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Abstract .  The growing context-sensitive languages have been classified 
through the shrinking two-pushdown automaton, the deterministic ver- 
sion of which characterizes the class of generalized Church-Rosser lan- 
guages (Buntrock and Otto 1995). Exploiting this characterization we 
prove that this latter class coincides with the class of Church-Rosser 
languages that was introduced by McNaughton, Narendran, and Otto 
(1988). Based on this result several open problems of McNaughton et al 
can be answered. 

1 I n t r o d u c t i o n  

If R is a finite and length-reducing string-rewriting system on some finite alpha- 
bet ~ ,  then there exists a linear-time algorithm that,  given a string w E ~U* as 
input, computes an irreducible descendant w0 of w with respect to the reduction 
relation -+~ that  is induced by R [2, 3]. If, in addition, the system R is conflu- 
ent, then the irreducible descendant wo is uniquely determined by w. Hence, in 
this situation two strings u and v are congruent modulo the Thue congruence 
+-~ induced by R if and only if their respective irreducible descendants u0 and 
v0 coincide. Thus, the word problem for a finite, length-reducing, and confluent 
string-rewriting system is decidable in linear time. 

Motivated by this result McNaughton, Narendran, and Otto [11] introduced 
the notion of a Church-Rosser language. A Church-Rosser language L C 2Y* is 
given through a finite, length-reducing, and confluent string-rewriting system 
R on some alphabet F properly containing XT, two irreducible strings tl , t2 E 
(F  \ ~)*, and an irreducible letter Y E F \ Z satisfying the following condition 
for all strings w E ,U*: w E L if and only if tlWt2 - ~  Y. Hence, the membership 
problem for a Church-Rosser language is decidable in linear time, and so the 
class CRL of Church-Rosser languages is contained in the class CSL of context- 
sensitive languages. 

On the other hand, the class CRL contains the class OCFL of deterministic 
context-free languages, and it contains some languages that  are not even context- 
free [11]. Hence, the class CRL can be seen as an extension of the class DCFL 
tha t  preserves the linear-time decidability of the membership problem. As such 
it is certainly an interesting language class. 
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Accordingly, McNaughton et al established some closure properties for the 
class CRL, but it remained open whether the class CRL is closed under the 
operation of complementation. Accordingly, they introduced the class of Church- 
Rosser decidable languages CRDL, which still contains the class DCFL and which 
is closed under complementation. Also it remained open at the time whether or 
not every context-free language is a Church-Rosser language, although it was 
conjectured that the linear language Lo := {ww~lw e {a,b}*} is not a Church- 
Rosser language. Here w ~ denotes the reversal of the string w. 

After their introduction the Church-Rosser languages did not receive much 
attention until another, seemingly unrelated development had taken place. Dahl- 
haus and Warmuth [8] considered the class GCSL of growing context-sensitive 
languages. These languages are generated by context-sensitive grammars each 
production rule of which is strictly length-increasing. They proved that these 
languages have membership problems that are decidable in polynomial time. 
Although it might appear from the definition that GCSL is not an interesting 
class of languages, Buntrock and Lory~ showed that GCSL is an abstract family 
of languages [5], that is, this class of languages is closed under union, concatena- 
tion, iteration, intersection with regular languages, ~-free homomorphisms, and 
inverse homomorphisms. Exploiting these closure properties Buntrock and Lory~ 
characterized the class GCSL through various other classes of grammars that are 
less restricted [5, 6]. 

Using these grammars Buntrock and Otto [7] obtained a characterization of 
the class GCSL by a nondeterministic machine model, the so-called shrinking 
pushdown automaton with two pushdown stores (sTPDA). The input for such a 
machine is provided as the initial contents of one of the pushdown stores, and 
it accepts either by final state or (equivalently) by empty pushdown stores. A 
positive weight is assigned to each tape symbol and each internal state symbol of 
the machine. By adding up the weights this gives a weight for each configuration. 
Now it is required that the weight of the actual configuration decreases with each 
step of the machine. It is with respect to these weights that the two-pushdown 
automaton is called shrinking. 

Since the sTPDA is a nondeterministic device, it was only natural to consider 
the class of languages that are accepted by the deterministic variant of it. As 
it turned out the deterministic sTPDA accept exactly the so-called generalized 
Church-Rosser languages, which are obtained from the Church-Rosser languages 
by admitting finite, weight-reducing, and confluent string-rewriting systems in 
the definition [7]. Thus, the class GCRL of generalized Church-Rosser languages 
coincides with the class of 'deterministic growing context-sensitive languages.' 
In particular, it follows that this class is closed under complementation. Further, 
Buntrock and Otto concluded from this result that the language classes CFL and 
GCRL, and therewith the classes CFL and CRL, are indeed incomparable under 
set inclusion. Since CFL is contained in GCSL, it follows that GCRL is properly 
contained in the class GCSL, that is, we obtain the following chain of (proper) 
inclusions: 

DCFL c CRDL c_ CRL _c GCRL c GCSL c CSL, 
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where it was left open whether or not the two inclusions CRDL _C CRL C GCRL 
are proper. 

Here we show that the three language classes CRDL, CRL, and GCRL coin- 
cide. Our proof makes use of the above-mentioned characterization of the gen- 
eralized Church-Rosser languages through the deterministic sTPDA. We will 
prove that each language that is accepted by some deterministic sTPDA is actu- 
ally a Church-Rosser decidable language. Hence, GCRL C_ CRDL implying that 
the three classes above actually coincide. Hence, the class of Church-Rosser 
languages can be characterized as the class of deterministic growing context- 
sensitive languages. 

It remains to determine the closure properties of this class of languages. The 
closure under the operation of taking the complement follows from the above 
characterization. Recently, Otto, Katsura, and Kobayashi [12] proved that the 
class of Church-Rosser languages is a basis for the recursively enumerable (r.e.) 
languages. Here, a class of languages C is called a basis for the r.e. languages, if, 
for each r.e. language L C_ E*, there exists a language C E C on some alphabet 
F strictly containing ~ such that L = Try(C), where ~-~ denotes the canonical 
projection from F* onto ~*. It follows that the class CRL is not closed under 
morphisms. 

This paper is organized as follows. In Section 2 we introduce the necessary 
notation regarding string-rewriting systems and restate the definitions of the 
various classes of Church-Rosser languages. In the next section we introduce 
the shrinking two-pushdown automaton and restate some results from Buntrock 
and Otto [7]. In addition we prove a technical result for this type of automaton. 
Then in Section 4 we prove the announced main result, and in the next section 
we summarize the known closure and non-closure properties of the class CRL. In 
the final section we review our results and draw some easy consequences. 

2 The Church-Rosser Languages 

Here we restate the main definitions and establish notation regarding the various 
classes of Church-Rosser languages. For additional information concerning the 
notions introduced the reader is asked to consult the literature, where [3] serves 
as our main reference concerning the theory of string-rewriting systems, and [I0] 
is our main reference for formal language and automata theory. 

Let ,U be a finite alphabet. Then ,~* denotes the set of strings over ~ includ- 
ing the empty string e, and ~+ := E* \ {e}. A function T : ~ -+ N+ is called a 
weight-function. Its extension to ,U*, which we will also denote by q0, is defined 
inductively through ~(e) := 0 and ~o(wa) := ~(w) + ~(a) for all w E ~* and 
a E E. A particular weight-function is the length-function [. ] : ,U --+ N+, which 
assigns each letter the weight (length) 1. 

A string-rewriting system R on ~ is a subset of 5~* x Z*. An element (~, r) E R 
is called a rewrite rule or simply a rule, and it will usually be written as (g -+ r). 
A string-rewriting system R induces several binary relations on E*, the simplest 
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of which is the single-step reduction relation 

-~n:= {(uev,urv) I u,v �9 ,~*, (e -~ r) �9 R}. 

Its reflexive and transitive closure is the reduction relation --}*a induced by R, 
and its reflexive, symmetric, and transitive closure ~t~ is the Thue congruence 
generated by R. 

If u --+~ v, then u is an ancestor of v, and v is a descendant of u. If there 
is no v �9 27* such that u -~u v holds, then the string u is called irreducible 
(mod R). By IRR(R) we denote the set of all irreducible strings. If R is finite, 
then IRR(R) is obviously a regular language. 

The string-rewriting system R is called 

- length-reducing if Igl > Irl holds for each rule (~ --+ r) �9 R, 
- weight-reducing if there exists a weight-function qo such that ~0(s > ~o(r) 

holds for each rule (~ ~ r) �9 R, 
- confluent if, for all u , v , w  �9 27", u -->*R v and u --+~ w imply that v and w 

have a common descendant. 

If a string-rewriting system R is weight-reducing, then it allows no infinite 
reduction sequence of the form w0 ~ t t  wl --+R ...; indeed, if wo ~ R  wl ~ R  
�9 .. ~ R  Win, then m < ~(w0). If, in addition, R is confluent, then each string 
w �9 27* has a unique irreducible descendant wo �9 IRR(R). Actually, in this 
situation u ~-~ v if and only if Uo -- v0. Since uo can be determined from u in 
linear time, this shows that the Thue congruence +-r E is decidable in linear time 
for each finite, weight-reducing, and confluent string-rewriting system. 

Def in i t ion  1. 

(a) A language L C_ ~* is a Church-Rosser language (CRL) if  there exist an 
alphabet F ~ 27, a finite, length-reducing, confluent string-rewriting system 
R on F, two strings t l , t2  E (F \ 27)* M IRR(R), and a letter Y e (F \ 27) n 
IRR(R) such that, for aU w E ~*, tlwt2 -+*R Y if and only if w e L. 

(b) A language L C 27* is a Church-Rosser decidable language (CRDL) /f it is 
a Church-Rosser language, and there exists a letter N �9 (F \ E) f3 IRR(R) 
such that, for all w �9 27", t lwt2 -+*R N if and only if w r L. 

(c) A language L C_ ~* is a generalized Church-Rosser language (GCRL) if 
there exist an alphabet F D 27, a finite, weight-reducing, confluent string- 
rewriting system R on F, two strings tl ,  t2 �9 (F \ 27)* M IRR(R) and a letter 
Y �9 (F \ 27) n IRR(R) such that, for all w �9 S ' ,  tlwt2 --~*R Y if and only if 
w E L .  

Analogously to (b) the class of generalized Church-Rosser decidable languages 
could be defined, but the results of Buntrock and Otto [7] imply that this class 
coincides with the class GCRL of generalized Church-Rosser languages. 
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3 Shrinking Two-Pushdown Automata 

In [7] Buntrock and Otto introduce the following type of automaton in order to 
characterize the class GCSL of growing context-sensitive languages. 

D e f i n i t i o n  2. 

(a) A two-pushdown automaton (TPDA) is a nondeterministic automaton with 
two pushdown stores. It is defined as a 7-tuple M = (Q,~ ,F ,6 ,qo ,  I , F ) ,  
where 

- Q is the finite set of states, 
- E is the finite input alphabet, 
- F is the finite tape alphabet with F ~ ~ and F n Q = ~, 
- qo E Q is the initial state, 
- I E F \ E is the bottom marker of pushdown stores, 
- F C Q is the set of final (or accepting) states, and 
- 6 : Q  x F x F -+ 2 Qxr*xr" is the transition relation, where 6(q,a,b) is 

a finite set for each triple (q, a, b) E Q x F x P. 
M is a deterministic two-pushdown automaton (DTPDA), i f6  is a (partial) 
function from Q x F x F into Q x F* x F*. 

(b) A configuration of a (D)TPDA M is described as uqv with q E Q and u, v 
F*, where u is the contents of the first pushdown store with the first letter 
of u at the bottom and the last letter of u at the top, q is the current state, 
and v is the contents of the second pushdown store with the last letter of v 
at the bottom and the first letter of v at the top. M induces a computation 
relation ~-~ on the set of configurations, which is the reflexive, transitive 
closure of the single-step computation relation F-M (see, e.g., [10]). For an 
input string w E S*,  the corresponding initial configuration is -Lqow• M 
accepts by empty pushdown stores: 

N ( M )  := {w E S* 13q ~ Q:  • I-~ q}. 

(c) A (D)TPDA M is called shrinking if  there exists a weight function qo : Q u 
F ~ N+ such that, for all q E Q and a, b E F, if (p, u, v) E &(q, a, b), then 
~(upv) < qa(aqb). By sTPDA and sDTPDA we denote the corresponding 
classes of shrinking automata. 

Thus, if M is a shrinking TPDA with weight-function qa, then ~(ulqlVl) > 
qo(u2q2v2) holds for all configurations ulqlvl  and u2q2v2 of M that satisfiy 
ulqlVl ~-M ~z2q~v2. Observe that the input is provided to a TPDA as the ini- 
tial contents of its second pushdown store, and that in order to accept a TPDA 
is required to empty its pushdown stores. Thus, it is forced to consume the input 
completely. Using standard techniques from automata theory it can be shown 
that, for a (shrinking) (D)TPDA M = (Q, S,  F, 6, q0, • F), we may require that 
the special symbol • can only occur at the bottom of a pushdown store, and 
that no other symbol can occur at that place. 
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From the definition of the transition relation 6 we see that  M halts imme- 
diately whenever one of its pushdown stores is emptied. Because of the above 
property this happens if and only if a transition of the form (q, a, • ~+ (q~, a, s) 
or (q, L, b) ~ (q', s, fl) is performed. Thus, we can assume without loss of gener- 
ality that,  if M does accept on input w E ~U*, then Iqow_l_ F* M q for some q E F,  
and if M does not accept on input w E Z*, then •177 ~*M • for some q E F,  
that  is, even in this situation M empties its second pushdown store completely 
and only leaves the bottom marker on its first pushdown store before it halts. 
Hence, all the halting and accepting configurations of M are of the form q, where 
q E F,  and all the halting and rejecting configurations of M are of the form • 
where q E F .  In addition, we can assume that  M only has a single halting state. 

Buntrock and Otto established the following characterization for the classes 
of languages that  are accepted by nondeterministic or deterministic shrinking 
TPDAs, respectively. 

P r o p o s i t i o n  3. [7] 

(a) A language is accepted by some shrinking TPDA if and only if it is growing 
context-sensitive. 

(b) A language is accepted by some shrinking DTPDA if and only if it is a 
generalized Church-Rosser language. 

A detailed presentation of the class GCSL of growing context-sensitive lan- 
guages can be found in Buntrock's Habilitationsschrift [4]. The above proposition 
shows that  the generalized Church-Rosser languages can be interpreted as the 
deterministic variants of the growing context-sensitive languages. 

We close this section with a technical lemma on shrinking TPDA that  we will 
need in the next section to prove our main result. 

L e m m a  4. Let M be a TPDA that is shrinking with respect to the weight- 
function ~. Then there exists a TPDA M' accepting the same language as M 
such that M' is deterministic, if M is, and M' is shrinking with respect to a 
weight-function r that satisfies the following condition: 

(*) Whenever ulqlvl and u2q2v2 are configurations of M' such that ulqlvl ~-M' 
u2q2v2, then ~)(ulqlVl) - ~b(u2q2v2) = 1. 

Proof. Let M = (Q, S,F,6,qo, •  be a TPDA that is shrinking with respect 
to the weight-function qo : Q LJ F -~ N+, that  is, ~(aqb) - ~ ( u p v )  > 0 for 
all q E Q, a,b E F, and (p,u,v) E 6(q,a,b). We construct a TPDA M t := 
(Q', ~ ,  F, 6', q0, •  F)  and a weight-function r : Q' u F -+ N+ as follows. 

First we number the instructions of M, that  is, the lines in the table de- 
scribing the transition relation 6, from 1 to m. For each i E {1, . . .  ,m}, let 
the i-th instruction of M be denoted as (p~,ui,vi) E 6(qi,ai,bi), and let 3'i := 
~(aiqib~) - ~(uipivi). 



249 

IfTi = 1, then take Q~ := ~ and add the transition (qi,ai,bi) -+ (p i ,u i ,v i )  to 
5'. IfTi > 1, then take Q~ := {qi,1,... ,qi,.y,-1}, where qi,1,. . .  ,qi,.r,-1 are 7i - 1 
new states, and add the following transitions to 6': 

(qi, ai, bi) --r (qi,1, ai, bi), 
(q i j ,a i ,  bi) --~ (qi, j+l,ai,bi) ,  j = 1,. . . ,~ ' i  - 2 ,  
(qi,.r,-1, ai, hi) --+ (Pi, ui, vi). 

m 

Finally, let Q' := Q u U Q~, let 6' consist of all the transitions introduced 
i = 1  

so far, and define a preliminary weight-function r  : Q' u F --~ Z as follows: 

r  := ~o(a) for all a e F, 
r := qo(qi) for all qi e Q, 
r  := ~o(qi) - j  for a l l i  E { 1 , . . . , m }  a n d j  e {1,. . . ,~/i  - 1}. 

It is easily verified that  ~ b t ( ~ / l q l V l )  - -  ~bl(u2q2v2) ---- 1 holds for all configura- 
tions u lq l v l  and u2q2v2 of M'  that  satisfy ulqavl FM, u2q2v~. Unfortunately, 
r  may not be an acceptable weight-function, since r could be a negative 
number for some choices of i and j .  

To correct this problem let # := min{r ] p' E Q'}. If # < 0, then choose 
r := r + [#[ + 1 for all q' E Q', otherwise, let r := r for all 
q' E Q'. Also choose r := r  for all a E F. Then r : Q' u F ~ N+ is a 
weight-function such that  r (Ulql vl) - r (u2q2v~) = 1 holds for all configurations 
u lq lv l  and u2q2v2 of M '  that  satisfy ulq lv l  FM, u2q2v2. 

It is easily seen that  N(M' )  = N ( M )  and that  M'  is deterministic, if M is 
deterministic. [] 

Thus, in the following we can always assume that  in each step of a sTPDA the 
weight of the actual configuration decreases by 1. Hence, if uxqlvl  and u2q~.v2 
are configurations of an sTPDA M with weight-function ~o such that  ulq lv l  I"kM 
u2q2v2 for some k E N, then ~(utq lvx)  - r = k. 

4 T h e  M a i n  R e s u l t  

From the definitions we know that  CRDL _ CRL C_ GCRL holds. Here we prove 
tha t  also GCRL C CRDL holds, thus showing that  the three classes actually 
coincide. 

T h e o r e m  5. GCRL C CRDL. 

Proof. Let L C_ E* be a generalized Church-Rosser language. By Proposition 
3(b) there exist a DTPDA M = (Q,~,F,6 ,q0,_L,F)  and a weight-function ~o 
such that  N ( M )  = L, where M is shrinking with respect to qo. As observed in 
the previous section we can assume the following: 
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(i) Each non-halting configuration of M is of the form _Luqv_L for some u, v �9 
(F \ {J_})* and q G (Q \ F). 

(ii) F = {q/}, that is, M has a single halting state only. 
(iii) The only accepting and halting configuration of M that is reachable from 

an initial configuration is the configuration ql" 
(iv) The only non-accepting and halting configuration of M that is reachable 

from an initial configuration is the configuration/qi.  
(v) If ulqlvl t-M u2q2v2, then r -~p(u2q2v2) = 1 (Lemma 4). 

Let # be a new symbol. We define a morphism h : (FUQ)* ~ (FUQU{#})* 
by taking h(a) := a#  ~(a)-I for all a �9 F U Q. Then Ih(w)l = ~o(w) for all 
w �9 (F U Q)*, and h(F U Q) G (F U Q u {#})+ is a prefix code. Thus, the 
morphism h : (F U Q)* -+ (F U Q u {#})* is an injective mapping. Further, let 
# := max{~(a) I a �9 FUQ} denote the maximal weight of any letter from FUQ. 

In order to show that the language L is actually Church-Rosser decidable, 
we now construct a finite, length-reducing, and confluent string-rewriting system 
R on some finite alphabet A D ~U that will witness this fact. Essentially R will 
simulate the computations of the sDTP DAM. However, this cannot be a straight- 
forward simulation, since R is length-reducing, while M is shrinking only with re- 
spect to the weight-function ~. Therefore we would like to replace a configuration 
_Luqvl of M by the string h(luqv.k).  Since this replacement increases the length 
of the string considered, we need to compress the resulting string by combining 
several letters into a single new letter. This, however, creates another problem. If 
-J-UlqlVl / ~-M / I t 2 q 2 v 2 / ,  then by (v) Jh(_kulqlvl l) l-  1 = Ih(lu2q2v2)], but for 
the compressed forms of the strings h ( l u l q l v l l )  and h(J-u2q2v2-L) the length 
might be the same. To overcome this problem we choose the fixed rate of com- 
pression 2#, and simulate 2# steps of M through a single application of a rule of 

2D R. If l ul ql vl-L ~ M -LIt2q2v2-L' then Ih( J_ul ql vl J-) l - 2# = Ih(_Lu2q2v2 l ) l , and 
hence, if ~'1 and ")'2 are the compressed forms of h(Wulq lu l l )  and h(lu2q2v2l) ,  
respectively, then 171l - 1 = Ih('LulqlvlJ')l-21~2# = Ih(-Lu2q2v2"J-)J2/~ ---- ]721. 

To perform this construction we first determine the alphabet A. Let TU {~} 
be a new alphabet that is in 1-to-1 correspondence to F U {#}, and let - - :  F U 
{#} -+ T U {~} denote this correspondence. Further, define four new alphabets 
as follows: 

A_< := {aT I w e (F u {#})*  and 1 < Iwl < ~}, 
A := {aT I w e ( r  u {#})* and Iwl = 2tt}, 

:= {a~ I ~  E (T u {~})*  and [~l = 2#}, and 
AQ := {a~qv l u q  (TU {~} )* ,q  e Q, v �9 (FU {•})* and I~qvl = 2#}. 

Thus, each letter aw E A< U A U -AU....AQ represents a string w of length at most 
2#. Finally, we take A := ~ U {q0, _L, _L, Y, N} U A< U A U ~ U AQ, where we 
assume that all the subalphabets displayed are pairwise disjoint. 

To simplify the following considerations we define a morphism 

7r : (A< U A U A U AQ)* ~ (FU Q U {#})* 
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through the following mapping: 

w, i f a = a w  6A<_UA,  
a ~, w, i f a = a ~  6 A ,  

uqv, if a = a~qv 6 AQ. 

A U ~ U Aq by the string it represents, 
{#---})+ is replaced by the corresponding 

R0 := {• --~ Y I w 6 Z*, qo(w• < 4#, andw 6 L} 
U {• --+ N I w 6 Z*, ~o(w-k) _< 4#, andw 9f L}. 

Obviously, Ro is a finite system containing only length-reducing rules, and there 
are no non-trivial overlaps between the left-hand sides of the rules of Ro. 

I 

(1) The subsystem R1 transforms the description _Lqow• of an initial configu- 
ration i q o w •  of M into a compressed form c 6 ~[* �9 AO �9 A*, if w is sufficiently 
long. It consists of three parts. 

(1.1) RI,1 := {w_L --+ a 'ala2 I w = av 6 iY* for some a 6 ~ such that 
~o(v• _< 4# < ~o(w• < 5p, a'  6 A ,  and al ,  a 2 6  A satisfying 
rc(a' al  a2) = h(w• 

Since 4# < %o(w.l_) _< ([w] + 1) �9 #, we see that Iwl > 3. Hence, R1,1 is a finite 
system of length-reducing rules. The given weight restrictions for w_l_ imply that 
the left-hand side of no rule of R1,1 is a proper suffix of the left-hand side of 
any other rule of Rz,1. Further, the right-hand side a'ala2 of a rule of R1,1 is 
uniquely determined by the left-hand side, since the morphism h is injective. 
Hence, there are no non-trivial overlaps between the left-hand sides of the rules 
of R1,1. 

(1.2) R1,2 := {wa~ --+ a~a I w = av 6 Z* for some a 6 Z, a~, a '26A<,  
and a 6 A such that Ih(v)rc(a'l)l <_ 2# < Ih(w)Tr(a'l)l <_ 3# 
and zr(a~a) = h(w)~r(a~)}. 

Since Ir(a~)l < #, 2# < Ih(w)rr(a'l)l = ~o(w) + lTr(a~)l implies that ~o(w) > p, 
which in turn yields Iwl > 2. Hence, R1,2 is a finite system containing only 
length-reducing rules. As above it follows that there are no non-trivial overlaps 
between the left-hand sides of the rules of R,,2. 

(1.3) Working from right to left the rules of the subsystems RI,1 and R1,2 
replace suffixes v_L of-s177 by the compressed form c 6 A< �9 A* of h(v_l_). 
The subsystem R1,3 will be used to replace the remaining prefix • such 
that the resulting string belongs to ~[* �9 A O �9 A*, that is, it is the compressed 

Thus, lr replaces each letter a 6 A< U 
where in addition each factor ~ 6 (T U 
string u 6 (F U {#})+. 

The string-rewriting system R will consist of four subsystems Ro, R1, R2, 
and R3. 

(0) The subsystem Ro is used to take care of those inputs w 6 ~* for the 
sDTPDA M that are short: 
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form of a string x E (F U Q)* satisfying Ih(x)[ _-- 0 mod 2#. Unfortunately, 
the initial configuration •177 may not satisfy this requirement. Therefore, if 
[h(•177 --- r mod 2# for some r E {1 , . . . ,  2/~-1}, then instead of compressing 
this initial configuration, we compress the configuration •177  that  is obtained 
from -l-q0w• after r steps of M. Then [h(•177 = [h(•177 =_ 0 mod 2#, 
and hence, h(_l_uqv_l_) can be encoded through a string c G ~[* �9 AQ �9 A* such 
that  ~r(c) = h(_l_uqv• 

In each step the sDTPDA M can remove at most one symbol from the top of 
its second pushdown store. Thus, the first 2# - 1 steps of the computation of M 
on input w depend only on the prefix u of w of length 2/~ - 1. Hence, the rules 
of Rx,3 will encode all computations of M of this form. 

R1,3 := {Tqowa'al  " " a n  -~ ~1" "'~rn ]W E x~*,O~ I e A < , a l , . . . , a ,  e A 
such that  Ih(w)~r(a')l < 2#,2 < n <_/~, where n < # 
implies that  ~ r ( a ' a l . . - a , )  �9 ((F \ {• U {#})* �9 h(•  
and 131, . . . , 13m �9 A O AQ O A satisfy the following conditions: 

(i) /~l""/?m �9 
(ii) h(w)~r(a 'al . . ,  an) = h(v)x for some v �9 (F \ {• {_[_,s} 

and x �9 (F U {#})* satisfying Ix I < #, and 
(iii) 7r(131.. "13,n) = h(u lq lv l )x  for some u l , v l  �9 F* and ql �9 Q 

such that  • h~M ulqtv l ,  where r e { 0 , 1 , . . . , 2 # -  1} 
satisfies Ih( •  -- r mod 2#}. 

If ( T q o w a ' c q ' " a n  --+/31"" "13m) �9 R1,3, then rn �9 {n ,n  + 1,n + 2}. Hence, 
Rl,a is a finite system of length-reducing rules. It can easily be checked that  
there are no non-trivial overlaps between the left-hand sides of the rules of R1,3. 

The subsystem R1 is now taken as R1 := R1,1 O RI,: U Rl,a. Prom the defini- 
tions given it follows immediately that  there are no non-trivial overlaps between 
the left-hand sides of the rules of RI. 

(2) The subsystem R2 simulates the computations of the sDTPDA M on strings 
that  represent compressed forms of configurations. Each application of a rule of 
R2 simulates 2/~ steps of M. 

R2 := {a l " "  "an"[an+l"" "O~n+m "'-)" I~1 "" "/~n+m I O~1, . . . ,an �9 ~, ' ) '  �9 AQ, 
c~n+l,... ,an+r, E A such that  n , m  _< # + 1, where 
1 < n < p implies that  7r(al) has prefix h(_t_), 
n = 0 implies that  7r(7) has prefix h(_l_) and m _> 2, 
1 _< m _</~ implies that  7r(an+,n) has suffix h(•  and 
m = 0 implies that  7r(7 ) has suffix h(_l_) and n _> 2, 
~ 1 , . . .  ,~n+m �9 ~ O  AQ U A such tha t /31 . - 'B ,+m E ~[* �9 AQ �9 A*, 
7r(al " "anfan+X ""  an+m) = xxh(uqv)x2 for some u ,v  �9 F*, q �9 Q, 
x~ �9 {#--}*,x2 �9 r .  {#}*,  Ix~l, Ix:l < u ,  z2 r h(r),  
and ~(131" "t3n+,~) = xlh(U~q~v~)x~ for some u~,v~ �9 F*,ql �9 Q, 
such tha t  uqv and u~qlv~ are valid subconfigurations of M 
satisfying uqv ~-~t u~q~v~ }. 
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The conditions on the integers n and m imply that  n + m > 2. Further, all 
rules of R2 are obviously length-reducing. Since uqv and ulqlVl must be valid 
subconfigurations of M, _L can occur at most as the first and/or  the last letter. 
Hence, the left-hand side of no rule of R2 is contained in the left-hand side 
of another rule of R2. Finally, the right-hand side of a rule of R2 is uniquely 
determined by its left-hand side. Thus, there are no non-trivial overlaps between 
the left-hand side of the rules of R2. 

(3) The subsystem R3 ends the simulation of computations of M. 

R3 : :  {o~1a2 --+ Y [ a1,~2 e ~ U A Q U A ,  ala2 E:~* .AQ .A*, ~r(alas) = 
h(.kuqv.k) for some u,v  e F* and q e Q, and .LuqvA_ b* M ql} 

U {a la2  ~ N [ a l , a 2  e]UAQUA, ala2 e T  .AQ .A*, 7r(alaS) = 
h(_Luqv.L) for some u,v  e F* and q e Q, and _Luqv.k b* M .kql }. 

Obviously, R3 is a finite length-reducing system, and there are no non-trivial 
overlaps between the left-hand side of the rules of R3. 

Finally, we take R :-- R0 U R1 U R2 U R3. Then R is indeed a finite string- 
rewriting system that  contains length-reducing rules only. It is easily verified 
that  there are no non-trivial overlaps between the left-hand sides of the rules of 
R. Hence, we see that  R is also confluent. 

It remains to prove the following statements for all w E E*: 

(i) If w e L, then _Lq0w• --+~ Y. 
(ii) If w r L, then _Lq0wA_ - ~  N. 

These statements show that  the system R, together with the strings tl := lq0  
and t2 := • and the letters Y and N, witnesses the fact that  L is a Church- 
Rosser decidable language. The proof of the statements above will be divided 
into several claims and their proofs. The first one follows immediately from the 
choice of the subsystem/to .  

C l a i m  1. For all w E 2J* satisfying ~(w) < 4# - ~o(.l_) the statements (i) and 
(ii) hold. 

Hence, for the following considerations we can assume that  the string w E ,~* 
satisfies ~(w) > 4# - ~o(• that  is, ~(w• > 4#. 

C l a i m  2. Let w E ,~* such that  ~(w_l_) > 4#, and let r E { 0 , 1 , . . . , 2 #  - 1} 
such that  ~o(-kq0w.l-) = k �9 2# + r for some k E N. Then there exist a x , . . . ,  ak E 
~[ U AQ U A satisfying the following conditions: 

(i) a l a s " ' a k  e'A* " AQ . A*, 
(ii) ~r(al . . - a k )  = h(_Luqv_L) for some configuration _l_uqv3_ of M, 

where • ~-~ l u q v •  and 
(iii) l q 0 w •  -+R1 al .." ak. 

Proof. Let w E 2~* satisfy ~o(w_L) > 4#, and let k e N and r E {0, 1 , . . . ,  2# - 1} 
such that  ~(• --- k �9 2# + r > 4#. The computation of M starting from 
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the initial configuration •177 either ends with the accepting configuration 
qf of weight ~o(qf) < # or with the non-accepting configuration •  of weight 
~o(• < 2#. Hence, this computation consists of more than 2# steps. Thus, 
there is a (uniquely determined) configuration •177  of M such that  •177 FrM 
•177 Since ~p(•177 = ~o(•177 - r  = k .  2#, there exist a l , . . . , a &  

~ tJ AQ U A such that  al a~ . . . ak ~ ~* " AQ . A * and ~-(al " '"  a k  ) = h( Luqv • ). It 
follows easily from the definition of the rules of the system R1 that  •177 ~ , ~  
wl ~ . ~  w~ -~t%,~ a l a ~ . . ,  ak holds for some strings wl and w2. [] 

C l a i m  3. Let •177  be a configuration of M such that  ~(•177  = s- 2# for 

some s _> 3, and let a l , . . .  ,as G A U A Q U A  such that  a l  ". "as E ~* .AQ.A* and 
7f(al . . .  as) = h(•177 If •177  is reachable from an initial configuration, 
then there exist a configuration • 1 7 7  of M and letters i l l , . . .  ,;3s-1 E A U 
AQ O A such that  the following conditions are satisfied: 

(i) f l l f l2""fls-1  6 A*" AQ.A* ,  
(ii) ~(fl1~32 " ' f l , - l )  = h(-l-ulqlv11), 

(iii) • ~-~ 2-ulqlvl•  and 
(iv) a l a 2  " . . a s  ~R2 i l l& "" ";9s-1. 

Proof. Let l u q v •  be a configuration of M such that  ~o(• = s �9 2# for 
some s > 3. If •177  is reachable from some initial configuration, that  is, 
i q o w •  F* M _Luqv• for some w G Z*, then Luqv•  P*M qf or •177  t"* M .l_qf, 
depending on whether w E L or w r L, respectively. Since the weight of 
the actual configuration decreases by 1 in each step, we see that  there ex- 
ists a unique configuration • 1 7 7  such that  • F ~  • 1 7 7  and 
~o(.Lulqlvi• = ~o(.l.uqv.l_) - 2 H = (s - 1) �9 2#. Hence, there exist (uniquely 
determined) ill, fl~,-. ,, fls-1 e ~[U AQ U A satisfying fll;32 �9 �9 �9 ~s-1 e ]~*. AQ. A* 
and ~r (fll fl2 . " ~s-1) = h ( • u l ql vl • ) . 

During the computation •177  ~-~ •177 a suffix u t of u and a prefix 
v' of v are involved that  satisfy ]u'[, [v'l _< 2#. Hence, this computation can 
be described completely by using a window of length 2# + 1 + 2# = 4# + 1 
tha t  is placed on •177  in such a way that  the state symbol q appears in 
the middle. The corresponding section of h(•177 is contained in a substring 
a ~ - . .  ' ~ i . l �9 .A* �9 satisfying < + 1. an" / an+ 1 ' ' a n +  m E "A* AQ o f a l a ~  . ' as  n , m  _ # 
From the definition of the subsystem R2 we see that  each rule of Rz just  simulates 
2# steps of M on a substring of this form. Hence, it follows that  a l  az . . . a s  -~n2 
/31/32""/3s- 1 holds. D 

C l a i m  4. Let • be a configuration of M such that  ~(•177  = 4#, and 

let a l , a 2  G ~ U A Q U A  such that  a l a 2  E ~* .AQ .A* and 7c(ala2) = h(• 
If •177  is reachable from an initial configuration, then either a l a2  --+Rs Y or 
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Proof. Let _Luqvl be a configuration of M such that  ~o(_Luqv_L) = 4#, and let 
a~,a~ 6 "AUAQ UA such that  a~c~ 6 A-*-AQ-A* and ~r(c~c~) = h(_Luqv_L). If 
_Luqv_L is reachable from some initial configuration, then _LqowI b* M .Luqv_L for 
some w 6 ~Y*. I f w  6 L, then _Luqv_L t -~ qI, and i fw r L, then _Luqv_L ~-*M -l-ql" 
Thus, either ( ~ a 2  --~ Y) 6 R3 or (a~a~ -+ N) 6 Rs. [] 

We now verify that  R does indeed witness the fact that  L is a Church-Rosser 
decidable language. Let w 6 2Y'. If ~(w) < 4/z - ~p(.l.), then we see from Claim 
1 that  _Lqow-L -+R Y if w q L, and _Lq0w.l- -+a N,  if w r L. Assume therefore 
tha t  ~(w) > 4/~ - ~ ( •  Then by Claim 2 there exist a configuration -Lulqlvl-L 
of M and a l ,  a 2 , . . . ,  ak 6 ~ O AQ U A such that  

(i) a l a 2 - - . a ~  6 ~ *  .AQ .A*, 
(ii) v ( a l a 2 " "  ak) = h(•177 

(iii) -Lqow-L F-~ -Lulqlvl• and 
(iv) -Lqow• -+~ a l ' " a k .  

If k > 2, then Claim 3 applies. Hence, there are configurations J_uiqivil of 
M and strings 5i 6 ~* �9 AQ. A*, i = 2 , . . . ,  k - 1, such that  Iu i - lq i - lv i - l -L  ~-~ 
.l_uiqivil, 7r(5~) = h( luiqivi_L), a l . . . a k  --~1~ 52 --~a ... --+a tik-1, and I I= 
k - i + 1 for all i = 2 , . . . ,  k - 1. Finally, I$k_11 = 2 implies that  6k-i --~R Y or 
~ - 1  -~a  N by Claim 4. From the definition of R3 we see that  the former is the 
case if and only if w 6 L. Thus, for w 6 L, we have _Lq0w_L - ~  c~1 - - -  a k  --~a 
�9 .. -+a 6a-1 -+a Y, and for w r L, we have _Lqowl -~R al "' 'ak --+R ... ~ R  
6k-1 --~n N. This completes the proof of Theorem 5. [] 

From Theorem 5 we obtain our main result. 

Corollary 6. The three language classes CRDL, CRL, and GCRL coincide. 

Thus, the Church-Rosser languages are indeed the deterministic variants of 
the growing context-sensitive languages. 

5 C l o s u r e  P r o p e r t i e s  

In this section we summarize the known closure and non-closure properties of 
the class fiRL and we prove two new non-closure properties, which, however, 
were already announced by Buntrock and Otto [7]. 

From the definition of the class fiRDL we immediately obtain the following 
result. 

Proposition T. The class of Church-Rosser languages is closed under comple- 
mentation, that is, if L C_ ~* is a Church-Rosser language, then so is the lan- 
guage L := Z* \ L. 

From the characterization of the class GCRL through the shrinking DTPDA 
we can conclude the following closure properties. 
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Proposition 8. 

(a) The class CR/ i s  closed under intersection with regular languages, that is, if 
L E CRL and L1 is a regular language, then L M L1 E CRL. 

(b) The class CR/ is closed under inverse morphisms, that is, if L C_ ,~* is in 
CR/ and h : A* --r ~* is a morphism, then h - l ( L )  e CR/. 

Finally, from [11] we recall the following closure properties. 

Proposition 9. 

(a) CRI_ is closed under reversal, that is, if L is a Chureh-Rosser language, then 
so is the language L ~ := {w ~ I w E L}. 

(b) CRL is closed under left quotient and right quotient with a single string, that 
is, if L C S "  is a Chureh-Rosser language and z E ,~*, then L / { z }  = {w E 
S "  I w z  E L} and {z} \ L := {w E E" I z w  E L} are Chureh-Rosser 
languages, too. 

In [12] it is shown that the class CR/is  a basis for the recursively enumerable 
languages. Further, it is shown by Buntrock in [4] that the closure of the class 
GCRI_ (= CR/) under e-free morphisms yields the class GCSI.. Hence, we obtain 
the following non-closure properties. 

Proposition 10. The class s is neither closed under projections nor under 
v-free morphisms. 

The Gladkij language LG1 :---- {WCW~r e {a, b}*} is a context-sensitive 
language that is not growing context-sensitive [9, 1, 7]. Now LG1 can be written 
as LGI = L1 M L2, where nl  := {wCw~r [ w, z E {a, b}*} and L2 := {wCz~z ~ I 
w, z E {a, b}*}. Obviously, L1 and L2 are both deterministic context-free, and 
hence, they are both Church-Rosser languages. Since L1 fl L2 t/GCS/, we have 
L1 fl L2 t /CRL This shows the following. 

Proposition 11. The class CRL is neither closed under intersection nor under 
union. 

6 C o n c l u s i o n  

We have shown that the three language classes CRDL and CRL of [11] and GCRL 
of [7] coincide. Because of the characterization of the latter class through the 
deterministic variant of the shrinking TPDA [7] this class of languages can be 
considered as the class of 'deterministic growing context-sensitive languages'. 
Based on these characterizations we have obtained some closure properties and 
some non-closure properties for the class of Church-Rosser languages. However, 
many questions regarding closure and non-closure properties remain open. Also it 
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remains the question of whether or not the language L0 := {ww T M  I w E {a, b}*} 
is a Church-Rosser language. 

Finally, based on the fact tha t  the classes CFL and CRL are incomparable un- 
der set inclusion, we obtain the following undecidability result from McNaughton 
et al [11]. 

P r o p o s i t i o n  12. 

(a) The emptiness and the finiteness problems for Church-Rosser languages are 
undecidable in general. 

(b) It is undecidable in general whether a given context-free language is a Church- 
Rosser language. 

(c) It is undecidable in general whether a given Church-Rosser language is con- 
text-free. 
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