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A b s t r a c t .  The theory of graph grammars is concerned with the rule- 
based transformation of graphs and graph-like structures. As the for- 
malism of Petri nets is founded on a particular type of graphs, the var- 
ious net refinement methods proposed for their structured design are 
in particular graph transformations. This paper aims at applying a re- 
cently developed technique for graph rewriting, the so-called pullback 
approach, to describe net refinement. The translation of this technique, 
which is based on (hyper)graph morphisms, into terms of net morphisms 
yields a well-defined mechanism closely related to pullback rewriting in 
hypergraphs. A variant allows to elegantly characterize a particular net  
refinement operation which modifies the context of the refined transition. 

1 Introduction 

Graph g rammars  have been developed as a concept to s tudy the rule-based 
t ransformation of graphs and graph-like structures (see [Roz97] for a compre- 
hensive overview). One can distinguish between approaches in which arbi t rary  
subgraphs may be replaced , and approaches to rewrite elementary subgraphs, 
i.e. vertices, (hyper)edges, or handles. (Hyper)edge rewriting [HK87a, Hab92] is 
a special case of the double-pushout approach to graph rewriting [Ehr79]; it has 
been generalized to handle rewriting in [CER93]. With the pullback approach 
introduced in [Bau95a], a category theoretical framework for vertex rewriting is 
being developed. It  is based on graph morphisms and can deal with both graphs 
and hypergraphs [BJ97]. 

A Petri  net is usually defined as a bipart i te graph (the underlying net struc- 
ture) where a vertex is either a place or a transition, plus a marking of the 
places (see e.g. [Rei85]). The marking may change by the firing of transitions, 
thus leading to a notion of behaviour. A number  of methods to refine a place 
or a transit ion - i.e. to manipulate  the underlying net s tructure - such tha t  the 
behaviour of the refined net can be inferred from the behaviour of the original 
and the refinement net in a compositional way may be found in the li terature 
(for a survey see [BGV91]). 

By viewing the underlying net structure of a Petri  net as a hypergraph,  
place or transit ion refinement becomes the replacement of an elementary item in 
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a hypergraph. In [HK87b] and [Vog87], it has been pointed out that  hyperedge 
rewriting describes some types of net refinement. The operation in [GG90] mod- 
ifies the context of the refined transition by multiplying the places in its pre- 
and postset and is thus too complex to be described by hyperedge rewriting. 
However, it can be seen as a special case of the vertex rewriting technique of 
[Kle96]. Handle rewriting has not yet been evaluated under this aspect. 

Another line of research investigates rule-based refinement in the general 
setting of algebraic high-level nets [PER95, PGE98]. The rules which are used 
there have been developed from the double-pushout approach to graph rewriting 
of [Ehr79]. 

In this paper, the technique of pullback rewriting is translated into terms of 
net morphisms. The resulting mechanism yields a well-defined notion of net re- 
finement and is closely related to the original pullback rewriting in hypergraphs. 
Fhrthermore, it also allows an elegant characterization of the refinement oper- 
ation in [GG90]. The paper is organized as follows. Section 2 introduces the 
basic notions of hypergraphs and net structures. The respective categories are 
studied in Section 3. In Section 4, pullback rewriting in net structures is defined 
and compared to pullback rewriting in hypergraphs. Section 5 characterizes the 
net refinement technique of [GG90] in terms of pullback rewriting, and Section 6 
contains some concluding remarks. 

2 H y p e r g r a p h s  a n d  n e t  s t r u c t u r e s  

The basic objects considered in this paper, hypergraphs and net structures, are 
introduced together with the usual notions of the respective morphisms. 

D e f i n i t i o n  2.1. (Hypergraph.) A hypergraph H = (V, E, src, trg) consists of a 
set V of nodes, a set E of hyperedges such that  V A E = 0, and two mappings 
src, trg: E -+ 7)(V) assigning to every hyperedge e E E a set src(e) C_ V of source 
nodes and a set trg(e) C V of target nodes. Subscripts and superscripts carry 
over to the components of a hypergraph; for example, H~ = (V~, E~, src~, trg~n). 

Let H and H I be two hypergraphs. A hypergraph morphism ] :  H --+ H t 
is a pair of mappings f = (fv,  rE) with fv :  V --+ V', rE: E -~ E ~ such that  
fv(src(e)) C_ src'(fE(e)) and fv(trg(e)) C_ trg'(fE(e)) for all e E E. As usual, 
the subscripts V and E will be omitted in the sequel. If f is bijective and both 
f and f - 1  are hypergraph morphisms, then f is a hypergraph isomorphism. In 
this case, H and H ~ are isomorphic. 

Hypergraphs and hypergraph morphisms form a category which is denoted 
by ~-/. 

In a drawing of a hypergraph H,  a node v is represented by a circle and a 
hyperedge e by a square. There is an arrow from v to e if v E s(e) and an arrow 
from e to v if v C t(e). Thus, Fig. 1 shows a hypergraph. 

A Petri  net consists of a net structure plus a marking. As this paper concen- 
trates on structural aspects, only the former notion is formally defined here; for 
other notions from net theory see e.g. [Rei85]. 
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F i g u r e  1. Drawing a hypergraph (or a net structure) 

D e f i n i t i o n  2.2. (Net structure.) A net structure N = (P, T, F)  consists of a 
set P of places, a set T of transitions such that  P n T = 0, and a flow relation 
F C (P  • T) U (T x P )  the elements of which are called arcs. As for graphs, 
subscripts and superscripts carry over to the components of a net structure. 

For an i tem x E P U T, "x = {y E P U T I (Y, x) E F}  denotes the preset of 
x, and x ~ = {y e P U T  I (x,y)  e F} its postset. 

Let N and N ~ be two net structures. A net morphism f : N  -+ N ~ is a 
mapping  f : P U T  --+ P ' U T '  satisfying ( f ( x ) , f ( y ) )  e F'  and x e P r f ( x )  E P'  
for a l l x ,  y e P U T  with f ( x )  ~ f ( y )  and (x ,y)  �9 F.  I f f  is bijective and 
both  ] and f - 1  are net morphisms, then f is a net isomorphism and N,  N ~ are 
isomorphic. 

Net structures and net morphisms form a category which is denoted by Af. 

In a drawing of a net structure N,  a place p is represented by a circle, a 
transit ion t by a square, and an arc (x, y) by an arrow. Thus, Fig. 1 shows a net 
structure. 

The similar representation of hypergraphs and net structures evokes a one- 
to-one encoding: The hypergraph H is associated with the net s tructure N if 
V = P, E = T, src(e) = "e and trg(e) = e ~ for all e E E.  With respect to this 
encoding, every hypergraph morphism is associated with a net morphism. The 
opposite is not true: a net morphism may  map a transition on a place (or vice 
versa). But if a substructure is mapped  on one item, then its border has to be 
of the same type as the item (cf. Figs. 2 and 3, where a dashed line encircles 
the items the respective mapping identifies). 

F i g u r e  2. A net morphism without 
associated hypergraph morphism 

_ g ......~ 8 
F i g u r e  3. Neither a net morphism 
nor a hypergraph morphism 
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3 T h e  c a t e g o r i e s  o f  h y p e r g r a p h s  a n d  n e t  s t r u c t u r e s  

In this section, the pullback construction for hypergraph morphisms is recalled. 
The category of hypergraphs is complete and therefore has all pullbacks. The 
category of net structures does not have all pullbacks, but the pairs of net 
morphisms for which the pullback exists are characterized, and the pullback 
construction is given for these cases. 

As the notion of a pullback is central for pullback rewriting, the section 
starts with its general definition. For other concepts from category theory see 
e.g. [HS79]. 

Defini t ion 3.1. (Pullback.) Let C be a category and (f~: Y~ --+ Z)i~-I, 2 a pair of 
morphisms in C. The pullback of (fi: Yi -+ Z)i=l,2 is another pair of morphisms 
(gi: X ~ Y~)i=l,2 such that f l  o gl = f2 o g2, and for every pair of morphisms 
(g~: X '  ~ Yi)i=l,2 with fl  o g[ = f2 o g~ there is a unique morphism h: X' --+ X 
with gi o h = g~ for i = 1, 2. 

Using a definition of hypergraphs as graphs structured by the smallest com- 
plete bipartite graph (2Z~ (i.e. as objects in the comma category of graphs over 

) which is equivalent to the one given here, the following fact can be shown 
analogously to [B J97]. 

Fact 3.2. The category ?t is finitely complete and has, in particular, pullbacks. 
The pullback of a pair of hype~yraph morphisms (fi: Hi -+ H)i=l,2 consists of 
the projections gi: Hpb -+ Hi with gi((xl,  x2)) = xi (i = 1, 2), where Hpb is 
constructed as follows: 

Figure 4. A pullback in 7/ 
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- -  V p b  = { ( ~ ) l , V 2 )  e V1  x V 2 [ fl(vl) = f 2 ( v 2 ) } ,  

- Epb = {(el,e~) e E1 x E2 I f l ( e l )  = f2(e2)}, 
- sr%b((el,e2)) = {(Vl,V2) e rpblVl �9 sro(e l ) ,  v2 e src2(e2)} and 
- trgpb((el,e2)) = {(vl,v2) e Vpb [Vl E trgl(el), v2 E trg~(e2)} 

for all (el, e2) e Epb. ,> 

An example for a pullback of hypergraph morphisms f l ,  f2 is given in Fig. 4. 
The morphisms are indicated by the relative arrangement of the items and their 
shading. As explained in the next section, this pullback can be interpreted as 
deriving H2 from H1 by rewriting the node p. 

Unlike 74, the category of net structures is not finitely complete, but  the 
characterization of Theorem 3.3 allows to easily verify that  pullbacks do exist in 
the cases which will be interpreted as net rewriting in the following section. 

T h e o r e m  3.3. For i = 1, 2, let Ni and N be net structures and fi: Ni ~ N net 
morphisms. The pullback of (f l ,  f2) exists if and only i] for every item z E P U T  
of N ,  at most one of the sets f l l ( z ) ,  f ~ l ( z )  contains distinct items x and y 
such that (x,y)  belongs to the flow relation of the corresponding net structure. 

Proof. "=~": Let z E P U T  and pi, ti E f ~ l ( z )  with (pi,ti) E Fi or (ti,pi) E Fi, 
for i = 1, 2. Moreover, let N* be a net structure and gl: N* ~ N1, g2: N* -~ N2 
net morphisms with gl o fx = g2 o f2- 

Now let N ~ be the net structure with places p~,p~, transitions tl,~ t2,~ and an 
arc between p~ and t~ mirroring (one of) the arc(s) between pi and ti (i -- 1, 2). 
Consider the two net morphisms g~: N '  ~ N1, g~: N'  --+ N2 with g~(p'~) = p~, 

l l I I I gl({ t , ,p2,  t~}) = {tl}, g~({Pl, t~,p~}) = {P2}, and !].2(t2) = t2; clearly, g~ o Ix = 
g~ o f2- Finally, let h: N ~ ~ N* be a net morphisrn such that  gi o h = g~. The 
situation is depicted in Fig. 5. 

/ 
...,'" .: J /. '  -. 

::" Z "".., 

-- . . . . .  

N 

. ..... ............... ......... 
...'" .~ 

N1 (" pl C ~ " _ ~ t l  :: 
' ..................... : 5-- 

f l  gl 

; I h(tl ) [] pl (X,"..~i:] ti 
N* ~ h - -  

: �9 h(pl) pl C~-:..~ t'~ 
..-" ~ .......... .. 

f2 g2 ......... J N~ 
\ / 

�9 " " ' " ' " " % "  ....... """" '""%'"  9 ;  CI p2C :  2 
�9 ".. .............................. "" 

F i g u r e  5. Illustrating the proof of Theorem 3.3 
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As gi o h = g~ maps p~ to Pi and t~ to ti, h does not identify p~ and t~ 
(i -- 1,2). Therefore, the arc between p~ and t~ resp. p~ and t~ implies that  
h(t~) is a transition and h(p~2) a place. Moreover, gi o h = g~ identifying t~ and 
p~ means that  gi identifies h(t~) and h(p~) (i = 1, 2). Hence, for net morphisms 

I I .  I gi . N  --~ Ni with g~'(P'UT') --- {tl} and g~'(P'UT') = {P2}, the two distinct net 
morphisms hl ,h2:N '  ~ N* with hl(P'tA T') = h(t~) and h2(P'U T') = h(p~2) 
fulfil gi o h i = g~' (i, j �9 {1, 2}). Thus, (gl, g2) cannot be the pullback of (f l ,  f2). 

"~"  (Outline): Let Zi := {z �9 P U T  [ 3x, y �9 f~ l ( z )  with (x,y) �9 Fi} for 
i = 1, 2. By assumption, Z1 and Z2 are disjoint. Let Npb be as follows: 

- Ppb = e / i - l ( z )  • f ; l ( z )  I 
(z E P \ (Z1 U Z2)) or (z E Zl and xl e P1) or (z E Z2 and x2 E P2)}, 

- Tpb = {(Xl,X2) e f l l ( Z )  x f2-1(z) I 
(z E T \ (Z1 U Z2)) or (z E Z1 and xl C T1) or (z E Z2 and x2 �9 T2)}, 

- Fpb = ( y l , y 2 ) )  �9 (Ppb • Tpb) U (T b • P b) I 
(xi,yi) �9 Fi and (xj = yj or (x j ,y j )  �9 Fj) for i , j  �9 {1,2},i r j}.  

Clearly, Npb is a net structure, and it is not difficult to verify that  the projections 
gi: gpb "~ Ni with g~((xl, x2)) = xi form the pullback of (f l ,  f2) in Af. [] 

4 N e t  r e w r i t i n g  b y  p u l l b a c k s  

In this section, pullback rewriting is defined directly in the category Af of net 
structures. The basic idea is to achieve the partition of a net structure into 
three parts - the item to be rewritten, its immediate neighbourhood, and the 
context of the item - by a net morphism (an unknown) to a special net structure 
(the alphabet). Another kind of net morphism to the alphabet (a rule) specifies 
the net structure replacing the item, and its application is modelled by the 
pullback of the two net morphisms. Thus, pullback rewriting yields a notion of 
net refinement where items in the pre- and postsets of the refined item can be 
multiplied. Example 4.1, a place refinement, illustrates the usefulness of such an 
operation and will be formalized as both net and hypergraph rewriting in this 
section. 

The close relationship between pullback rewriting in net structures and in 
hypergraphs allows to transfer the formalism presented in [BJ97] for an arbitrary 
number of items to be rewritten - possibly of different types - to net structures, 
too. The same holds for the notion of parallel rewriting as proposed in [Bau95b]. 

Example 4.1. (Cf. the reduction example of [GF95].) The (marked) Petri net 
P N  in Fig. 6 models a situation of mutual exclusion, with p as a semaphore. Its 
refinement to P N  t explicitly represents the critical sections and the initialization 
of their common resources. Moreover, each transition connected with p is split 
in two to express the entrance into and exit from its associated critical section. 
O 
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F i g u r e  6. Refining a Petri net 

Notation 4.2. For a relation X C S • S on a set S, X ~ = XU { (y, x) ] (x, y) E X} 
denotes the symmetric hull. The set of all positive integers is denoted by IN+. 

The first mechanism to be presented is place rewriting in net structures. The 
place rewriting alphabet contains a place P-1 (for the place to be rewritten), 
transitions tj linking it to neighbour places Pi, and a farther context to. 

De f in i t i on  4.3. (Alphabet.) The place rewriting alphabet is the net structure 
NA with PA = {P-l} U {Pi I i E IN+}, TA = {to} U {tj I J E IN+}, and 

FA= U {(t~ 
i,jE~q+ 

A substructure NA(m,n) of NA with m + 1 places and n + 1 transitions with 
m, n E IN+ "as required" will be used for finite examples; cf. Fig. 7 for NA(2,3). 

A place rewriting unknown maps the place to be rewritten on p-1 and identi- 
fies those linking transitions resp. neighbour places which will be treated equally 
during a rewriting step. 

De f in i t i on  4.4. (Unknown.) Let N be a net structure and p E P. A place 
rewriting unknown on p is a net morphism Up: N ~ NA such that  

--  U p l ( p _ l )  = { p } ,  

- for every j E ]N+, x E upl(tj) implies ((x,p)} ~ M F ~ 0, and 
- for every i E IN+, y E Upl(Pi) implies that  j E IN+ and t E u~-l(tj) exist 

with ((y, t )}  ~ MR ~ 0. 

to p 2 ~ ~ ~ t  )P- 1 

F i g u r e  7. The place rewriting alphabet NA(2,3) 
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A place rewriting rule maps what would classically be called the right-hand 
side of a production on P-1 and fixes its possible connexions to a context through 
the inverse images of the tj. 

D e f i n i t i o n  4.5. (Rule.) A net morphism r: NR --4 NA is a place rewriting rule 
if 

- for every item x E {t0}O{pi I i E lN+}, r - l ( x )  contains exactly one element, 
- { ( r - l ( t o ) , r - l ( p i ) )  l i e IN+} ~ C_ FR, and 
- for every j E IN+, r -1 (tj) contains only transitions. 

The notions of a rule application and a rewriting step are defined uniformly 
for all the concrete rewriting mechanisms studied in this and the next section. 

D e f i n i t i o n  4.6.  (Rule application, rewriting step.) Let C be a category with 
an alphabet object A, an unknown morphism u=: Y -~ A, and a rule morphism 
r: R -+ A such that  A, u=, and r belong to the same rewriting mechanism (e.g. 
place rewriting in Af). The application of r at u= is the pullback of (u=, r) in C. 
If Y~ is the object constructed by the application of r at u= (the derived object),  
then Y ~ ( u ~ , r )  Y~ denotes a rewriting step. 

Figure 8 formalizes the refinement P N  ~ P N  ~ of Example 4.1 as the place 
rewriting step N ~ ( u p , r )  N~- The unknown up distinguishes the "upper" from 
the "lower" context of p, and the rule r specifies the net structure replacing p 
as well as the splitting of the transitions connected with p. Note that  there are 
alternative choices for Up and r to derive N ~ from N. 

F i g u r e  8. Formalizing Example 4.1 as pullback rewriting 



197 

In general, the application of a place rewriting rule r at a place rewriting 
unknown Up produces in the derived net structure exactly one copy of the context 
Up l(t0) of p. Similarly, the Up l(pi) are reproduced, as is the right-hand side of 
the rule. Only the linking transitions may be multiplied (the factors being the 
size of the respective inverse images) and have their arcs of the flow relation 
altered. 

Corollary 4.7. For every place rewriting rule r and unknown up, the applica- 
tion of r at Up is defined, o 

Proof. Of NA, only the item to (resp. P- l )  may contain an arc in its inverse 
image under Up (resp. r). As to ~ p- l ,  Theorem 3.3 implies the assertion. O 

There is a close relationship between place rewriting in Af and node rewriting 
in 7-/, which differs from that introduced in [BJ97] only in that it deals with 
directed instead of undirected hypergraphs. Thus, the notions of an alphabet, 
an unknown, and a rule can be gained from those for place rewriting in Af by 
changing the (terminal) substructures t0,P-1 of NA and their inverse images 
r -1 (to), Upl(p-1) into copies of the (terminal) hypergraph ( : ~ ,  and adjusting 
the involved net morphisms up and r accordingly to hypergraph morphisms (Up) 
and (r). Figure 4 shows how the place rewriting step N ~(~p, r )  N'  of Fig. 8 
is transformed into the node rewriting step H ~((~p),(r)) H~, where H =/-/1, 
H t = Hpb, (Up) = f l ,  and (r) = f2. The example may be explicit enough 
so that the formal definitions can be omitted. It also illustrates that for the 
formalization of net refinement, pullback rewriting in net structures is more 
adequate than pullback rewriting in hypergraphs: In the latter case, one cannot 
directly take the hypergraph associated with the net to be refined, but has to 
alter it in order to get the desired result. 

P ropos i t ion  4.8. Let Up be a place rewriting unknown and r a place rewriting 
rule. I f  N ~ ( ~ p , r )  N~ and H ~((u~),(~)) H ~, then H ~ is isomorphic to the 
hypergraph associated with N ~. 

To end this section, consider briefly a variant of place rewriting allowing a 
rule r: NR -+ NA to map places as well as transitions of NR on the transitions 
ti of NA. (With the concepts of [Bau95b], this can be interpreted as a parallel 
rewriting step.) The application of such a rule to an unknown is still defined 
and results in the multiplication of the induced substructures of/YR. The idea 
is illustrated in Fig. 9 by an adaptation of Example 4.1; note how much the rule 
and its application gain in clarity. Moreover, the same rule can be applied to a 
net modelling an arbitrary number of processes which share a common resource. 

5 A p a r t i c u l a r  n e t  r e f i n e m e n t  t e c h n i q u e  

By the symmetry of net structures, pullback rewriting of places immediately im- 
plies a notion of transition rewriting. In this section, a slightly different instance 
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F i g u r e  9. Application of a more general rewriting rule 

of pullback rewriting is used to characterize the transition refinement operation 
introduced in [GG90] for one-safe nets. Their operation allows to infer the be- 
haviour (in particular liveness properties) of a refined net compositionally from 
the behaviours of the original and the refinement net, and in contrast to previous 
studies their refinement nets may display initial or terminal concurrency. 

Markings and behavioural aspects are not formally considered here; this con- 
cerns in particular some additional restrictions for refinement structures. 

Notation 5.1. Let N be a net structure. The set ~ = {x E P ] ~ = 0} contains 
the initial places of N, and N ~ = {x E P [ x ~ = O} its terminal places. 

G e n e r a l  a s s u m p t i o n  [GGg0] .  In this section, all net structures N are as- 
sumed to have arcs (p,t), (t,p') E F and " t n  t ~ = 0 for every t E T. 

D e f i n i t i o n  5.2. (Refinement structure, cf. [GG90].) A net structure NR is a 
refinement structure if ~ R ~ O ~ NR ~ and ~ n NR ~ = O. 

Figure 10 shows a refinement structure NR with initial places (a), (b) and 
terminal place (e). 

D e f i n i t i o n  5.3. (Net refinement [GGg0].) Let N1 be a net structure and t E Tx. 
Moreover, let NR be a refinement structure (disjoint from N1). Then the refined 
net structure N2 = N1 [NR/t] is defined by 

- P2 := (P1 \ ('t U t~ U (PR \ (~ U NR~ U Int, 
where Int := ( ' t  x ~ U (t" x NR~ 

- T2 := (T1 \ {t}) U TR, and 
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NR 

:: (c) 

G "r-n 
(b) [ ....... (.d.). ...... 

F igure  10. A refinement structure [GG90] 

- F2 := ( (F lUFR)  n (P2 x T 2 U T 2  xP2))  
u { ( (p l ,p2) , t l ) l (px ,p2)  e Int, tl �9 T1 \ {t}, (Pl ,h)  �9 FI} 
U {(t,, (p,,p2)) [ (P,,p2) �9 Int, t, �9 T, \ {t}, ( t , ,p , )  �9 F ,}  
U {((Pl,P2),t2) I (px,p2) e Int, t2 �9 TR, (p2,t2) �9 Fn} 
U {(t2, (Pl,P2)) I (Pl,P2) �9 Int, t2 �9 TR, (t2,P2) E FR}. 

Figure 11 illustrates the refinement of a transition t with the refinement 
structure NR of Fig. 10: For every preplace p of t in N1 and every initial place p' 
in NR, there is a new place (p,p') in N2 with ingoing arcs from each transition 
in the preset of p and outgoing arcs to each transition in the postsets of p and 
p', and analogously for the postplaces of t and the terminal places in NR. 

This refinement technique can be characterized by pullback rewriting as fol- 
lows. 

Defini t ion 5.4. (Refinement alphabet, unknown, and rule.) The refinement 
alphabet is the net structure N~ with P~ = {pl,P2}, T~ = {t0,t- i},  and Fa = 
{(to,P1), (to,p2)} z U {(Pl, t - l ) ,  (t-l,p2)}. 

Let N1 be a net structure and t E T1. The refinement unknown on t is the net 
morphism ut: N1 --+ N~ with u~-X(t_l) = {t}, u t l ( p l )  : "t, and ut l (p2)  = t ' .  

Let NR be a refinement structure and N~ a net structure with P~ = PR, 
T~ = TR 0 {t'}, and F~ = FR U {(p, t') [ p E ~ U NR~ The refinement 
rule induced by NR is the net morphism r: N~ --+ Na with r- l ( to)  = {t'}, 
r - l (p l )  = ~ and r-l(p2) = NR ~ 

The conversion of the example above into terms of pullback rewriting is de- 
picted in Fig. 12. Note that the flow relation of Na is not symmetric. Moreover, 

(3,a) 

O , b ) ' : ' ' "  " " " "  " " '" 

NI _ )" 0 ~ ~  N2 

(2) (4) ~ (6) (2) - - ~ ~ i 6 - " e )  
(4,5) 

F igure  11. Transition refinement [GG90] 
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F igure  12. Transition refinement as pullback rewriting 

the refinement unknown ut is a mapping (by the assumption above), and unique 
for every transition t of a net structure N1. 

T h e o r e m  5.5. Let NR be a refinement structure, r the induced refinement rule, 
N1 a net structure with t E T1, and ut: N1 -4 Na the refinement unknown on t. 
If  N1 ~(ut,r) N2, then N2 and NI[NR/t] are isomorphic. 

Proof. By construction, N2 and NI[NR/t] only differ in that N2 contains an 
item (x,t') for each x e (P1 U T1) \ ( 't  U {t} U t ~ and an item (t,y) for each 
y e (PR \ (~176 

Note that the canonical vicinity respecting morphism f:  NI[NR/t] --+ N1 of 
[GG90] is (modulo isomorphism) exactly the morphism f:  N2 --+ N1 generated 
by the pullback construction. 

6 C o n c l u s i o n  

The aim of this work was to investigate an application of the pullback approach 
to hypergraph transformation by translating the notion of pullback rewriting 
from terms of hypergraph morphisms into terms of net morphisms. It turned 
out that unlike the category of hypergraphs, the category of net structures is 
not complete; in particular, it does not have all pullbacks. Nevertheless, there 
is an easily verified criterion to determine whether the pullback of two given 
net morphisms exists. This criterion ensures that net rewriting by pullbacks is 
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indeed well-defined. Moreover, the net refinement operation of [GG90] has a 
concise characterization in the pullback rewriting approach. 

There are two main areas for future research on the issues presented here. 
On the one hand, pullback rewriting has been introduced but quite recently 

as a hypergraph rewriting approach. It already appears to be promising as 
an abstract framework for the known hypergraph transformation techniques. 
Moreover, this paper shows that the idea of pullback rewriting in net structures 
has a meaningful interpretation as net refinement. So, the pullback rewriting 
approach needs further development. 

On the other hand, the relationship between hypergraph transformations and 
net refinements (or, conversely, net reductions) should be investigated: 

As a number of refinement operations correspond to rather restricted types of 
context-free hypergraph rewriting mechanisms, interpreting more general types 
of hypergraph rewriting as net refinement will probably lead to new net refine- 
ments. Moreover, the well-known results on compatible properties may lead to 
similar results for net refinement, i.e. to results on the compositionality of net 
properties. In the setting of high-level nets and refinements based on double- 
pushout rules, similar ideas have already been investigated in [PER95, PGE98]; 
the link to the work presented here remains to be established. 

Vice versa, finding adequate descriptions of particular types of net refinement 
as hypergraph rewriting may also lead to extensions of the latter. 
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