
Single-Term Divisible  Electronic Coins 

Tony Eng 1 and Tatsuaki  Okamoto 2 

1 MIT Laboratory for Computer Science 
545 Technology Square 

Cambridge, MA 02139, USA 
Email: tleng@theory.lcs.mit.edu 

2 NTT Laboratories 
Nippon Telegraph and Telephone Corporation 

1-2356, Take, Yokosuka-shi, Kanagawa-ken, 238-03 Japan 
Email: okamoto@sucaba.ntt.jp 

A b s t r a c t .  In the literature, only one "divisible" off-line electronic cash 
scheme has been presented [OO91]. In this paper, we present the con- 
struction of more efficient "divisible" off-line electronic coin schemes that 
are "single-term". We examine some coin systems based on the "dispos- 
able authentication" paradigm [OO89], and show that a specific type 
of "disposable authenticated" coin system can be extended to handle 
divisible coins using our techniques. 

1 Introduction 

Recently, much research has been performed in the area of off-line electronic 
currency [Bra93, CFN88, DP92, Far93, FY93, 0 0 8 9 ,  OO91]. Protocols have 
been proposed enabling consumers to withdraw "electronic coins" from a bank, 
and later spend these coins at a shop in an "off-line" manner.  Here, off-line 
refers to the proper ty  that  communication with a bank or authorized center is 
unnecessary during the payment  protocol. A "divisible" coin worth some amount  
of money, say $x, is a coin that  can be spent several times as long as the sum 
total  of all its the transactions does not exceed $x. 

So far, only Okamoto and Ohta  have shown the construction of a divisible 
off-line electronic cash system in [OO91]. Brands touched upon the possibility of 
realizing divisibility with his scheme [Bra93], but  did not achieve it in the sense 
of [OO91]. Pailles' divisible coin construction[Pai92] is inefficient. The communi- 
cation complexity during payments  (i.e., the size of a divisible coin) is linear in 
N where N = (the total  coin va lue) / (minimum divisible coin value). A system in 
which a coin worth $367 consists 367 $1 coins is a rather  unwieldy and inefficient 
divisible cash system. In contrast,  the communication complexity of payments  
in [OO91] is of the order of log N. (This is the real reason why a binary tree is 
used in [OO91].) 

However, there are two shortcomings of [OO91]: the amount of communica- 
tion tha t  occurs between the merchant (shop) and the bank, and the required 
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memory size of the database maintained by the bank. Since their scheme utilizes 
a cut-and-choose method, a paid/deposited coin consists of many terms (e.g., 40 
terms), and hence, the resulting complexities can be quite large. 

On the other hand, Brands [Bra93] and Ferguson [Fer93] have proposed "sin- 
gle term" coin systems, which do not utilize the cut-and-choose method, but 
coins in these schemes are not divisible. 

In this paper, we exhibit a divisible off-line electronic coin system which 
resolves the efficiency problem of the Okamoto-Ohta scheme. Moreover, our new 
scheme is a single-term coin system. The communication complexity and memory 
requirements of our scheme are less than 1/10 of those of the Okamoto-Ohta 
scheme. 

In fact, we will see later that  our techniques can be applied to certain basic 
coin schemes that use the technique of "disposable authentication"[OO89] to 
catch double spenders. 

The paper is organized as follows: Section 2 creates a basic framework from 
which we proceed to explain our protocols. In particular, this section includes 
notation, assumptions, a brief overview of our approach to realizing divisibility, 
and an informal description of the "key trick" (disposable authentication) used 
in our construction of divisible coins. Section 3 presents our single-term divisi- 
ble cash scheme based on discrete logarithms. Section 4 examines the security 
and efficiency of the scheme proposed in Section 3, Section 5 shows a general 
construction based on disposable authentication, and Section 6 concludes this 
paper. 

2 B a s i c  F r a m e w o r k  

2.1 Notat ions  and Assumptions  

Let p and q be large primes such that  ql(P- 1). The notation z E/~ X means that 
x is randomly and uniformly selected from X. Also, let ]] denote concatenation 
and let Ixl be the length of the binary representation of z. If b is a bit, let 
represent the negation of b. Let 7-/ : {0, 1}* --~ {0, 1} 21ql be a polynomial-time 
computable one-way hash function. 

For the remainder of this paper, let the root node of a binary tree be denoted 
by no. We will reference all nodes from the root in the following manner: consider 
the path from the root node to a given node, and let '0' represent a left branch 
and '1' represent a right branch. In this manner, the children of the root node are 
n00 and n01, and their children are n000 and n001, and n010 and n011 respectively. 
Note that  there is no node with the label nl.  

2.2 Overview of  Divis ib i l i ty  

We will adopt a binary tree approach as [OO91] did. Each coin of worth w is 
associated with a tree of (1 + log w) levels and w leaves. The tree can be thought 
of as a collection of w paths of length (1 + log w), each originating from the root 
and terminating in a leaf. Call these rou~es. 
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Each node of the tree represents a certain denomination. The root node is 
assigned a monetary value of w, and the value of all other nodes is found by 
halving the value of the node's parent. With this tree, we will show that  for a 
single coin of worth w, it will be possible for a consumer to engage in several 
transactions, such that  the sum total of the amounts of each transaction is less 
than or equal to w. 

We can think of each node as being represented by a line, in such a way so 
that  the consumer's identity is encoded in the line's parameters, and the lines 
of nodes belonging to the same route are related in some way. A node becomes 
"used" when the consumer reveals a point on the node's corresponding line and 
some information about the lines of ancestor nodes. During each payment,  a 
subset of nodes (actually, a forest of trees) will become used; in particular, a set 
of previously unused/unspent  nodes whose values sum up to the denomination 
being spent. After several transactions have occurred, in which parts of the same 
coin are spent, a collection of these used nodes will result. 

Divisibility can then be implemented under the following invariant: 

T h e r e  is at  m o s t  one  " u s e d "  node  on a n y  route .  

Having at most one used node on any route implies that  the set of transactions 
involving the coin so far is legitimate and vice versa. Violation of spending rules 
will result in violation of this invariant. If the invariant is not upheld, then there 
are at least two used nodes along some route, and the defining line equation of 
one of these nodes can be recovered. Note that  in our scheme, this also includes 
the case when the s a m e  node has been spent twice (as we will make use of 
different challenges to obtain two distinct points). Here, detection as well as 
identification of the perpetrator,  will ensue. 

2.3 B a c k g r o u n d  T e c h n i q u e  

We make use of "disposable authentication" techniques [0089] to construct 
our divisible coin systems. By applying these techniques, we adapt a modified 
version of the Schnorr identification scheme ( the Okamoto scheme [Oka92], and 
more generally the Brands scheme for "representation problem" [Bra93]) for our 
purposes. 

Briefly, in [Oka92], a Prover (P) has a public key m -- g l~ lg~  x~ mod p (the 
order of gt and g2 is q in Z~) and proves to a Verifier (V) that  it knows private 
key (xl ,  x2) using the following protocol: First, P randomly selects (r t ,  r2) and 
calculates/~ = g l r l g 2  r: mod p. Then V returns a challenge message a, and P 
sends Yl = rl  + ax l  mod q and Y2 " -  r2 + o~x2 mod q to V who verifies that  

? 

g l Y l g 2  y~" ~ /3m ~ (mod p). 
Here, (rl ,  r2) is chosen randomly, and the Verifier obtains no information 

regarding (xl ,  x2). Notice that  if the choice of (rl ,  r2) is fixed for two different 
challenges, c~ and a~, then the values of the secret (x l ,x2)  can be found. 

Knowing this, we adapt this scheme as follows: we view an electronic coin as 
a public key m (that  is blindly signed by the bank). The value used for (r~, r2) 
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will depend on the node of the binary tree that  is being spent. Note that  all 
(rl ,  r 2 ) ' s  will be randomly correlated, and once decided upon, will be fixed in 
the bank's signature for a coin, and hence cannot be altered. In this respect, if 
the same node is spent twice, the same (rl, r2) value is used, and all information 
can be recovered. 

3 Construct ion 

In this section, we outline the various protocols in our single-term divisible elec- 
tronic coin scheme. 

When the customer wants to withdraw Sx from the account, an electronic 
coin of worth $x is then obtained by executing the withdrawal protocol with the 
bank. 

3.1 T h e  W i t h d r a w a l  Protocol  

The protocols in our scheme are based upon those of Brands'  scheme. In partic- 
ular, our opening protocol has origins in Brands' withdrawal protocol. 

Let p, q, g, gl, g2 be system parameters published by the bank where the order 
of g, gl and g2 is q. Let I = g~ mod p be the identity of a customer U and let u 
be U's secret key. 

T h e  M a i n  P r o t o c o l  Assume the consumer wishes to withdraw a divisible coin 
worth w = 2 z dollars from his account at bank B, and assume also that B has 
a public key h = g~ mod p which corresponds to w = 2 t dollars 3, where x is B's 
secret key. 

The withdrawal protocol (main protocol) is as follows: 

1. U executes the precomputation stage (described later in Sections 3.1). As a 
r0,1g o,  (note to (r0,111r0, )). result of this stage, U obtains T = gl u mod p = 

Customer U sends his identity, I = g~' mod p, to bank B. 
2. B subtracts w = 21 dollars from U's account balance. B forms the number 

m = Igu  mod p. B chooses w En Zq and sends z = m x mod p, a = gW mod p, 
b = m ~ rood p to U. 

3. U generates random numbers s , t ,  v E R  Zq ,  and calculates m'  = m 8 mod p 
( = g~Sg~ modp) .  U also computes z '  = z s mod p, a'  = a~g v mod p, b' = 
b ~ ( m ' )  ~ mod p, e' -- 7-/(m', z' ,  a' ,  b', T), and c -" c ' / t  mod q. U then sends e 
to B. 

4. B responds with r = x c  + w mod q. 
5. U then calculates r '  = rt + v mod q after checking the validity of z, a, b and 

r by verifying that m r - zCb mod p and gr _ h~a mod p. 

3 Different public key values can be used for different denominations. Note that the 
actual worth of a coin is nevertheless independent of the coin structure and the 
protocol definitions; this gives different schemes flexibility in handling the encoding 
of a coin's worth. 
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Now, as a result of this protocol, the consumer obtains the following quanti- 
ties: 

m',  T,  s ign(m' ,T)  

where m' = (g~g~ mod p) and sign(m', T )  = {z' ,  a', b', r ' ) .  Note that  verification 
of the signature entails checking that: 

g~' ~ hd a ' (mod p), (1) 

m r' ~- (z')e'b ' (mod p), (2) 

b', T). (3) 

P r e c o m p u t a t i o n  S t age  As mentioned earlier, divisibility is implemented us- 
ing a binary tree structure. The root of the tree represents the full value of a 
coin, and all descendants of the root denote various subdenominations of the 
coin. 

We will associate seemingly random values with each node of the tree. In 
particular, we will first choose random values for the leaves of the tree, and 
based on these, compute values for all other internal nodes. In this manner, we 
proceed up the tree until we find a value for the root node. And it is this value 
that  is fixed and encoded in the coin. A more detailed description of this process 
is as follows: 
P a r t  1: C o m p u t a t i o n  o f  t -va lues  a n d  r -va lues  fo r  L e a f  N o d e s  

Assume the consumer wishes to withdraw a divisible coin worth w = 2 z 
dollars. The consumer selects a random value e as a secret seed value. 

For a node nojlj2 ..j,, ji E {0, 1}, we denote its "t-value" by t o j l j  2 ..Jr, and 
when nojlj2., j, is a leaf of the tree, its t-value is defined as: 

tojlj~., jz = 7t(e]lOjlj2...Jl). 

Suppose fe is a pseudo-random function (e is an index to a family of pseudo- 
random functions) [GGM86], then the t-values given by tojj2.. .~ = fe(Ojlj2. . . jz)  
are theoretically secure (indistinguishable from random strings). 

Now, from a node's t-value, we define its 2 "r-values" as 

tOjlj2." j~ = (rojlj~.. . j~,l[IrOj132.. . j~,2) where rojlj2..j~,i E {0, 1} Iql. 

Note that  there are other methods to efficiently calculate leaf node t-values from 
a seed value e, and that  any of these can be used in our scheme if it produces 
leaf node t-values that  are indistinguishable from pseudo-random strings. 
P a r t  2: C o m p u t a t i o n  o f  t -va lues  a n d  r -va lues  fo r  I n t e r n a l  N o d e s  

Now begins the process of computing t-values for all internal nodes. The t- 
value of an internal node n0jl~: .~ is dependent upon those of its children. So, 
if the t-values of its left and right children are respectively given by: 

tOj,j2...3~O = (roj~j~...j~0,1 Ilroj,j2...j~o,2), 

t0~lj~...j~l = (r0jlj~..j~l,~ Ilr0jlj,_...j~,~), 
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then, its t-value is found by computing: 

t o j l j 2 . . . j ~  = 

7/( 7t (glr~176 gur~176 mod p)llT/(glr~ g2r~ mod p)). 

Using this formula, the consumer computes his way up the tree until he obtains 
to, the t-value of the root node. An example of this computation for a small 
sample tree is given in Subsection 3.4. 

3.2 P a y m e n t  

Payment consists of two stages: coin authentication and denomination revelation. 
During the coin authentication phase, the merchant verifies that the coin bear 
the bank's signature. During the second phase, the consumer reveals information 
about a certain set of nodes in the coin's binary tree representation depending 
on the denomination being spent. These stages are described in more detail as 
follows: 

Coin Au then t i c a t i on  The consumer supplies the merchant with m' (= g~g~ 
modp), T, sign(re', T) = {z', a', b', r'}. The merchant checks that m' # 1 mod p 
(i.e. s ~ 0 mod p -1 ) ,  and verifies the bank's signature of m' and T by computing 
c' and seeing that Equations (1), (2) and (3) hold. 

Denomina t ion  Reve la t ion  To spend node nojlj~..4k: 

1. The consumer reveals n0jlj2..j~ 's contribution to the t-value computation of 
its ancestor nodes: 

80, lJ2. jk = g~O,,,2-..,~,~ g~O,m...J~,~ mod p. 

2. Next, the consumer reveals: 

7~(glOJ~J2 ..~k,1 g o~lJ2...~k,2 rood p), 

% .~k-~,~g~O~1~2-.-?~7-1,2 mod p), .~Y 3132, 

7/(g1~176 mod p), 
~o~,~ %7~,: 

7/(21 22 mod p), 

This is all the information that is needed to compute the t-values for all 
ancestors of node noj~j~.. Jk. 

3. Using the values from Steps 1 and 2, the merchant starts from noj~j~...jk and 
proceeds up the tree, computing the t-values for each node from noj~j2 .Jk-~ 
to the root node inclusive, obtaining the root t-value to, from which the value 
for T and consequently, the signature of m ~ can be verified. 
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4. The merchant issues a challenge ~ 6 Z~. Here, a is a function of the date, 
time, merchant identity, and other variants. 

5. The consumer supplies the following responses: 

Yl : roj~j2...jk,1 + (~(us)  rood q, 

Y2 = rojl j2. . . jk ,2 A- (~s mod q. 

(4) 
(5) 

6. The merchant checks that  

? 
-" ~ /m'~" (mod p). (gl)Y~(g2) y2 = p o j x j 2 . , . j ~  ) 

Once again, note that  from this technique, the t-values (and hence r-values) 
of all  direct ancestors of noj~j2_. j~,  including that of the root node, are revealed 
to the merchant (and bank). 

Let the value of coin (m' ,T,  sign(m',T)) be $2 z and assume customer U 
wishes to spend $x of it (x < 21). Let the (l + 1)-bit binary representation of x 
be bl b2 . . . bl+ l where bi 6 {0, 1}, and let v = # { bi I bi = 1 ,1  < i < l +  1} he the 
Hamming weight of x. If bi = 1 (i.e., the i-th most significant bit is 1), a node of 
the i-th level is spent. Hence, v represents the number of nodes that  will become 
used as a result of this $x transaction. 

For example, if x = "0100100" then l = 6, u = 2 and no0 (a node of the 2nd 
level) and u01000 (a node of the 5th level) will become used and spent (assuming 
no nodes on their routes have been previously used). The following information 
is then given to the merchant: 

}~00 too,1 to0,2 = gz g2 mod p, 
7"01000,2 ~0100o = g[OlOOO.1 g2 mod p, 

~.~/ rOlO01,1 f01001,2 
(gl g2 mod p), 

U(gZ~ 01~ rood p), 
~L~/ rOll,1 7"011,53 (gl g2 mod p). 

Therefore, there will be u ~ values (from Step 1). Furthermore, if 1' is the 
smallest value such that  bi = 0 for all i > l' (l' _< l + 1), and if the u spent nodes 
are optimally selected, then (l' - u) hashed values are revealed in Step 2. In our 
example with x = "0100100", two ~ values and three hashed values are revealed 
since u = 2 and 11 - -5 .  

Thus, the consumer transfers (u(IPl + 2 [q [) + 2(1' - u)Iq I) bits to the merchant. 
In the preliminary step, the consumer should give (51pl + Iql) bits to the merchant 
(for m', T and the signature). 

3.3 Deposit 

Deposit is as before; a transcript of payment is forwarded to the bank. 
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3.4 Example  

To illustrate our technique, we will consider a coin of worth $4 and show how to 
spend $1 of it. 

Before withdrawing the coin, we first select a value for e and compute the 
t-values for the leaves, finding them to be: 

tooo - -  ~ (e l lOOO) ,  too, - ~ ( e l l O O l ) ,  to,o = ~ ( e l l O l O ) ,  to l l  - ~ ( e l l O l l ) .  

To find the t-values of the other internal nodes, we compute the following: 

t o i l s 2  = (royj~,,llroi1~,~), Vjl,j2 E {0, 1} 

to1 = L Lgl g2 modp){{ Lgl g2 modp)), 

= (r01 :  IIr01,2). 
~*.'~..~/ rooo,l rooo,~ \,,~.~/ 7"001,1 ~'001,2 

too = re( Lgl g2 mod P){I tgl g2 mod p)), 

= (r00,111r00,~). 
,~.~ / ~.~ i r00,1 to0,2 rOl,l rOl,2 

t o =  L tgl g2 modp)llT/(gl g2 modp)). 

to 

tooo tool tolo ton 

Fig. 1. Finding t-values of Internal Nodes 

Figure 1 depicts this part of the computation for a sample tree corresponding 
to a coin worth $4. 

Having obtained the t-values for the root node no, we can find and use T in 
the computation of d during the withdrawal protocol. 

After obtaining a coin g~Sg~ mod p (unrecognizable by the bank because of 
blinding factor s), node n001 can be spent by revealing' glr~176 g2r~176 mod p. 
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7~i rOl,l rol,2 7// rooo,1 rooo,2 rood p) and I g 1 g2 mod p) so We also need to reveal [gl g~ 
that  the merchant(bank) can compute to and verify T. Notice that in the process, 
the bank is able to find the value of too (and hence r00,1, r00,~) as well. Thus, if 
nodes no or n00 are later spent (which would lead to double spending), then the 
resulting equations can be solved to find the identity of the cheater. 

Finally, in response to the merchant's chMlenge a, we respond with: 

Yl = r001,1 + c~(us) mod q, 

Y2 = r001,2 + as  mod q. 

Notice that  when the same node is spent twice, we have a set of equations for 
two different challenges (since the r-values, u and s remain the same), and as a 
result, we can completely solve this system of equations for all the variables. 

3.5 M o d i f i c a t i o n s  

Here we discuss three possible modifications to our scheme presented above: 

1. Our scheme can be easily modified to handle the case when the customer's 
identity is given by I ul u~ =gl g.~ modp .  

2. As in [0089,  OO91], the electronic cash in our proposed scheme can be 
easily modified into a scheme with an electronic license and electronic coins 
as follows: An electronic license (m', sign(m')) is issued by the bank to a 
customer during an "opening protocol". Here, s ign(m')= {z',a', b' ,r '} ,  and 
c' = 7-/(m', z', a', b'). A coin worth $2 t, (T, sign(T, m')), is withdrawn to a 
user through a "withdrawal protocol". Here, sign(T, m')  is a blind signature 
of (T, m')  by bank B. (Any blind signature scheme can be used here, such as 
the RSA blind signature [Cha85] or the Schnorr blind signature (Appendix 
B of [Oka92])). 

3. Our proposed scheme can be modified to exhibit transferabilily by using 
approaches equivalent to those described in [0089,  OO91]. 

4 E v a l u a t i o n  

4.1 S e c u r i t y  

In this subsection, we informally describe the security of our scheme. In our final 
paper, we will t reat  the security more formally. 

We must ensure that  incorrect spending of a coin results in the discov- 
ery of a consumer's identity, while legitimate transactions preserve his privacy. 
What  constitutes incorrect spending? Violation of the aforementioned invariant 
(Section2.2) - namely, when any two nodes along the same path from a root to 
a leaf are spent. 

Let na and nb represent two used nodes that  are situated on the same path 
and thus violate the above invariant. Assume without loss of generality that  na 
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is the node farthest  from the root. From the information revealed in Eqs. (4), (5) 
when na was spent (during Denomination Revelation), we can immediately find 
the t-value and r-values for nb, and we can solve for s, u and hence the double 
spender 's  identity using the equations released for nb. 

When na and nb are the same node, we have two sets of equations differing 
only in the two challenges, and we have seen that  as part  of the Schnorr scheme, 
s and u can likewise be recovered. 

This s t ra tegy allows us to successfully identify the perper t ra tor  in cases of 
double spending; we must  also insure that  the privacy of honest consumers are 
also protected.  

Two totally unrelated nodes na and nb do not tie on the same route (i.e. 
not the same node and not direct descendents of each other). The r-values of 
either of them cannot be recovered from their ~ values, which are of the form 

rn~l r~,2 51 g2 mod  p, since that  would entail solving for the representation problem, 
nor can either be computed from the opened t-values of other ancestor nodes 
since 7 / i s  one-way. No useful equation relating the r 's  of node na to those of nb 

is available for easy manipulation, so we essentially end up with 4 unknowns and 
6 equations. Notice tha t  for each additional unrelated node that  is spent,  2 more 
equations are obtained, but 2 more unknowns are introduced, so as long as these 
nodes are unrelated, additional Denomination Revelation equations are of no use 
since the number  of unknowns continue to outnumber  the number equations in 
the resulting system. 

4.2 Ef f i c i ency  

For this section, let us assume that  IPl = 512 bits, Iql = 140 bits, and $1000 is 
an amount  tha t  is sufficient to meet a person's everyday needs, and moreover, is 
a quanti ty large enough to last him several days before needing to make another 
withdrawal. Assume a consumer is allowed to spend any amount from $1000 to 
$1 so tha t  we only need to consider a tree of 11 levels. 

We will see tha t  the average amount of communication and the required 
memory  size for one payment  is approximately 0.91 Kbytes. Here, a single pay- 
ment  consumes an average of 5.5 nodes; hence u = 5.5 and 1 ~ = 10.5. (see the 
remark of Subsection 3.2) We can assume a slight modification to improve the 
efficiency as follows: Assume there are two hash functions 7-Q, and 7-/2 such that  

t o j l j 2 . . j ~  = 

~t./1 (,~.~2 (g lo , , ,  ~ ..7~o,1 g;O,,32.. ,vo,~ mod t')ll~'"7/2tyl' ro, l,~_...j.l.~ ro,1,2...~, 1 , 2 y 2  mod p)). 

Here, 7/1 : {0, 1}* --* {0, 1} 21qt, and 7-12 : {0, 1}* ---, {0, 1}lql. Therefore, the 
amount  of data  transferred to the merchant for one payment  is (5.5 x (64 + 2 x 
17.5) + (10.5 - 5.5) x 17.5) + 64 x 4 + 17.5 = .9055 Kbytes on average. 

I f  little storage is available then spending a node necessitates the recalcu- 
lation of its t-value, perhaps even starting from scratch with e. On the other 
hand, memorizat ion of all t-values results in less computat ion (as relevant val- 
ues are simply looked up and retrieved), but demands more in terms of storage 
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requirements. To make our scheme practical, we seek a balance between these 
computational and storage complexities. 

We suggest the following: store the t-values for all nodes in the upper 7 levels 
of the tree, and compute any t-values of the lower 4 levels on a need-by-need 
basis. This requires about 2 ( 2 7 -  1)]q] bits of storage for the upper 7 levels. This 
quanti ty is less than 4.5Kbytes. 

Let us assume that  the cost of ~/ is negligible compared to that of modular 
exponentiation. Then, at most 4 nodes of the lower 4 levels are consumed during 
a given payment transaction. Therefore, (24 - 1) modular exponentiations need 
to be performed. If 1 modular exponentiation takes 50 ms to complete (assuming 
the usage of a t0 Kbps mod-exp chip or machine), then the payment protocol 
takes less than 1 second. 

5 G e n e r a l  C o n s t r u c t i o n  B a s e d  o n  D i s p o s a b l e  

A u t h e n t i c a t i o n  

While the construction described in the first part of this paper is based on 
discrete logarithms, this section introduces a general construction method based 
on disposable authentication, and shows that a divisible coin system using this 
general framework can be constructed from Ferguson's scheme [Fer93]. 

5.1 G e n e r a l  C o n s t r u c t i o n  

In this subsection, we show that any basic coin system based on a class of dispos- 
able authentication can be extended to become a divisible one. Let f ,  g, D, F, F '  
and G represent polynomial-time computable functions (in particular, functions 
f and g are one-way), and let H be a polynomial-time one-way hash function. 

For simplicity, we assume that  the underlying disposable authentication pro- 
tocol is a three move protocol (P,V) in which P and V represent a prover and a 
verifier respectively. If m is some input common to both P and V, then (P,V) is 
P's proof to V that  P knows some x such that m = f ( z ) .  

Basically, P generates random string r, and sends X = F (x , r ) .  Then, V 
returns a random challenge E to P, and P sends Y = D(z,  r, E)  to V, who 
checks the consistency of this conversation by computing G(m, X,  E, Y) .  For our 
extension to divisible coins later, we assume that X = F ( z , r )  can be efficiently 
calculated from m = f ( z )  and r (i.e., there exists an efficiently computable 
function F '  such that  X = F(z ,  r) = F'(m,  r)). 

Here, we construct a basic coin system based on the disposable authentication 
paradigm, using this three move protocol during the payment phase. 

(Withdrawal) A customer U selects u, sends I = g(u) to B, and obtains a 
"restricted" blind signature for m = f ( z )  from B, where z is a function of 
I.  Here, "restricted" means that  m is related to I such that  if B knows z, 
B can calculate u, although B can get no linckage between m and I without 
x. Then,  U generates a random string r and calculates X. This and m are 
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then sent to B and B releases a blind signature on H i m  ' X )  to U. A coin 
consists of m, X and B's signatures of m and H i m  , X) .  
Here, B knows that  I is the identity of U, but because B issues a blind 
signature, B is not aware of the relationship between m and U and hence, 
will not recognize m as belonging to U later on. However, if U double spends 
a coin, then u can be found, and so u serves as a witness that  U spent a coin 
twice. 

- (Payment)  Consumer U and merchant M enact the aforementioned basic 
three move protocol iU,M) when U wishes to spend coin X. Here, U sends 
m and X,  along with B's signatures of these quantities to M, M checks their 
validity and challenges U with a quantity E,  U replies with Y. If U uses 
the same coin (x )  twice, B can then find x (using an approach identical to 
that  of the knowledge extractor from the soundness property for interactive 
proofs of knowledge[OO89].) From x, B can proceed to find u and I = g(u). 

Now, we explain how to extend this coin system to handle divisible coins by 
applying the ideas from Sections 2.2 and 3.1. Here, Part  1 of the precomputation 
stage is exactly the same as that  of our proposed scheme, but  Par t  2 is slightly 
different in that  the r-values are implicitly included in the t-values; i.e., r-values 
are not used explicitly. So Part  2 becomes: 

 0j,j= = 5,1))) ,  

too = 

to = t01))) ,  

T = F'(m,  to). 

So during withdrawal, X = F(z ,  r) is of the form F(z,toj,j2.. .j ,) = F ' (m,  
tojlj2...jz ) (i.e., r = t0~xj=..j,). And when node rtojlj2...jz is spent, the relevant 
t-values and F '  values are revealed so that  to can be found and the value of T 
can be verified. 

5.2 Div i s ib l e  Co ins  B a s e d  o n  F e r g u s o n ' s  S c h e m e  

Using the same notation as [Fer93], we modify Ferguson's scheme to realize a 
divisible coin system. Customer Alice gets two RSA signatures from the bank: 
(CUA) 1Iv and (CB)  1/~. When Alice wants to withdraw a coin from the bank, 
she selects k ER Z,  and R ER Zn, and sends X = H(fl, A , B , C ) R  v to the 
bank, where H is a polynomial-time one-way hash function and fi = B k, and 
the bank returns X 1/~ to Alice. From this, Alice obtains H(fl ,  A, B, C) 1/~ . When 
Alice wants to pay at a shop, she reveals fl along with H(fl, A , B , C )  1/v, a, b,c. 
The shop calculates and verifies A = f~(a), B = h(b) ,  C = fc(c), checks the 
validity of H(fl, A, B,'C) 1/~, and replies with a challenge z. Finally Alice sends 
r = k + Uz mod v and the signature (CrA=~) 1/~ which she can easily compute 
from the two signatures she got from the bank. 
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The original Ferguson scheme is basically a two move (challenge and re- 
sponse) protocol. Roughly speaking, this corresponds to a modified three move 
version of Ferguson's scheme, in which the disposable authentication technique 
is employed. 

We can easily apply our technique to realize divisibility for this modified 
version of Ferguson's scheme in such a way so that: Part  1 of the precomputation 
stage is exactly the same as before. In Part  2, the t-values are equivalent to r- 
values (i.e., no distinction is needed between t-values and r-values), and 

to j ,~ . . . j ,  = 7~(~(B~~176176  

When node nojlj2 ..j, is spent, fl0~lj~., j, = B t~ Jz (i.e., k = tojlj2...j~). The 
linkage between an electronic coin and T = B t~ is done in a manner similar to 
that  Section 3.1. 

6 Conclusions 

We have presented here, the first single-term divisible coin system, that is more 
efficient than that  of [OO91]. In addition, we show that  a specific type of "dis- 
posable authenticated" coin system can be extended to handle divisible coins 
using our techniques - more specifically, such coin systems are characterized by 
the presence of a randomized term (e.g., F(x, r) in subsection 5.1) that  can be 
expressed as a function (e.g., F') of a public value (e.g., m) and a random vari- 
able (e.g. r).  FinMly, we use our techniques to transform Ferguson's electronic 
coin scheme into a version that  handles divisible coins. 
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