Sl, s2 . . . . .  st, a, b, c]. For a hyperplane 

P we shall use [P] to refer to the corresponding n+t+3 tuple. Note that throughout 

the remainder of this paper all the arithmetic and equations are assumed to be over the 

field modulo p. 
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Key Sharing 

Step 1. Ray randomly selects the hyperplane [PR] = [rl, r2 . . . . .  rn, Sl, s2 . . . . .  st, a, 

b, c], by selecting the coordinates uniformly and independently from the integers 0 to 

p-1.  In the event that b = 0, b is randomly re-chosen until b ~ 0. Ray then 

randomly selects another hyperplane [Ps] = [rl', r2', . . . .  rn', Sl', s2', . . . .  st', a', b', 

c']. It is required that c' ~ b-lb'c. If this is not so c' is randomly re-chosen until the 

condition is met. The condition e' ~ b-lb'c ensures that PR and PS are not parallel. 

Ray secretly shares PS with Sally and PR with Alice. 

Step 2. Alice randomly selects a hyperplane [PA] = [rl", r2", . . . .  rn", st",  s2", . . . .  

st", a", b", c"]. If any of the conditions b" * b, c" * c, and c " ,  b-lb"c, do not hold 

then b" and c" are randomly re-chosen until they do. The condition c" * b- lb"c  

ensures that PR and PA are not parallel. Alice then forms the n+t+l dimensional 

hyperplane PR nPA. It is desirable to express PRnPA in such a way that PRnPA 

may be conveyed but the individual hyperplanes PR and PA not revealed. This may 

be done by expressing PR~PA as the intersection of two planes parallel with the y 

and z axes respectively. Thus PR' and PA' are calculated in which PR,nPA' = PRt-~P A 

and where [PR'] = [gl, g2 . . . . .  gn, hl,  h2 . . . . .  ht, d, 0, f] and [PA'] = [g'l, g'2 . . . . .  

g'n, h'l ,  h'2 . . . . .  h' t, d', e', 0]. This representation is ensured possible by the 

conditions b" ~ b and c" r c. Alice secretly shares PR' and PA' with Sally, so that 

she can determine PR' nPA'. 

Step 3. Sally checks that 

rd, O,f 1 
Determinant l d" e 014 

Lab cJ 
. 

If this is not so Sally requests Alice to make a new random choice of a" and to repeat 

Step 2 based on the new PA formed. This will ensure that the determinant above is 

non-zero, and that PS and PR'nPA' are not parallel. Note that if Sally requests Alice 

to make a new choice of a" then Alice will know information about a', b' and c', 

however this cannot be usefully used by Alice in an attack (see Section 4). Sally 

forms the n+t dimensional hyperplane PR'nPA'nPs. 
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After the key sharing has been completed each of the parties Oliver, Ray, Sally, and 

Alice has incomplete information about the hyperplanes PR, PS and PA. Oliver does 

not know PR, PS or PA; Ray knows PR and PS but not PA; Sally knows PS and 

PR'nPA' (= PRnPA) but not PR or PA; Alice knows PR and PA but not PS. 

Transmission 

To send the message M1 = ml 1, m21 . . . . .  mn 1 Sally calculates the point Pl on the 

hyperplane P R n P A n P S  of  the form (ml 1, m21 . . . . .  mn 1, I, 0, 0 ... . .  0, x 1, y l ,  

zl).  There will be exactly one such point. Sally sends Pl to Ray (only the n+3 

tuple (m 11, m21 . . . . .  mn 1, x 1, yl ,  z 1) need actually be sent). Ray verifies that the 

message is from Sally by checking that Pl is on PRnPS. To send the uth message 

(u < t), Mu = ml u, m2 u . . . . .  mn u, Sally calculates the point Pu on the hyperplane 

P R n P A n P S  of the form (ml u, m2 u . . . . .  mn u, 0, 0 . . . . .  0, 1, 0, 0 . . . . .  0, x u, yU, 

zU), with a 1 in the n+u th coordinate. Sally sends Pu to Ray. Ray verifies that the 

message is from Sally by checking that Pu is on PRnPS. Note that the points Pl, 

t32 ..... Pt generated are linearly independent. 

Arbitration 

In case of a dispute Ray takes Pi to Alice. Alice checks whether Pi lies on PRnP A . 

If so Pi is deemed to have been sent by Sally. 

4 Analysis  

Attack Probabilities 

Theorem. The probabilities of successful attacks of Types 1 - 3 are all bounded by 

1/(p-1). 

Proof. In an attack of Type 1 it is sufficient to consider the case where the attacker 

has the maximum amount of information available on which to base an attack. This 

is the Type 1 attack as performed by Alice in which a message is altered in transit. 

As described in the transmission phase, assume that messages M1, M2 .. . . .  Mu-1, 

where u-1 < t, have been sent, received and validated. Further assume that Alice has 

read the corresponding points Pl ,  172 . . . . .  Pu-1. Also assume that Alice has 

intercepted the point Pu = (ml u, m2 u . . . . .  mn u, 0, 0 . . . . .  0, 1, 0, 0 . . . . .  0, x u, yU, 
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z u) associated with the message Mu and replaced it with the point p* = (m 1", m2*, 

. . . .  nan*, 0, 0 . . . . .  0, 1, 0, 0 . . . . .  0, x*, y*, z*) associated with a different message 

M*. As M* ~ Mu there must be some j with mj*~ mj u. For the message M* to be 

accepted by Ray the point p* must be on the hyperplane PS. The information Alice 

has about PS is embodied in the inequality e' # b-lb'e (note that Alice knows PR and 

therefore b and c), and the knowledge that Pl,  P2 . . . . .  Pu are on PS. The latter 

conditions may be summarised by the equations 

' 1 " 1 Sl + a ' x  1 + b ' y  I + c ' z  I 1 r i m  I + . . .  +rnra n + = 

�9 U " ~ ' ' X k l  ~ r l m l  + . . . + r n m n  + Su + a + o ' y  u + c z u = 1. 

These equations may be rewritten as 

�9 / , 1 o 
s )  = 1 - r i m  I - . . . - r n m  n - a*x  I - b*y I - c z I 

(1) 

�9 ' k l  " u " " 

s u = 1 - r l m  I - . . . - r n m  n - a x u - b ' y  u - c z u. (2) 

It is clear that these equations place no restrictions on the collection of unknowns 

{rl', r2', . . . .  rn', a', b', c'} as Sl', s2', . . . .  Su' are uniformly distributed independent 

random variables. Consider the expression 

r l m l + . . . + r n m n  + Su + a x*  + b y *  + c z . ( 3 )  

This must be 1 if M* is to be accepted by Ray. Substituting for Su' from the last 

equation of (2) into (3) gives 

* " " * - m ~ )  + r l ( m !  - m I )+ . . .  + r n ( m  n 

a ' ( x *  - x u )  + b ' ( y *  - yU)  + c ' ( z *  - z u )  + 1. ( 4 )  

Since mj* - mj u ~ 0, then the fact that r'j is independent of r'l, r'2 ..... r'j-1, r'j+l, 

.... r'n, a', b', c' means that (4) has a value equally distributed among the numbers 0, 
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.... p--1. Thus the probability that Ray will accept p*(and so M*) will be at most 

1/p. Attack 2 may be analysed similarly, and the details are omitted. In this case 

Ray does not know PA but must form a point on PA that is different from any point 

previously sent by Sally. 

In Attack 3, Sally sends a message that is accepted by Ray as coming from Sally, and 

later attempts to deny that the message was sent by her. For this attack to succeed 

Sally must form a point on PR and PS which is not on PA- As in the analysis of 

Attack 1, assume that u messages have been sent received and validated and that p* = 

(ml*,  m2* . . . . .  mn*, 0, 0 . . . . .  0, 1, 0, 0 . . . . .  0, x*, y*, z*) is such a candidate 

point. It is straightforward to show that the collection of possible hyperplanes PR 

that may correspond to PA' and PR' may be expressed by the linear forms 

(1 - t)lPa, l + tIPR, I, where t ~ 0 ( from b ~ 0). (5) 

Consider the expressions 

glml+...+gnm~ + h u + dx" + fz",  

g'lm"l+...+g'nm'n +h 'u+d'x"  +e'y" .  

(6) 

(7) 

Let (6) and (7) have the values ql and q2 respectively. If p* is not on PRnPA = 

PR,nPA, then either ql ~ 1 or q2 ~ 1. If p* is on PRnPS and therefore on PR then 

combining (5), (6) and (7) 

(1 - t)q! + tq2 = 1. (8) 

If q2 ~ 1 then from (8) q l -q2  ~ 0, and (8) may be written as t = (1-q2)/(ql-q2).  

Given that t may take any value modulo p except 0 (from (5)), there is a probability 

of at most 1/(p--l) that (8) will be satisfied, and that Ray will accept p*. If q2 = 1 

and ql ~ 1, then (8) cannot hold (since t ~ 1) and so Ray will not accept p*. This 

completes the proof. //. 

5 Efficiency 

The length of codewords is nw+31og2(p) which is just 31og2(p) bits longer than the 

source messages they convey. The amount of key information shared is 
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(4(n+t)+10)log2(p) which allows for t messages to be sent. For large t this tends to 

41og2(p) bits of key per message. On the other hand in a simple unconditionally 

secure authentication channel (without arbitration) eodewords must convey the 

message as well as contain the result of any one of 1/P authentication functions 

(where the probability of a successful attack is at most P). It is not dificult to see 

that this requires eodewords of length at least nw+log2(1/P) bits (see [8] for example). 

The sender and receiver must also agree on one of 1/P authentication functions, which 

requires at least log2(1/P) bits of shared key. Now in any arbitrated authentication 

scheme as described here each message from Sally to Ray must also (and 

independently) be an unconditionally secure communication from Ray to Alice (for 

Type 3 attacks) and from Sally to Alice (for Type 2 attacks). It would appear then 

that the average length of a eodeword must be at least nw+31og2(1/P), and the amount 

of key data shared at least 31og2(1/P). 

Since log2(1/P) > log2(l>-l) the scheme presented is essentially optimal with respect 

to codeword lengths (within 31og2(p)-31og2(p--1), which tends to 0 for large p). 

From the argument sketched above it would appear that when many messages are sent 

the amount of key data per message used approaches, at most, 1/3 more than that 

required by any such system. 

In comparison the scheme of [1] uses an amount of shared key data proportional to 

nlog2(p), and codewords of length four times that of the source messages conveyed (or 

4nw). Furthermore it is not well suited to sending long messages as it involves the 

multiplication of integers that are as long as the messages. 
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