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Abstract  

In [9] Matsui introduced a new method of cryptanalysis, called Linear Crypt- 
analysis. This method was used to attack DES using 24z known plaintexts. In 
this paper we formalize this method and show that although in the details level 
this method is quite different from differential crypta~alysis, in the structural 
level they are very similar. For example, characteristics can be defined in lin- 
ear cryptanalysis, but the concatenation rule has several important differences 
from the concatenation rule of differential cryptanalysis. We show that the 
attack of Davies on DES is closely related to linear cryptanalysis. We describe 
constraints on the size of S boxes caused by linear cryptanalysis. New results 
to Feal are also described. 

1 I n t r o d u c t i o n  

In EUR.OCRYPT'93 Matsui introduced a new method of cryptanalysis, called Linear 
Cryptanalysis [9]. This method was used to attack DES using 24r known plaintexts. 

In this paper we formalize this method and show that although in the details level 
this method is quite different from differential cryptanalysis[2,1], in the structural 
level they are very similar. For example, characteristics can be defined in linear 
cryptanalysis, but the concatenation rule has several important differences from the 
concatenation rule of differential cryptanalysis. We show that the attack of Davies[5] 
on DES is closely related to linear cryptanalysis. We describe constraints on the 
size of S boxes caused by linear cryptanalysis. New results to Feal[15,11] are also 
described. 

2 O v e r v i e w  o f  Linear  C r y p t a n a l y s i s  

Linear cryptanalysis studies statistical linear relations between bits of the plaintexts, 
the ciphertexts and the keys they are encrypted under. These relations are used 
to predict values of bits of the key, when many plaintexts and their corresponding 
ciphertexts are known. 

Since all the operations in DES, except the S boxes, are linear, it suffices to derive 
linear relations of the S boxes. These relations are derived for each S box by choosing 
a subset of the input bits and the output bits, calculating the parity (exclusive-or) of 
these bits for each of the possible inputs of the S box, and counting the 'number of 
inputs whose subset's parity is zero. If the S box is linear in the bits of the subset, all 
the inputs must have a zero parity of the subset. If the S box is affine in the bits of 
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the subset, all the inputs must have parity i. Usually, a subset will have many inputs 
with parity 0 and many inputs with parity i. As the number of zeroes is closer to 
the number of ones, we will say that the subset is more non-linear. The least linear 
subset under this definition is one whose half of the inputs have parity zero, and the 
other half inputs have parity I. 

Matsui has calculated the number of zero parities for each of the 64 �9 16 = 1024 
possible subsets of the input and the output bits of each S box. To represent the 
subsets' linearity in a simple manner, he subtracts from these numbers the number of 
half of the inputs. This way, zero values denote non-linear subsets, and high absolute 
v'Mues denote linear/aaCflne or close to linear/a/l~ne subsets. A table which describes 
all these values for all the possible subsets of an S box is called a linear approzirnation 
table of the S box. Table I is the linear approximation table of $5 of DES. In this 
linear approximation table, we can sec that 30% of the entries have value zero. 

The highest absolute value in the linear approximation table of $5 is -20 in entry 
(10=,F=). Therefore, only in 12 out of the 64 inputs, the parity of the four output bits 
is the same as the value of the second input bit! This entry was actually described by 
Shamir[14] in 1985, but it was later described as a necessity from the design criteria 
of DES, and nobody knew to point out whether it weakens DES. This specific entry, 
which is the most linear entry of all the S boxes of DES, is actually one of the three 
entries used in Matsui's attack. 

Matsui's solution was to find a statistical linear expression consisting of a parity 
of subsets of the plaintext, ciphertext and the key, which is derived from similar 
expressions of the various rounds. Thus, the parity of some set of data bits in each 
round is known as a function of the parity of the previous set of bits in the previous 
round and the parity of several key bits. The round-linearization is based on the 
linearization of the S boxes. If we would XOR the same value to the two halves of 
the data, we would remain with the same parity as before the XOR. Since the subset 
of the input bits is statistically linear/alIine to the subset of the output bits, the 
parity of the data after the XOR is usually the parity before the XOR XORed with 
a particular key-dependent constant. 

The probability that the approximation in an S box is valid is given as the distance 
from half; for example the probability of the above entry with value -20 is p' = 
12/64 = 1/2 - 20/64. An entry with value 0 has probability p' = I/2; such an entry 
is useless to attack an cryptosystem. Any other non-zero value (either positive or 
negative) can be used in attacks. An approximation may involve more than one S 
box. We will follow Coppersrnith[4] and call the S boxes involved in the lineariz&tion 
active S boxes. The probability of an approximation with two active S boxes is 
p~ �9 p~ + (I - p~) �9 (1 - p~), since the parity is even if either both parities of the 
approximations of the two S boxes are zero, or both axe one. For simplicity we denote 

the probabilities with the notation Pi by their distance from half p~ = 1/2 q-Pi. Then, 
the combined probability is 1/2 + p = 1/2 + 2- Pa" P2. In general, if an approximation 
consists of I S boxes, the combined probability is i/2 + p = i/2 + 2 t-1 �9 I-I~=~ p~. 

When a linear approximation with probability 1/2 + p is known to the attacker, 
he can mount an attack which requires about p-2 known plaintexts; these plaintexts 
can be randomly chosen, but all of them must be encrypted under the same key, and 
the ciphertexts should be known to the attacker as well. 
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The basic method of linear cryptanalysis finds only one bit of the key, which is 
a parity of a subset of the key bits. Auxiliary techniques of reducing the number 
of rounds of the approximations, by eliminating the first and/or last rounds, and 
counting on all the key bits affecting the data at the rounds not in the approximation 
can reduce-the number of plaintexts required, and increase the number of key bits 
that the attack finds. 

3 A Study of Linear Cryptanalysis 

Before we formalize the linear approximations by defining characteristics, we feel it 
is very important to mention that the bits we set in the characteristics are not the 
actual values of bits (or bit-differences as in differential cryptanalysis); the bits we 
set denote the subset of bits whose parity is approximated. The expected parity itself 
is not directly denoted; however, the reader can easily identify the expected parity 
from the probability of the characteristic: if the probability is more than half, the 
expected parity is zero, and if the probability is less than half, the expected parity is 
one. 

Another very important topic is the key space used in the analysis of linear crypt- 
analysis. There is a difference between the key space of the analyzed cryptosystem 
and the key space that the attack can handle. In differential cryptanalysis it was 
mentioned that the attacks assume that independent keys are used. The independent 
keys were defined as follows[l]: 

Defini t ion 1 An independent key is a list of subkeys which is not necessarily deriv- 
able from some key via the key scheduling algorithm. 

Each key in the cryptosystem's key space has an equivalent independent key derived 
by the key scheduling algorithm. We observe that linear cryptanalysis also assumes 
the use of independent keys. The theoretical analysis of systems with dependent keys 
are much harder. However, in practice it can be very well estimated by the analysis 
of the independent key variants. Therefore, Matsui's method to find 14 bits of the 
subkeys still hold even if independent keys axe used. Other auxiliary methods can 
then be used to find the other bits of the first and the last subkeys (possibly using 
additional characteristics), and to reduce the cryptosystem to a cryptosystem with a 
smaller number of rounds, which is easier to analyze. 

Defini t ion 2 A one-round characteristic is a tuple (~p, I~T,~K, t /2  + p), in which 
(fll')L = (I~T)L = A, (~p)R ~ (I~T)R = a, and in which 1/2 + p is the probability that 
a random input block P ,  and its one-round encryption C under a random subkey K 
satisfies P -  ~p (~ C.  nT (~ K-  ~K = 0, where '-' denotes binary scalar product of two 
binary vectors, ~ e  is the subset of bits of the data before the round, ~ r  is the subset 
of bits of the data after the round, and ftK is the subset of bits of the key whose 
parity is approximated. 

As in differential cryptanalysis, it is quite easy to derive one-round characteristics 
with one active S box: we only have to choose a non-zero entry in one of the S boxes, 
and choose the subsets ~p,  ~T, ~K as the round-function requires. The following 
one-round characteristic has only one active S box, and it was chosen to maximize 
the probability, thus it uses the maximal entry in $5: 
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( o , ) ft~, = (21 04 00 8 z, R ) 

~ . A ' =  21 0400 so~ = ~ - - ] .  a' =00 00 S0 O0~ 
P(OO oo F0 00~) 

The best one-round characteristic does not have any active S box. This characteristic 
has probability 1: 

with probability 1/2 - 20/64 

one affected key bit 

ne = (o, n') ) 

~ = m' = 0 ~ - ~ ,  a' = 0 

( ~T = (o,R'). ) 

with probability 1 

no affected key bits 

We can also derive one-round characteristics with more than one active S boxes: 
in this case we should choose the entries in two or more S boxes. However, unlike in 
differential cryptanalysis, we do not need to have the same values in common input 
bits of both S boxes (due to the E expansion), so if we affect bits common to two 
S boxes, it is not necessary that both S boxes would be active. Moreover, if both 
S boxes are active, the value of the common input bits becomes the XOR of their 
values from both S boxes, since we use the same bit twice in a linear equation, and 
thus it cancels itself. Note that in theory, the probability we receive in that way is 
the average between all the possible random keys. In practice, in DES the probability 
holds for all the keys, due to the design rules of the S boxes[4]. 

We can also concatenate characteristics (and define n-round characteristics recur- 
sively): 

1 1 1 Def in i t ion  3 An n-round characteristic fll = (tip, f ir ,  F~K, 1/2 + 101) can be con- 

catenated with an m-round characteristic f12 ~ 2 = (tip, nT, fl~, 1/2 + / ~ )  if fl~ equals 
the swapped value of the two halves of f ~ .  The concatenation of the character- 
istics ~ql and ft 2 (if they can be concatenated) is the (n + m)-round characteristic 
~ =  1 2 1 2 (~'~P, ~'~T, ~-~K ~ ~'~K, 1/2 + 2 .  PI" p2). 

When we concatenate 1 characteristics (that can be concatenated) the probability of 
the resultant characteristic is 1/2 + p = 1/2 + 2 t-1 �9 1-I~=1Pi. 

A strange situation occurs for n-round characteristics: Whenever an XOR opera- 
tion exists in the cryptosystem (excluding XORs with subkeys within the F-function), 
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the values of both its arguments in the characteristic must be the same, and this value 
is also the output of the "XOR operation". Whenever the data is duplicated (when 
the right half of the data is input to the F-function and also becomes the left half 
of the next round), both "duplicated" outputs may not be the same as the input, 
only their XOR value should be the same as the input. This phenomena is just the 
opposite to the usual operations in the cryptosystem, where an XOR operation XORs 
the inputs and duplications duplicates the input; in our case, an XOR. operation du- 
plicates the input, and duplications XOR the input with one of the original outputs 
to form the second output. This phenomena causes a basic difference between linear 
cryptanalysis and differential cryptanalysis, which can be easily viewed in the one- 
round characteristic with probability 1: the free variable in the linear cryptanalysis 
characteristic is at the right half, while in differential cryptanalysis it is at the left 
half. 

This phenomena is easily understood when we remind the meaning of the values 
in the characteristics: they are not actual values, neither XORs of actual values; They 
only describe the subset of bits whose parity is statistically known. In order to know 
the parity of bits of the output of an XOR operation, we should know the parities 
of the same subsets of bits both inputs, and then we known the parity of the same 
subset of the output. 

When we duplicate the data, we may know parity of a subset of bits. However, 
since we do not wish to use these bits twice (in which case one use will cancel the 
other use by the parity), we should use each set bit once~ either in one output or in 
the other output. It is also possible to use a bit which is not set in the input to the 
duplication, in which case a zero bit become one in both outputs. In this case, both 
usages cancel each other by their parity, and thus the same effect as of the original 
zero remains. 

An important difference between linear cryptanalysis and differentia[ cryptanal- 
ysis is the ability to use differentials[6,7], in which only the values of ~p and f i t  
matter. In differential cryptanalysis, whenever several characteristics have the same 
values for f/p and ~'~T, they are developed on top of each other: they can be viewed 
as one differential, and their internal information can be ignored. In linear crypt- 
analysis, the internal information contains the information about the subset of key 
bits participating in the linearization. Thus, if two characteristics with the same val- 
ues of ~2p and ~'~T and with a similar probability exist, they might cancel the effect 
of each other if the parity of the subset of the key bits is not the same (or if their 
probabilities are the complement of each other and the parity of the sub~et of their 
key bits is the same). Therefore, we should be much more careful when we claim for 
linear cryptanalysis' characteristics. However, if the attacker knows of all the different 
characteristics whose effect might be canceled, he can find one (parity) bit of the key 
whenever he identifies that the effect is canceled. 

Davies[5] investigated an attack against DES based on the non-uniform distri- 
bution of the outputs of pairs of adjacent S boxes, when their inputs are uniformly 
distributed. He assumes the uniform distribution in the inputs to the even rounds (or 
alternatively the odd rounds), and studies the resultant distribution in the outputs of 
these rounds. As a result, he receives a key-dependent distribution, which depends on 
the parity of several key bits. Using a large sample of known plaintexts, he can find 
this bit. His algorithm can be applied to any pair of adjacent S boxes, and to even 
or odd rounds, thus he can find up to 16 potential parity bits of the key. His attack 
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is strongly related to linear cryptanalysis 1, and has a linear cryptanalysis variant. In 
the even rounds (odd rounds) the characteristics have zero values in the input and 
non-zero values in the outputs, since the inputs are not involved in the linearization, 
but the output are involved. In the other rounds, both inputs and outputs have zero 
values. Thus, we receive the following two-round iterative characteristic for the S 
boxes $7[$8 (and similar characteristics for other adjacent S boxes): 

ftp = 0A 10 21 00= ) 0C 00 00 00 

~ A ' =  0A 10 0C 21= = [ " " ~ ,  d = 0 

P(00 00 00 F D . )  I , I 

~ . B' = 0 ~-~, b ' = 0  

( f r=oooooooo OAlOOC21=. ) 

with probability 1/2 - 3/64 

four affected key bits 

always 

no affected key bits 

Each of the S boxes has a linear approximation between the two common bits to a 
subset of the four output bits. In $7: 03= --* F= with probability 1/2 + 8/64 and 
in $8: 30= --* D= with probability 1/2 - 12/64. The total probabilities of these 
characteristics iterated to 16 rounds and the required number of known plaintexts for 

S boxes Probability Known Plaintexts Davies' Attack 

S1-$2 1 
$2-$3 1 
$3-$4 1 
$4-$5 1 
$5-$6 1 
$6-S7 1 
$7-$8 1 
$8-S1 1 

f2 + 2-33 2 ~s 2 ~ 

f2 + 2 -~ 2 z3 2 6s 
/2 4- 2 .44 2 s9 2 ss 
f2 % 2 -36 2 v3 2 71 

t2 {- 2 -~ 2 73 2 7~ 

12 {- 2 .33 2 e~ 2 e~ 

/2 + 2 -2s  2 s7 2 s7 
12 + 2 -40 279 277 

Table  2. Results of Linear Cryptanalysis of DES using Davies' Characteristics. 

the attack based on linear cryptanalysis are given in Table 2, along with the number 
of known plaintexts required for the original Davies' attacks based on the same pairs 
of S boxes 2. Notice that  the results of these two attacks are very similar. 

aDavies studies the overall distribution of the output bits of the S boxes, while linear.cryptanalysis 
studies only the parity of these bits. Thus, Davies' attack is not a special case of linear cryptanalysis. 

2The number of known plaintexts required for Davies' attack were calculated using the equations 
given in [5]. 
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4 C o n s t r a i n t s  on  t h e  S ize  o f  t h e  S B o x e s  

In this section we show new constraints on the size of S boxes. Researchers have 
already studied the differential behavior of the size of S boxes. For example, Luke 
O'connor[12,13] analyzed the differential behavior of bijective S boxes and of compos- 
ite S boxes, and concluded that for large enough S boxes, even random S boxes are 
immune against differential cryptanalysis. However, there was no result on required 
relationships between the input size of the S boxes and their output size. In this 
section we show such a relationship. 

In differential cryptanalysis we can easily reduce the probability of all the entries 
in the difference distribution tables of the S boxes by increasing the number of output 
bits of the S boxes. Whenever the number of output bits of an S box is (sufficiently) 
larger than the number of its input bits, it is very likely that the entries in the 
difference distribution table will have only values 0 and 2; thus all the possible entries 
have the same low probability. 

Examples of cryptosystems which use such S boxes are Khufu and Khafre[10]. 
The attack on Khafre[3,1] used exactly these propertieg, but still it used the specific 
structure of Khafre. 

Linear cryptanalysis adds a new criteria for this relationship. We identified that 
whenever the number of output bits is large enough, there must be linear and affine 
relations between these bits, which hold for all the possible inputs of the S box. 
Denote the number of input bits by m, and the number of output bits by n. We 
can now describe the S box by a binary matrix Ad with 2 "~ rows, corresponding to 
the 2 '~ inputs of the S box, and with m + n columns, which contain the input values 
themselves (in the first m columns), and the output values of the S box (in the other 
r~ columns). 

Each column of .M contains one bit from each input/output pair of the S box. 
Linear combinations of subsets of the input/output bits of the S box are represented 
by linear combinations of the columns. We say that a subset of bits of the input and 
output of the S box form a linear combination if for all inputs the linear combination 
of these bits is zero. We say that a subset of bits of the input and output of the S 
box form an affme combination if for all inputs the linear combination of these bits is 
a constant (either all zero, or all one). Equivalently, a subset of the bits of the input 
and output of the S box form a linear combination if the columns of A4 are linearly 
dependent, and a subset of the bits of the input and output of the S box form an 
affine combination if the columns of .A4 and the all one vector are linearly dependent. 

Define A4 ~ to be the matrix formed by A4 with one additional column with all the 
values ones: Ad ~ = [A~]I]. Thus, if the rank of A~ equals the number of its columns 
m + n, there are no linear combinations in the S box, and if the rank of A4' equals the 
number of its columns m + n + 1, there are no affine combinations in the S box. The 
S box has a.n affine combination of its input and output bits if rank(A4 ~) < m + n + 1. 

Since the number of rows of A{ and A{ ~ is 2 ~, the maxima/rank is 2 '~. Therefore, 
if n > 2 "~ - m the S box must have an affine combination of the input/output 
bits. These a f i r e  combinations cause entries with probability 1/2 + 1/2 in the linear 
approximation table, which can be a major threat to the security of the cryptosystem. 
Similarly, if n > 2 '~ the S box must have an affine combination of a subset of only 
output bits, which does not depend on the input bits at all! Such combinations cause 
(in many cases of DES-like cryptosystems) the existence of a two-round iterative 
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characteristic with probability 1/2 4- 1/2 (of the form 0 --* X), and thus enable 
attacks which require only a few known plaintexts! 

These affine combinations also hold as affine combinations of the bits of the differ- 
ences predicted in differential cryptanalysis. We do not know whether in differential 
cryptanalysis these linearities also pose a major threat. 

5 Applicat ion to DES 

Matsui's 16-round linear approximation can be viewed as a 16-round characteristic. 
This characteristic is based on the following eight-round iterative characteristic: 

f l e = 2 1 0 4 0 0 8 0  0 0 0 0 0 0 0 0 =  

1 ~ ' = 21 04 00 80= = 

, ~ B  I = 00 00 80 00~ = 

T- P(4O oo oo oo=1 ~-~ 
e ~ C '  = O1 04 O0 80= = ~ - ]  d = O0 O0 80 00= 

~L~ P(00 00 E0 00~) 

d ' = O  / 9 ' = 0  F73 
, (~/E' = O1 04 O0 80~ = 

T p(oo 0o ooo) 

~ F '  = O0 O0 80 00= = [-~. 
T_- P(40 O0 O0 00=) 

210, 80=: . 
P(oo oo FO o0=) 

t , , = o  

T- 

1 
a' = 00 00 80 00~ ]with probability 1/2 - 20/64 

/ 

j one affected key bit 

b' = 20 00 00 00x ] with probability 1/2 - 2/64 
1 

] one affected key bit 

e' = O0 O0 80 OOx 

f '  = 20 O0 O0 00~ 

O' = 00 00 80 00+ 

h' = 0 

r 

( ftr=O0000000 21040080=. ) , ,  

l with probability 1/2 + 10/64 

one affected key bit 

always 

no affected key bits 

l with probability 1/2 + 10/64 
one affected key bit 

with probability 1/2 - 2/64 

one affected key bit 

with probability 1/2 - 20/64 
one affected key bit 

always 

no affected key bits 
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This characteristic has probability about 1/2 + 2 -2~. By iterating it to 16 rounds 
and replacing the first and last rounds by locally better ones, Matsui got a 16-round 
characteristic with probability about 1/2 + 2 -24. We have exhaustively verified that 
this iterative characteristic is the best among all the characteristics with at most one 
active S box at each round, and that Matsui's 16-round characteristic is the best 
characteristics under the same restriction (Matsui claims that his characteristic is the 
best without any restriction). 

6 Appl icat ion to Feal 

In [8] Matsui described a preliminary version of linear cryptanalysis and used it to 
attack Feal[15,11]. For Feal there are 15 (non-trivial) one-round characteristics with 
probability 1/2+ 1/2, based on the linearity of the least significant bits in the addition 
operation (a similar effect occurs also in differential cryptanalysis of Feal, in which 
characteristics with probability 1 are based on the elimination of the carry from the 
most significant bit). The Four basic one-round characteristics with probability 1/2 =1= 
1/2 are: 

~p = (04 01 00 00=, R') ) 

~ , A'=04010000= F ~ "  a'=01000000x 

~T = (04 01 00 00=,n'@ 01 00 00 00=).~ 

I with probability 1/2 + 1/2 = 1 

( 
J~_ A' = 00 04 00 00= 

T 

~p - (00 04 00 00=, R') f l  
, o -  

- ~ ,  a' = Ol Ol Ol 01= 

~ T  = (00 04 00 00~:, R t @ 01 01 01 01=).~ 

with probability 1/2 - 1/2 = 0 
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( 
~ .  A' = 00 01 04 00= 

T 

and 

"X 
np = (oo ol o4 oo~,_a') ) 

~, ,, 

[ - - ~ 1  ~ a' = 00 00 01 01~ 

r 
~ T  = (00 01 04 00=, R' @ 00 00 01 01.).~ 

with probability 1/2 + 1/2 = 1 

( 
,~_ A' = 00 00 01 04= 

~N 
tip = (00 00 01 04=, R') ) 

r 

[ - ~ 1  ~ a' = O0 O0 O0 01= with probability 1/2 - 1/2 = 0 

~ T  =-(00 00 01 04=,R' ~00  00 00 01=).~ 

The other 11 one-round characteristics with probability 1/2 + 1/2 can be derived by 
combining any number of these four characteristics by XORing the values of their a' 
into the new a' and XORing the values of their ,4' into the new A'. For example, 
the following characteristics results from a combination of the first three of the above 
four characteristics: 

np = (04 04 04 00=, R') ) 

I with probability 1/2 - 1/2 = 0 

r 

= (04 0404 00,, R, r  00 00.))  

These combinations are valid since no S box is active in two or more of the original 
characteristics. Such combinations are also applicable in differential cryptanalysis, 
whenever they do not involve the same S box active in more than one characteris- 
tic. We have also found several additional linear characteristics of Feal with smaller 
probabilities, among them at least eight one-round characteristics with probability 
1/2 + 1/4. 

In his attack[8] Matsui uses linearities which can be formalized by the following 
three-round characteristic with probability 1: 
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n p = 0 4 0 4 0 4 0 0  00010000= ) 

,~. A'=o4 o4 o4 oo, ~ 
T2 -~ 

C' = 04 04 04 00= ~ - ~  

a' = O0 O1 O0 0% 

b'=O 

r = 0o o ! o0 0o~ 

with probability 1/2 - 1/2 = 0 

~ ith probability 1 

l ith probability 1/2 - 1/2 = 0 

f iT=04040400  00010000= ) 

In his attack he sets this characteristic in rounds 3-5 and tries exhaustively values of 
bits of the subkeys in rounds 1-2 and 6-8, with some auxiliary techniques. We have 
found two five-round characteristic with probability 1/2 + 1/32. One of them is: 

~'~p = 04 01 00 00 11 00 04 00= ) 

t .0 ,  oooo. F l o o, 0ooooo. 

,~_ C ' =  0 

, ~  D' = 10 00 tN 00= ~ 

E' = 04 01 00 00= 

y 
1 

( n, =o4 o~ oo oo 11oo o4 oo,. ) 

1 
u = 04 01 00 00= ] 

d = 0  1 

d' = 04 0100 00= 1 

e' = 01 00 00 00= 

with probability 1 

with probability 1/2 + 1/8 

with probability 1 

with probability 1/2 + 1/8 

with probability 1 
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We have found several iterative characteristics of Feal, which can be used to attack 
Feal-8 using about 2 ~4 known plaintexts with a smaller computation complexity. This 
is a much better tradeoff than in Matsui's attacks on Feal-8, which required either 
22s known plaintexts, for which the complexity of the analysis is 2 s~ or 215 known 
plaintexts, for which the complexity of the analysis is 2 e~. One of these iterative 

characteristics is: 

f~e = 86 8 1 0 0  00 86 810000= 

~ A' = 86 8100 00= ~ l .  a' = 8100 00 00= 

F / T = 8 6 8 1 0 0 0 0  86 810000=. 

, ~ .  B '  = 07 81 00 00= 

~ , C' = 07 81 00 00= 

, ~ .  D '  = 86 81 00 00= 

b' = 81 O0 O0 00= 

d = 81 O0 O000z 

d' = 81 O0 O0 00= 

with probability 1/2 - 1/8 

l with probability 1/2 - 1/4 

with probability 1/2 - 1/4 

l with probability 1/2 - 1/8 

The iteration of this characteristic to seven rounds have probability 1/2 - 2 -11. A 
similar characteristic exist with a reverse order of the bytes in each word. From the 
tables in [9] we can see that about 4 �9 211"2 = 224 known plaintexts are required to 
attack Feal-8, with success rate about 78% and that 22s known plaintexts axe required 
for success rate about 97%. This characteristic can be used to attack Feal-N with up 
to 20 rounds, with a complexity (and known plaintexts) smaller than of exhaustive 
search. The attack on Feal-8 was applied successfully on a personal computer. It 
takes about 10 minutes to encrypt the 224 required known plaintexts and to find the 
key. 

7 Summary 

In this paper we studied Matsui's linear cryptanalysis. We showed that the formalism 
of differential cryptanalysis can be adopted to linear cryptanalysis. In particular, we 
showed that characteristics can be defined, concatenated, and used in a very similar 
manner as in differential cryptanalysis. Constraints on the size of S boxes were 
described. Matsui's characteristic used to attack DES in his paper is shown to be the 
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best characteristic which has only up to one active S box at each round; on the other 
hand, we improved his results on Feal. We attack Feal-8 using 224 known plaintexts 
with linear cryptanalysis. Davies' attack on DES[5] was shown to be closely related 
to linear cryptanalysis. We also described how to sum up characteristics (which also 
hold in differential cryptanalysis). 
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