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Abstract.  Cascades of clock controlled shift registers play an important role in the design of 
pseudorandom generators for stream cipher cryptography. In this paper, an attack for breaking a 
kind of such cascades is presented. 

1. I N T R O D U C T I O N  

A technique for obtaining non linear effects in the output sequence of shift register-based 

binary keystrearn generators consists in clocking the registers irregularly. A good survey of the 

structures using irregular clocking has been published by Gollmann and Chambers [1]. 

One of these structures, commonly referred to as "m-sequence cascade" (see [1] and [2]) 

or, less properly, as "Gollmann cascade" (see [3], [4], [5]) has aroused a great interest because 

of its good properties [1]. In spite of this, an intrinsic weakness of such a generator, when 

stop-and-go clocked [1], has been recently pointed out in [5]. 

In this paper we show how to exploit such a weakness for devising a systematic attack on 

stop-and-go m-sequence cascades. 

2. BACKGROUND M A T E R I A L  AND P R E L I M I N A R Y  RESULTS 

A stop-and-go m-sequence cascade of length L consists of L Linear Feedback Shift 

Registers (LFSRs), with primitive feedback polynomials of the same degree d ,  connected as 

shown in Fig. 1. The first register of the cascade (LFSR 1) is regularly clocked, whereas the 

clock of the n-th register ( 2 < n < L ) is controlled by the n - 1 preceding registers. If  s~(t) 

and e n -  l(t) are the output of LFSR n and the "clock enable" at the input of AND (n - 1), 

respectively, at the step t ,  then e n -  l(t) = 0 ~ s*(t + 1) = s~(t) . Denoting by (9 the mod 2 

addition (XOR operation) we have en(t) = e n -  1( 0 (9 sn( t ) ,  so that the output of the cascade at 

the step t is given by eL_ l(t) (9 s~(t) .  In this paper we shall always consider cascades of the 

described kind. 
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AND l_ AND (L - ~ )  

Fig. 1. An L-stage cascade. 

The cryptographic interest of this cascade mainly lies in its modularity and in the high 

values of the period ( T ) and linear complexity ( LC ) of its output sequence. It is known 

[3] that T= (2 a -  1) L and LC > d (2 ~ -  1) L- 1. 

In spite of these good properties, short cascades have been shown to be insecure. In fact, 

attacks for the cases L = 2 and 3 have been proposed (see [4] and [6]). Moreover, an intrinsic 

weakness of  cascades of any length has been studied in [5]. 

Following [5], to point out the intrinsic weakness of the cascade of Fig. 1, let us suppose 

that it is driven by L Binary Random Generators (BRGs). We then obtain the model of Fig. 2, 

where 

(i) G~={g~(t)}  ( l < h < L )  is the sequence generated by B R G h  under the control of 

the sequence Zh_ 1 = {zh_l(t)} (Zo(t) = 1, zt(t) =z~_l(t)  (])g;:(t), 1 < k < L )  ; 

if  h 1 . . . . .  h N ( 2 < h I < ... < hN< L ) are the values of h such that z/,_ l(t) = 0 ,  then 

the generators BRG h I . . . . .  BRG h N cannot change their output at the next step, that is 

g~(t+1)=g~(t),  h e  {h I . . . . .  h~} ; 

whereas the remaining generators behave, at the step t + 1,  like L - N unconnected 

(i~) 

BRGs. 

Z~ ~ BRG1 

Fig. 2. The cascade model. 

In the sequel, with reference to any binary sequence A = {a(t) } , we will use the 

following notations 

(2.1) A = {~(t)} = { a ( t ) E ) a ( t + l ) } ,  

(2.2) A (q) = a(0),  a(1) . . . . .  a ( q -  1), q > 1 . 
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In [5] it has been proved that the sequence Z/. can be viewed as the sequence Z'I (see 

Fig. 2 and (2.1)) corrupted by the noise  sequence N t = {hi(t) } which is generated by a 

Binary Memoryless Source (BMS) according to the model of Fig. 3. The coincidence 

probability between ~'l(t) and ~'/(t) (or, alternatively, the probability of hi(t) = 0 ) has been 

shown to be 1/2 + 1/2 t . In [5] it is also shown how this result can be utilized for determining 

the sequence at the output of the first register of the cascade of Fig. 1. 

Fig. 3. Correlation between Zi and Z/.. 

In the sequel we shall show how the preliminary results established in [5] can be viewed 

as the fn'st step of a systematic procedure for breaking the entire cascade. 

3. FURTHER RESULTS 

Theorem 1. The sequence Z'/. can be viewed as the sequence Z" h (h = 1, 2 ..... L -  1) (see 

Fig. 2 and (2.1)) corrupted by the noise  sequence N h = {nh(t) } which is generated by a 

BMS. The coincidence probability between ~'h(t) -and ~L(t) (or, alternatively, the probability 

of nh ( t )=0 ) i s  112+112 L + l - h  . 

Sketch of  the proof.  By the model of Fig. 2 we can derive that the sequence 

Z h (h = 1, 2 . . . . .  L -  1) is truly random (see [4] and use induction). Consequently, Z h can 

be viewed as the output of the first stage of a cascade of length L + 1 - h and the model of 

Fig. 4, where Prob(nh(t) = 0 ) = 1/2 + 1/2 L+ 1 -h , can be obtained [5]. 

Fig. 4. Correlation between Zi and ZL" 

Denote, for convenience, by ZL, k ( 0 < k < L -  1 ) the sequence whose bits, "ZL, k (t) ' 

are given by "~L(t) �9 "~k(t) . By Theorem 1 we then have the following 
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Corollary 1. The sequence ZL, h -  1 Can be viewed as the sequence G~ ( I < h < L ) (see 

Fig. 2 and (2.1)) corrupted by a BMS-generated noise sequence. The coincidence probability 

between ~ ( t )  and ~L.h_l(t) is I/2 + 112/'§ 

Sketch of the  proof .  We simply observe that ~'L(t) = ~'h(t) r Z'L,h- 1 (t) = ~( t )  . 

4. CRYPTANALYTIC CONSEQUENCES 

Consider now the actual L-stage cascade of Fig. 5, where S~ = {s~(t)} and 

Ek= {ek(t)  } ( eo( t )= l , e k ( t ) = e l c _ l ( t ) ~ s ~ ( t )  ) , l < k <  L . Denoteby EL,k-1 and R/c 

( l < k < : L )  the sequences whose bits result from " J L . t _ l ( t ) = ' J L ( t ) ~ ' J l ~ _ l ( t ) -  and 

rk(t ) = " ~ ( t ) ~  "eL,k-1 (t) ' respectively. Finally, assume that the initial states of the L 

registers are randomly chosen (the all-zero states are excluded) and that their feedback 

polynomials fl(x), .~(x) . . . . .  fz(x) are primitive. The sequences S~, S~ . . . . .  S~ earl be then 

locally modelled by the corresponding sequence G~, G~ . . . . .  G~ of Fig. 2. 

,I) . . . . .  

1 2 

Fig. 5. The actual cascade. 

Now, suppose that a.sufficiently long segment E(L~ (see (2.2)) of the output sequence 

of the cascade is known. In the sequel we shall show that the initial state of the register LFSR h 

can be then recovered, provided that the segment E(h~ l and the polynomial fh(X) are known. 

Once LE~/) and E(~I ar~ given we can obtain the segment "~(N-L.h_II) . On the basis of 

Corollary 1, we can write 

= ~* 1 ~(N- i) �9 rh(N- I) (4.1) ~(N-I) ~.~(0) ~ rh(0) ' Sh ( ) e rh(1 ) L , h - I  ' . . . .  

= s~(0) �9 s~(1) �9 rh(0), s~(1) �9 s~(2) �9 rh(1) ..... s~(N - I) �9 s~(N) �9 rh(N- 1) , 

where rh(t) is assumed to be generated by a BMS with 

(4.2) Prob(rh(t) = 0 ) = 1/2 + 112 L + 1 -h  . 

Since E~N)_ 1 is supposed to be known and e n- l(t) = 0 =# Sn(t + 1) = Sn(t), it is possible to 

delete all terms (s~(t) �9 s~(t + 1) �9 rh(t) ) such that s~(t + 1) is constrainly equal to s~(t) 

from the segment "~(N- 1) By performing this operation we obtain the following segment ~"L,h-1 �9 
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(4.3) A(?h_lde--f ~L,h_l(O) . . . . .  ~ L , h _ I ( M -  l) 

.... * ~ s *  = S~(~O)~S~(~o+l)~rh(~O) ,S/~('t'M_ 1) h(~M_l+l ) ( l~rh(~M_l  ) , 

where *'o < zl < "'" < ZM- 1 are the positions of the Is in the segment Eh(~"_~ 1) and M is, in 

the average, equal to NI2 (observe that, since Co(t)= 1 the segments ~(N-1) and 
' L , h - I  

A (M) coincide when h =  1). Now, denote by S(hM+l)=sh(O),Sh(1) ,$h(M) the L,h-1 ' "'" 
segment which would be generated by LFSR h if this register were regularly clocked. Since 

the register LFSR h is actually clocked only at the steps ~o < Zl <"" < ZM- 1 ' we easily get 

(4.4) ~ l ( t ) = s h ( t ) ~ s h ( t + l ) ~ p h ( t ) = ~ h ( t ) ~ P h ( t )  O < t < _ M - 1  ph(t)=rh(Xt) L,h -  " " ' 

(4.5) Prob(ph(t) = 0 ) = 1/2+ 1/2 L+ 1-h 

The equality (4.4) clearly shows that the segments A (M) and S'h (M) are correlated. This L ,h - I  
correlation has been confirmed by several computer simulations. An example of the obtained 

data is shown in Tab. 1. 

L = 10, d = 32, N = 1000,5000 segments 

h 9 8 7 

mean 0 .7499  0.6255 0.5626 
median 0 .7500 0.6257 0.5630 

rms 0.7502 0.6259 0.5630 
std.dev. 0.01917 0.02193 0.02223 

0.5313 
0.5312 
0.5317 
0.02213 

5 4 3 2 

0.5160 0.5078 0 .5040  0.5020 
0.5t61 0 .5081 0 .5040  0.5020 
0.5165 0.5083 0 .5045 0.5025 
0.02234 0.02237 0.02243 0.02263 

Tab. 1. Estimationof Prob(Oh(t) = 0 ) .  

Now, since S'h (M) is generable by the register LFSR h [5], we can devise a correlation attack 

[2] for reconstructing the sequence S'h according to the model of Fig. 6. A further step [5] 

allows us to reconstruct the sequence S h by using the recurrence relation associated to the 

feedback polynomial fh(x) which is supposed to be known. 

~ 8n(t). 
(t) 

Fig. 6. Model for the correlation attack. 

Once the segment S(h ~ has been reconstructed, we can readily get the segments Eh(~ 

and ~(N-  1). Thus, the previous procedure can be now used to recover the state of the register L,h 
LFSR (h + 1) provided that the polynomial fh + 1 (x) is known, and so on. Since Eo(N) (that is 
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the segment eo(0), eo(1) . . . . .  eo(N - 1) ) is always an all-one segment, the first iteration of the 

procedure ( h = 1 ) requires only the knowledge of E(L N) and fl(x) . It follows that the 

L-stage cascade of Fig. 5 can be broken by L iterations of the above procedure, provided that 

the polynomials fl(x), .6(x) . . . . .  fL(x) and the segment E(L N) are known. 

5. C O N C L U S I O N S  

The attack presented in this paper is based on the correlation existing between the output 

sequence of the considered cascade and the output sequences of its intermediate stages. We can 

easily see that a sufficient condition for the attack to fail is the infeasibilty of its first step. 

Consequently, since the correlation probability given by (4.5) for h = 1 vanishes as L 

increases, the needed level of practical security can be obtained by making L sufficiently 

large. 
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