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Abs t rac t .  This paper introduces a practical algorithm for deriving the 
best differential characteristic and the best linear expression of DES. 
Its principle is based on a duality between differential cryptanalysis and 
linear cryptanalysis, and applicable to various block ciphers. Then using 
this program, we observe how the order of S-boxes affects the strength 
of DES. We show that the order of the S-boxes is well-arranged against 
differential cryptanalysis, though it is not the best choice. On the other 
hand, our experimental results indicate that it is a very weak choice in 
regard to linear cryptanalysis. In other words, DES can be strengthened 
by just rearranging the order of the S-boxes. 

1 Introduct ion 

Differential cryptanalysis [1] and linear cryptanalysis [2] are known as most ef- 
fective attacks applicable to various block ciphers. They proved for the first time 
that  DES is breakable by a chosen-plaintext attack and a known-plaintext attack 
faster than an exhaustive key search, respectively. 

The principle of linear cryptanalysis is similar to that  of differential crypt- 
analysis in several aspects, as has also been pointed out by Biham [3]. These 
methods both analyze S-boxes statistically, then extend the local property of 
the S-boxes to the entire cipher structure through F-functions, and finally reach 
simple probabilistic relations among plaintexts, ciphertexts and the fixed secret 
key. The procedure for deriving the key is achieved by counting up pre-defined 
counters which essentially correspond to key candidates. 

In this paper we begin by directing our attention to this similarity from the 
viewpoint of duality between differential cryptanalysis and linear cryptanalysis. 
The former traces the flow of differential values, which are defined as an XORed 
value of two series of texts, whereas the latter follows that  of masking values, 
where the parity of the masked bits plays an essential role. We will easily see 
that  "XOR branch" and "three-forked branch" are mutually dual operations in 
regard to differential values and masking values. 

The next purpose of this paper is to show, on the basis of this duality, an 
algorithm for searching for the best differential characteristic and the best linear 
expression in practical time. Our program has completely determined the best 
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differential characteristic of DES for the first time; this was an open problem, 
while Knudsen [4] estimated, under a limited situation, the characteristics found 
by Biham and Shamir to be best. 

Then using this search program, we observe how the order of S-boxes affects 
the strength of DES from the viewpoints of the best characteristic probability 
and the best linear approximate probability. We have calculated, under some 
assumptions, these probabilities for all possible permutations of the S-boxes, 
and as a result, reached new interesting properties of DES. 

Biham and Shamir pointed out that changing the order of S-boxes can weaken 
DES in regard to differential cryptanalysis, and illustrated an example of the 
weaker permutations [1]. Our results prove that  the order of the S-boxes is well- 
arranged though no permutation can resist differential cryptanalysis. 

On the other hand, as for linear cryptanalysis, we face the opposite situa- 
tion; the order of the S-boxes is a very weak choice. Our experimental results 
indicate that  once we change the order of the S-boxes, the modified DES can be 
strengthened in almost cases. We have determined the best permutation of the 
S-boxes, which is now immune against linear cryptanalysis. We also show that  
there exist permutations that are stronger than the original DES in regard to 
differential cryptanalysis and linear cryptanalysis as well. 

2 Notat ions  and Preliminaries 

Figure 1 illustrates the data randomization part and the F-function of DES, 
whose notations are used throughout this paper. We will discuss differential 
cryptanalysis and linear cryptanalysis in parallel, and for this purpose, it is con- 
venient to define the term "the best n-round probability Bn" depending on the 
context as follows: 

In the case of differential cryptanalysis: 

( A X i  ' AYi)  dej Prob{ Fi(Xi (3 AXe, Ki)  = Fi(Xi,  g i )  (3 AYi }, 
t 

[Pl, P2, ..., Pt] def  1-I = pi, 
i= l  

def 
Bn --- max  [ (AN1,  AY1) , (Z~X2, AY2) , ( A N  n A N n )  ]. 

A X , = A X , _ 2 ( 3 A y , _ I ( 3 < _ i < n  ) "'" , 

In the ease of linear cryptanalysis: 

(FYi,  F X i )  def [Prob{parity(Xi �9 FXi )  = pari ty(Fi(Xi ,  Ki)  �9 FY/)} - 1/2[, 
t 

,p,] aoj 2,_1 [Iv , ,  
i=1 

def 
B n  -" m a x  (3_<,_<=~[(rVl, rxl), (rY~, rx~), (rYn, rx.)], 

P Y , = P Y , -  ~@PX, -1  "'" 
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where Xi and Ki are randomly given, and the symbol �9 represents a bitwise 
AND operation. AXi and F X i  are called the differential value and the masking 
value of Xi, respectively. 

N o t e :  In general, our definition of the best probability does not necessarily 
indicate the following; it is unknown whether this difference is negligible or not 
in the case of DES: 

Bn 

max  Prob{ Cipher(P ~ Ap ,  K)  = Cipher(P, K)  �9 A C  ), or 
(aP, aC)r 

max  IProb{parity(P �9 F P )  = pari ty(Cipher(P,  Is') �9 FC)}  - 1/2 I. 
irP, rC)#(0,0} 

I x1L 

C 

K1 

K2 

Kn 

xr (II v (I) 

~y (2) v (2) 

Y 'FS-  x 8'l 

Fig. 1. The data randomization part and F-function of DES. 

3 Duality Between Differential Cryptanalysis and Linear 
Cryptanalysis 

This chapter briefly discusses correlation between differential cryptanalysis and 
linear cryptanalysis from the viewpoint of duality. A similar discussion is also 
seen in [3]. Differential cryptanalysis traces the spread of differential values to 
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establish the characteristic probability of the entire cipher structure. Figure 2 
illustrates the flow of differential values in one round. The right input differential 
value AXi is supplied into the F-function and also outputted as the right output 
differential value. We now assume that AXi changes into A ~  through the F- 
function with probability Pi. Then A]~ is XORed with the left input differential 
value AXi_I and finally outputted as the left output differential value AXi_I @ 
A ~ .  This flow must be consistent throughout the entire cipher structure. In 
other words, equation AXi = AXi_2 O AY~_I (3 < i < n) must hold. The total 
probability is represented as 1-[i~1 Pi. 

I 
T 1 

AXI-I ~AYI AXI 

Fig. 2. The spread of differential values. 

In the case of linear cryptanalysis, our description is completely reversed. Figure 
3 explains how masking values flow through one round. This time we can consider 
that the left input masking value FYi is supplied into the output side of the F- 
function and also outputted as the left output masking value. In the F-function, 
we interpret FYi to be changed into FXi with probability p~. Then FX~ is 
XORed with the right input masking value FYi-1, and finally outputted as the 
right output masking value FXi �9 FYi-1. The consistency of the flow requires 
that equation FYi = F~-2  @ FXi-1 (3 < i < n) holds, and the effectiveness of 
linearity is represented as 2 '~-1 1-Ii~=l IP* - 1/21 by piling-up lemma [2]. 

l"Yl l"Yi-1 

FY, FY,-I ~FX~ 

Fig. 3. The spread of masking values. 

It follows that "XOR branch" after the F-function and "three-forked branch" 
before the F-function are mutually dual operations in regard to differential val- 
ues and masked values. We may hence say that differential cryptanalysis goes 
downstream through an F-function, whereas linear cryptanalysis goes upstream 
through it. This fact is essential to the search algorithm in the following chapter. 
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4 T h e  S e a r c h  f o r  t h e  B e s t  P r o b a b i l i t y  

In this chapter we present a practical algorithm for deriving the best probabil- 
ity of DES in terms of differential cryptanalysis and linear cryptanalysis. This 
technique is also available to various block ciphers that  have S-box-like tables. 
Since the search for the best differential characteristic is essentially the same 
as that  for the best linear expression, we focus on differential cryptanalysis in 
the following. To apply the results of this chapter to linear cryptanalysis, just 
replace AXi and Ay/ to FY/ and FXi,  respectively. 

Basically, our program works by induction on the number of rounds n. In 
other words, it derives the best n-round probability B~ from knowledge of the 
bes t / - round probability Bi (1 < i < n -  1). Since it is generally easy to calculate 
the best probability up to three rounds, we can usually start with n = 4. The 
program also requires an "initial value" for Bn, which is represented as Bn, 
though it works correctly for any Bi as long as B, < Bi (1 < i < n - 1); we 
will later discuss how to determine B .  for faster search. The framework of our 
algorithm is now established by the following procedures including essentially 
recursive calls: 

Procedure Round-l: 
B e g i n  t h e  p r o g r a m .  
For each candidate for AX1, do the following: 

�9 Let Pl = maxAy(AX1,  A y ) .  
�9 If [Pl, B,~-I] > B~, then call Procedure Round-2. 

E x i t  t h e  p r o g r a m .  

Procedure Round-2: 
For each candidate for AX2 and AY2, do the following: 

�9 Let P2 = (AX2, AY2). 
�9 If [Pl,P2, B , -2]  _> Bn, then call Procedure Round-3. 

Return to the upper procedure. 

Procedure Round-i (3 < i < n - 1): 
Y For each candidate for A i, do the following: 

�9 Let AXi = AXI_2 (~ A}'~_I and Pi = (AXi,  AYi). 
�9 If [Pl, P2, ..., Pi, B~-i] > Bn, then call Procedure Round-(i+1). 

Return to the upper procedure. 

Procedure Round-n: 
Let AX,~ = AXn-2  @ AYn-1 and Pn = maxz~y(AXn, A y ) .  
If [Pl, P2,..., Pn] >__ B,~, then B ,  = [Pl, P2, ..., phi. 
Return to the upper procedure. 

This program rewrites the initial value B,~ while running, if it finds a better  
candidate for the best probability (Procedure Round-n). When it completes the 
search, B~ is equal to the best n-round probability Bn. We can easily see that  
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the initial value Bn is also effectively used for finding unnecessary branches and 
breaking them as soon as possible. Hence if we start  with too small B--~, it may 
take much time to complete the search, though the program works correctly for 
any initial value B• as long as B ,  < B . .  In general, we should first derive a 
conditional best n-round probability instead of B .  by restricting the form of 
differential values or masking values, and thereby initialize B~ for faster search. 

Next, we discuss tile detailed inner structure of Procedure Round-z. Since it 
includes a big loop on AXi and/or  AYe, it is not practical to try all 232 or 264 
candidates one by one. In the following, we show an explicit implementation of 
Procedure Round-2 that realizes a practical search using another recursive calls. 
Other procedures can be also carried out in a similar way: 

Procedure Round-2: (detailed) 
Let a0 = 0. 
Call Procedure Round-2-1. 
Return to the upper procedure. 

Procedure Round-g-j (1 < j < 8): 
For each candidate for aj (aj_ 1 < aj <_ 8), AX2 (a~) and Ay2(a~) , do the 
following: 

�9 L e t  p 2  ( j )  : (AX2(a3),AY2 (a~)) a n d  P2 = [ p 2 ( 1 ) , p 2  (2) . . . .  ,P2 ( J ) ]  - 

�9 If [PI,P2, B~-2] > B~ and j ~ 8, then call Procedure Round-2-(j+l). 
�9 Call Procedure Round-3. 

Return to the upper procedure. 

We should try AXi (aJ) and AYi (a~) in the order of magnitude of (AXi  (a~), ATr~ (a~)) 
for fixed j so that  we can avoid unnecessary calculations for AXi (a~) and AY} (aJ). 

Our program has completely determined the best characteristic probability 
of DES, which was partially studied by Knudsen [4]. It took about 100 min- 
utes on one HP9735 (PA-RISC/99MHz) computer to complete the search. As a 
result, we have found that DES reduced to seven or more rounds achieves the 
actual best probability by piling up 2-round iterative characteristics. Moreover, 
the best 5-round probability is better than that found by Biham and Shamir 
[1]. Table 1 summarizes the best n-round probability Bn (4 < n < 16) of DES, 
where equation B~=B~-2 / 234 (9 < n < 16) holds. 

ProbabilityR~ 1.31 • 2 -1~ 1.72 x5 2 -14 1.03 • 2 -20 1.31 x7 2 -24 1.43 • 2 -31 1.43 x9 2 -32 

13 14 
10 11 12 x 2 -48 1.87 • 2 -55 1.87 15 16 

1.57 x 2 -39 1.57 x 2 -~~ 1.71 x 2 -47 1.71 x 2 -56 1.02 x 2 -62 

Table 1: The best characteristic probability of DES. 

We can also derive the best linear approximate probability of DES in the same 
manner. Our program completed the search in one minute on the same computer; 
the results can be seen in [2]. 
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5 The Order of S-boxes and the Strength of DES 

In this chapter, through various experimental results using our search program, 
we observe how the order of S-boxes affects the strength of DES from the view- 
points of differential cryptanalysis and linear cryptanalysis. Since it is time- 
consuming to make the complete search for all possible 8!--40320 permutations 
of the S-boxes, we begin by discussing conditional best probability for faster 
search, which will lead to general correlation between the order of S-boxes and 
the strength of DES. 

5.1 Differential Cryptanalysis 

First, we treat 2-round iterative characteristics, which have been effectively used 
for attacking the full 16-round DES by a chosen-plaintext attack faster than an 
exhaustive key search. Table 2 shows the distribution of the best 2-round iterative 
characteristic probability for 40320 possible permutations of the S-boxes of DES. 
Since the best 2-round iterative characteristic probability of the original DES is 
1/234 = 1.09 x 2 -8, table 2 indicates that at most 256 permutations may be 
stronger against differential cryptanalysis. 

We have confirmed, using the search program, that  some of these 256 permu- 
tations actually achieve the best 16-round probability by piling up the 2-round 
iterative characteristic. For example, the modified DES with the order of the 
S-boxes "27643158" attains the actual best 16-round probability 1.50 x 2 -64, 
whereas the original DES has the probability 1.02 x 2 -62. However, even these 
256 permutations cannot protect differential cryptanalysis, because their best 
13-round probability is (1.00 x 2-s) 6 = 1.00 x 2 -4s, while the original DES has 
the probability (1.09 x 2-8) 6 = 1.71 x 2 -4s. 

Probability 1.00 • 2 -8 1.09 x 2-s[1.13 x 2-811.25 • 2-8[1.31 • 2-s[1.50 x 2 -8] 
Frequency 256 832 832 7488 1152 5568 
Probability 1.53 • 2 -8 1.75 x 2-s[1.O0 • 2 -7 1.09 x 2 -T 1.53 • 2-T]i.75 x 2-7[ 
Frequency 3456 8256 2880 7680 960 960 

Table 2: The distribution of the best 2-round iterative characteristic probability. 

Next, we have calculated the conditional best 16-round probability based on 
2-round iterative characteristics for 40320 possible permutations of the S-boxes; 
to be concrete, we have located three consecutive active S-boxes in the 2nd, 4th, 
... and 14th rounds, and the locally best characteristic in the final round, respec- 
tively. Figure 4 shows the resultant distribution, where the arrow denotes the 
(actual) best 16-round probability of the original DES; namely, 1.02 x 2 -62. The 
number of permutations that  have this probability is 32, and they are distributed 
throughout 2.38% - 2.46% from the best of 40320 permutations, which shows 
that  the order of the S-boxes of DES is well-arranged against differential crypt- 
analysis. We do not know whether 2-round iterative characteristics establish the 
actual best 16-round probability for any permutation. 
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Fig. 4. The distribution of 16-round probability by 2-round iterative characteristics. 

5.2 Linear Cryptanalysis 

We here observe how the order of S-boxes affects the strength of DES with regard 
to linear cryptanalysis. Since the complete search for all 40320 permutations is 
time-consuming again, we begin with a partial search for the best 16-round 
probability. 

First, we restrict ourselves to the case where at most one S-box is approxi- 
mated in each round. This approximation is referred to as "Type I". The original 
DES achieves the actual best 16-round probability 1.49 x 2 -24 by Type I ap- 
proximation as described in [2]. This conditional search is easily executed for all 
40320 permutations by eliminating the line including "Procedure Round-2-(j+l)" 
in "Procedure Round-2-]'. In this case, our program works fast enough for arbi- 
trarily small initial values Bn. Figure 5 shows the resultant distribution, where 
the arrow denotes the original DES; namely, 1.49 x 2 -24. The number of per- 
mutations that have this probability is 2880, and this time they are distributed 
throughout 8.9% - 16.1% from the worst of 40320 permutations. 
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Fig. 5. The distribution of 16-round probability by Type I approximation. 
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However, there exist permutations that do not establish the actual best 16-round 
probability by Type I approximation. To explain this, we now introduce a linear 
approximation of F-function which is similar to 2-round iterative characteris- 
tics of differential cryptanalysis. Consider, for example, the following two linear 
approximations of F-function (see [2] for the notations): 

X[3, 4] ~) F(X, K)[0, 10, 20, 25] = K[6,7], 

x[3,4] �9 F(X, K)[5, 11, 17] = K[4, 5]. 

These equations are derived from NS7(3, 15) and NSs(48, 13), and hold with 
probability 40/64 and 20/64, respectively. Then we have the following equation 
that holds with probability 1/2 + 2(40/64 - 1/2)(20/64 - 1/2) = 0.453 by can- 
celing the common term X: 

F(X, K)[0, 5, 10, 11,20,25,27] = K[4, 5,6, 7] 

The left side of this equation does not contain any input information on the 
F-function. In other words, if input data X is random, we can guess one key bit 
from only output information without any input information. We can also obtain 
linear approximate expressions of arbitrary round DES by piling up this equation 
in every other round. This approximation is referred to as "Type II". We have 
calculated the conditional best 16-round probability by Type II approximation 
for all 40320 permutations. Figure 6 illustrates the resultant distribution. 
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Fig. 6. The distribution of 16-round probability by Type II approximation. 

Figure 7 summarizes the distribution of the better of the 16-round probabilities 
by Type I and Type II approximations. The probability of the original DES 
is again distributed throughout 8.9% - 16.1% (2880 permutations) from the 
worst of 40320 permutations, which suggests that the order of the S-boxes of the 
original DES is a very weak choice in regard to linear cryptanalysis. 
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Fig. 7. The distribution of the best known 16-round probability. 

N o t e :  Recently, the author has found a new type of 16-round approximation 
which is not Type-I nor Type-II  but  attains the actual best 16-round probability. 
As far as the author knows, the rate of such permutations is small (2% - 3%) 
and moreover their best 16-round probability is at most 1.61 x 2-26; therefore 
the distribution of the best 16-round probability of the original DES (8.9% - 
16.1%) does not seem to be affected. More detailed data are under calculation. 

We have determined the order of the S-boxes of DES which achieves the best 
"the actual best 16-round probability" of all 40320 permutations. It has the order 
of the S-boxes "86412738" and attains the actual best 16-round probability 
1.60 x 2 -33, whereas the original DES has the probability 1.49 x 2 -24. This 
modified DES is now immune against linear cryptanalysis, though not good in 
regard to differential cryptanalysis since the 13-round probability is 1.61 x 2 -45. 

There also exist permutations that are better than the original DES in regard 
to both differential cryptanalysis and linear cryptanalysis. One of such permu- 
tations is the order of the S-boxes "24673158", whose actual best 16-round 
characteristic probability is 1.75 x 2 -63, which is achieved by the best 2-round 
iterative characteristic. Its actual best 16-round linear approximate probability 
is 1.48 x 2 -31, which is best of 256 permutations that have the best 2-round 
iterative probability 1.00 x 2 -s .  This choice again protects linear cryptanalysis. 
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