
A Bisimulation Method for
Cryptographic Protocols

Martin Abadi 1 and Andrew D. Gordon 2

i Digital Equipment Corporation, Systems Research Center
2 University of Cambridge, Computer Laboratory

A b s t r a c t . We introduce a definition of bisimulation for cryptographic
protocols. The definition includes a simple and precise model of the
knowledge of the environment with which a protocol interacts. Bisim-
ulation is the basis of an effective proof technique, which yields proofs of
classical security properties of protocols and also justifies certain protocol
optimisations. The setting for our work is the spi calculus, an extension
of the pi calculus with cryptographic primitives. We prove the soundness
of the bisimulation proof technique within the spi calculus.

1 I n t r o d u c t i o n

In reasoning about a reactive system, it is necessary to consider not only the
steps taken by the system but also the steps taken by its environment. In the
case where the reactive system is a cryptographic protocol, the environment may
well be hostile, so little can be assumed about its behaviour. Therefore, the envi-
ronment may be modelled as a nondeterministic process capable of intercepting
messages and of sending any message that it can construct at any point. This
approach to describing the environment is fraught with difficulties; the result-
ing model can be somewhat arbitrary, hard to understand, and hard to reason
about.

Bisimulation techniques [Par81,Mi189] provide an alternative approach. Ba-
sically, using bisimulation techniques, we can equate two systems whenever we
can establish a correspondence between their steps. We do not need to describe
the environment explicitly, or to analyse its possible internal computations.

Bisimulation techniques have been applied in a variety of areas and under
many guises. Their application to cryptographic protocols, however, presents
new challenges.

- Consider, for example, a secure communication protocol P (M) , where some
cteartext M is t ransmit ted encrypted under a session key. We may like to
argue that P(M) preserves the secrecy of M, and may want to express this
secrecy proper ty by saying that P(M) and P(N) are equivalent, for every M
and N. This equivalence may be sensible because, al though P(M) and P(N)
send different messages, an attacker that does not have the session key cannot
identify the cleartext. Unfortunately, a s tandard notion of bisimulation would
require tha t P(M) and P(N) send identical messages. So we should relax
the definition of bisimulation to permit indistinguishable messages.

13

- In reasoning about a protocol, we need to consider its behaviour in reaction
to inputs from the environment. These inputs are not entirely arbitrary.
For example, consider a system P(M) which discloses M when it receives a
certain password. Assuming that the password remains secret, P(M) should
be equivalent to P(N). In order to argue this, we need to characterise the set
of possible inputs from the environment, and to show that it cannot include
the password.

- Two messages that are indistinguishable at one point in time may become
distinguishable later on. In particular, the keys under which they are en-
crypted may be disclosed to the environment, which may then inspect the
cleartext that these keys were concealing. Thus, the notion of indistinguisha-
bility should be sensitive to future events.
Conversely, the set of possible inputs from the environment grows with time,
as the environment intercepts messages and learns values that were previ-
ously secret.

In short, a definition of bisimulation for cryptographic protocols should ex-
plain what outputs are indistinguishable for the environment, and what inputs
the environment can generate at any point in time. In this paper we introduce a
definition of bisimulation that provides the necessary account of the knowledge
of the environment. As we show, bisimulation can be used for reasoning about
examples like those sketched informally above. More generally, bisimulation can
be used for proving authenticity and secrecy properties of protocols, and also for
justifying certain protocol optimisations.

We develop our bisimulation proof technique in the context of the spi cal-
culus [AG97a,AG97b,AG97c,Aba97], an extension of the pi calculus [MPW92]
with cryptographic primitives. For simplicity, we consider only shared-key cryp-
tography, although we believe that public-key cryptography could be treated
through similar methods. Within the spi calculus, we prove the soundness of our
technique. More precisely, we prove that bisimulation yields a sufficient condi-
tion for testing equivalence, the relation that we commonly use for specifications
in the spi calculus.

We have developed other proof techniques for the spi calculus in earlier work.
The one presented in this paper is a useful addition to our set of tools. Its
distinguishing characteristic is its kinship to bisimulation proof techniques for
other classes of systems. In particular, bisimulation proofs can often be done
without creativity, essentially by state-space exploration.

The next section is a review of the spi calculus. Section 3 describes our proof
method and Section 4 illustrates its use through some small examples. Section 5
discusses related work. Section 6 concludes.

2 T h e S p i C a l c u l u s (R e v i e w)

This section reviews the spi calculus, borrowing from earlier presentations. It
gives the syntax and informal semantics of the spi calculus, introduces the main
notations for its operational semantics, and finally defines testing equivalence.

14

2.1 Syntax

We assume an infinite set of names and an infinite set of variables. We let c,
m, n, p, q, and r range over names, and let w, x, y, and z range over variables.
When they represent keys, we let k and K range over names too.

The set of terms is defined by the grammar:

L, M, N ::= terms
n name

(M, N) pair
0 zero
suc(M) successor
{ M } N encryption
x variable

Intuitively, {M}N represents the ciphertext obtained by encrypting the t e rm
M under the key N using a shared-key cryptosystem such as DES [DES77]. In
examples, we write 1 as a shorthand for the term suc(O).

The set of processes is defined by the grammar:

P, Q, R ::= processes
M (N).P output
M(x) .P input (scope of x is P)
P IQ composition
(vn)P restriction (scope of n is P)
!P replication
[M is N] P match
0 nil
let (x, y) = M in P pair splitting (scope of x, y is P)
case M of 0 : P suc(x) : Q integer case (scope of x is Q)
case L of {X}N in P decryption (scope of x is P)

We abbreviate M(N).O to M(N). We write P[M/x] for the outcome of replacing
each free occurrence of x in process P with the term M, and identify processes
up to renaming of bound variables and names. Intuitively, processes have the
following meanings:

- An output process M(N) .P is ready to output N on M, and then to behave
as P . The output happens only when there is a process ready to input from
M. An input process M(x).Q is ready to input from M, and then to behave
as Q[N/x], where N is the input received.

- A composition P [Q behaves as P and Q running in parallel.
- A restriction (vn)P is a process tha t makes a new, private name n, which

may occur in P, and then behaves as P.
- A replication !P behaves as infinitely many replicas of P running in parallel.
- A match [M is N] P behaves as P provided that M and N are the same

term; otherwise it is stuck, tha t is, it does nothing.
- The nil process 0 does nothing.

15

- A pair splitting process let (x,y) = M in P behaves as P[N/x][L/y] if M is
a pair (N, L), and it is stuck if M is not a pair.

- An integer case process case M of 0 : P suc(x) : Q behaves as P if M is 0,
as Q[N/x] if M is suc(N) for some N, and otherwise is stuck.

- A decryption process case L of {x}g in P attempts to decrypt L with
the key N. If L has the form {M}N, then the process behaves as P[M/x].
Otherwise the process is stuck.

For example, P ~= m(x).case x of {Y}K in ~({0}y) is a process that is ready
to receive a message x on the channel m. When the message is a ciphertext of
the form {Y}K, process P sends 0 encrypted under y on the channel m. This

process may be put in parallel with a process Q ~ ~ ({ K ' } K) , which sends the
name K ' encrypted under K on the channel m. In order to restrict the use of
g to P and Q, we may form (vK)(PJQ) . The environment of (v K) (P I Q)
will not be able to construct any message of the form {Y}K, since K is bound.
Therefore, the component P of (vK)(PJQ) may output {0}g,, but not {0}z
for any z different from K' . Alternatively, the component P of (vK)(P [Q) may
produce no output: for example, were it to receive 0 on the channel m, it would
get stuck.

We write fn(M) and fn (P) for the sets of names free in term M and process
P respectively, and write fv(M) and fv(P) for the sets of variables free in M
and P respectively. A term or process is closed if it has no free variables.

2 . 2 O p e r a t i o n a l S e m a n t i c s

An abstraction is an expression of the form (x)P, where x is a bound variable
and P is a process. Intuitively, (x)P is like the process p(x).P minus the name
p. A concretion is an expression of the form (v rn l , . . . , mk)(M)P, where M is a
term, P is a process, k _ 0, and the names ml , . . . , mk are bound in M and P.
Intuitively, (1]ml, . . . , mk)(M)P is like the process (v m l) . . . (vmk)~(M)P minus
the name p, provided p is not one of ml, . . . , mk. We often write concretions
as (vr~)(M)P, where r~ = m l , . . . ,mk, or simply (v)(M)P if k = 0. Finally, an
agent is an abstraction, a process, or a concretion. We use the metavariables A
and B to stand for arbitrary agents, and let fv(A) and fn(A) be the sets of free
variables and free names of an agent A, respectively.

A barb is a name m (representing input) or a co-name ~ (representing out-
put). An action is a barb or the distinguished silent action T. The commitment
relation is written P ~ A, where P is a closed process, a is an action, and A
is a closed agent. The exact definition of commitment appears in earlier papers
on the spi calculus [AG97b,AG97c]; informally, the definition says:

- P ~ Q means that P becomes Q in one silent step (a T step).

- P --~ (x)Q means that, in one step, P is ready to receive an input x on m
and then to become Q.

- P --~ (vml , . . . ,mk)(M)Q means that, in one step, P is ready to create the
new names ml, . . . , ink, to send M on m, and then to become Q.

16

2 . 3 T e s t i n g E q u i v a l e n c e

We say that two closed processes P and Q are testing equivalent, and write
P ~_ Q, when for every closed process R and every barb/~, if

for some P' and A, then

for some Q' and B, and vice versa.
For example, the processes (vK)~({0}K) and (v K)~ ({ 1 } K) are testing

equivalent. We may interpret this equivalence as a security property, namely
that the process (v K) ~ ({ X } K) does not reveal to its environment whether x
is 0 or 1. In the examples contained in Section 4 and in earlier papers, various
other properties (including, in particular, secrecy properties) are formulated in
terms of testing equivalence.

In this paper we develop a sound technique for proving testing equivalence:
we introduce a definition of bisimulation and show that if two closed processes
are in one of our bisimulation relations then they are testing equivalent.

3 F r a m e d B i s i m u l a t i o n

This section defines our notion of bisimulation, which we call framed bisimula-
tion.

3 . 1 F r a m e s a n d T h e o r i e s

Our definition of bisimulation is based on the notions of a frame and of a theory.
A bisimulation does not simply relate two processes P and Q, but instead relates
two processes P and Q in the context of a frame and a theory. The frame and
the theory represent the knowledge of the environment of P and Q.

- A frame is a finite set of names. Intuitively, a frame is a set of names available
to the environment of the processes P and Q. We use f r to range over frames.

- A theory is a finite set of pairs of terms. Intuitively, a theory that includes a
pair (M, N) indicates that the environment cannot distinguish the data M
coming from process P and the data N coming from process Q. We use th
to range over theories.

Next we define the predicate (fr, th) ~- M ++ N inductively, by a set of rules.
Intuitively, this predicate means that the environment cannot distinguish M
coming from P and N coming from Q, and that the environment has (or can
construct) M in interaction with P and N in interaction with Q.

(Eq Frame) (Eq Theory) (Eq Variable)

n �9 f r (M , N) �9 th

(fr, th) ~- n ~ n (fr, th) }- M ~ N (fr, th) }- x <-+ x

17

(Eq Pair)

(fr, th) F- M ~ M' (fr, th) F- N ~ N'

(fr, th) F- (M, N) e+ (M', N')

(Eq Suc) (Eq Encrypt)

(fr, th) f- M ++ M'

(fr, th) ~- suc(M) ++ suc(M')

(Eq Zero)

(fr, th) t- 0 ~ 0

(fr, th) ~- M +~ M' (fr, th) t- N ++ N'

(fr, th) F- { M } N ++ {M'}N,

For example, if fr = {n} and th = {({0}K,{n}g)}, where n and K are
distinct names, then we have (fr, th) F- n ~-~ n and (fr, th) F- {0}g ++ {n}K, and
also (fr, th) t- (n, {O}g) ++ (n, {n}K), but we have neither (fr, th) t- g ~ g nor
(fr, th) F { n } g ~ {0}g.

We say that the pair (fr, th) is ok, and write (fr, th) F- ok, if two conditions
hold:

(1) whenever (M, N) E th:
- M is closed and there are terms M1 and M2 such that M = {M1}M2

and there is no N2 such that (fr, th) ~- M2 ++ N2;
- N is closed and there are terms N1 and N2 such that N = {N1}N2 and

there is no M2 such that (fr, th) F- M2 ++ N2;
(2) whenever (M, N) E th and (M', N') E th, M = M' if and only if N = N' .

Intuitively, the first condition requires that each term in a pair (M, N) in a the-
ory be formed by ciphertexts that the environment cannot decrypt. For example,
the requirement that there be no N2 such that (fr, th) f- M2 ++ N2 means that
the environment cannot construct M2 for decrypting M. The second condition
guarantees that no ciphertext is equated to two other ciphertexts. This condi-
tion is essential because the environment can compare ciphertexts even when it
cannot decrypt them (see Example 2 of Section 4).

3 . 2 O r d e r i n g F r a m e - T h e o r y P a i r s

We define an ordering between pairs of frames and theories as follows: we let
(fr, th) < (fr', th') if and only if for all M and N, (fr, th) F- M ~ N implies
(fr ~, th t) F- M t-~ N . This relation is reflexive and transitive. It is not the same
as the pairwise ordering induced by subset inclusion; fr C_ fr ~ and th C th ~ imply
(fr, th) ~ (fr ~, the), but the converse implication does not hold.

P r o p o s i t i o n 1. Suppose (fr', th') F- ok. Then (fr, th) <_ (fr ' , th') i] and only if
fr C_ fr' and (fr', th') F- M ~ N for each (M, N) e th.

As indicated above, we view a pair (fr, th) as a representation for the knowl-
edge of an environment. With this view, and assuming that (fr~,th ~) ~ ok,
the relation (fr, th) < (fr t, th ~) means that the environment may go from the
knowledge represented in (fr, th) to the knowledge represented in (fr ~, the). The
definition of (fr, th) < (fr ' , th') implies that the set of names and terms that the

1 8

environment has (or can construct) grows in this transition. It also implies that
any indistinguishable pair of terms remains indistinguishable after the transi-
tion. So, if ever we assert that (fr, th) characterises an environment, we should
take care that (fr, th) does not imply that the environment cannot distinguish
two terms M and N if later information would allow the environment to distin-
guish these terms. For example, if f r ' includes the name n, then th should not
contain ({0}n, {1}n). Intuitively, the acquisition of the name n would allow the
environment to distinguish {O}n and {1}n, so (f r ' , th ') }- {O}n ++ {1}~ would
not hold. On the other hand, th may contain ({O}n, {0}~); in that case, th' could
not contain ({0}n, {0}n), but we would at least have (fr ' , th') ~- {0}n ~ {0}n.

3 . 3 F r a m e d R e l a t i o n s a n d B i s i m u l a t i o n s

For a theory th, we let fn(th) = U{fn(M) u fn(N) I (M,N) E th}. We let
7rl(th) = {M I (M , N) E th} and 7r2(th) = { g] (M,N) E th}, and write
fn(~rl(th)) and fn(~r2(th)) for the sets of names U{fn(M) I M e ~rl(th)} and
U{fn(g) i N �9 ~'2(th)} respectively.

A framed process pair is a quadruple (fr, th, P, Q) such that P and Q are
closed processes, f r is a frame, and th is a theory. When 7~ is a set of framed
process pairs, we write (fr, th) ~- P 7~ Q to mean (fr, th, P, Q) �9 T~. A framed
relation is a set ~ of framed process pairs such that (fr, th) ~- ok whenever
(fr, th) t- P T4 Q.

A framed simulation is a framed relation ,.q such that , whenever (fr, th) t-
P S Q, the following three conditions hold.

- If P r > p , then there is a process Q' with Q ~ > Q' and (fr, th) ~ P' 8 Q'.
- If P c > (x)P' and c �9 f r then there is an abstraction (x)Q' with Q _!+

(x)Q' and, for all sets {~} disjoint from fn(g) U fn(Q) u fr u fn(th) and all
closed M and N, if (fr U {g}, th) ~- M ++ g then (fr U {g) , th) F- P'[M/x] S
Q'[g/x].

- If P ~> (y~)(M)P' , c �9 fr , and the set {r~} is disjoint from fn(P) U
fn(Trl(th)) U fr then there is a concretion (u~)(N)Q' with Q ~> (~g)(N)Q'
and the set {if} is disjoint from fn(Q) Ufn(Tr2(th)) U fr, and there is a frame-
theory pair (fr ' , th') such that (fr, th) < (fr', th'), (fr', th') F- M ++ N, and
(fr', th') ~- P' S Q'.

We may explain these conditions as follows.

- The first condition simply requires that if P can take a ~- step then Q can
match this step.

- The second condition concerns input steps where the channel c on which
the input happens is in f r (that is, it is known to the environment). In this
case, we must consider the possible inputs M from the environment to (x)P ' ,
namely the terms M that the environment can construct according to (fr U
{if), th). The names in ~ are fresh names, intuitively names just generated
by the environment. Correspondingly, we consider the possible inputs N

19

for (x)Q', for an appropriate (x)Q' obtained from Q. We then require that
giving these inputs to (x)P ~ and (x)Q t, respectively, yields related processes
P'[M/x] and Q'[N/x].
The choice of (x)Q t is independent of the choices of M and N. So, in the
technical jargon, we may say that S is a late framed simulation.

- The third condition concerns output steps where the channel c on which
the output happens is in f r (that is, it is known to the environment). In
this case, P outputs the term M while creating the names ~ . The condition
requires that Q can output a corresponding term N while creating some
names ~. It also constrains M and N, and the resulting processes P ' and Qq
The constraints concern a new frame-theory pair (f r t, thl). Intuitively, this
pair represents the knowledge of the environment after the output step. The
requirement that (]C, th ~) ~- M ++ N means that the environment obtains
M in interaction with P and N in interaction with Q, and that it should
not be able to distinguish them from one another.
Because we do not impose a minimality requirement on (fC, the), this pair
may attr ibute "too much" knowledge to the environment. For example, fC
may contain names that are neither in f r nor in M or N, so intuitively the
environment would not be expected to know these names. On the other hand,
the omission of a minimality requirement results in simpler definitions, and
does not compromise soundness.

A framed bisimulation is a framed relation S such that both S and 3 -1
are framed simulations. Framed bisimilarity (written .-~/) is the greatest framed
bisimulation. By the Knaster-Tarski fixpoint theorem, since the set of framed
relations ordered by subset inclusion forms a complete lattice, framed bisimilarity
exists, and equals the union of all framed bisimulations.

Our intent is that our definition of framed bisimulation may serve as the
basis for an algorithm, at least for finite-state processes. Unfortunately, the defi-
nition contains several levels of quantification. The universal quantifiers present
a serious obstacle to any algorithm for constructing framed bisimulations. In
particular, the condition for input steps concerns all possible inputs M and N;
these inputs are of unbounded size, and may contain an arbitrary number of
fresh names. However, we conjecture that the inputs can be classified according
to a finite number of patterns--intuitively, because the behaviour of any finite-
state process can depend on at most a finite portion of its inputs. An algorithm
for constructing framed bisimulations might consider all inputs tha t match the
same pat tern at once. We leave the invention of such an algorithm for future
work.

3 . 4 S o u n d n e s s (S u m m a r y)

Our main soundness theorem about framed bisimulation is that it is a sufficient
condition for testing equivalence.

T h e o r e m 2. Consider any closed processes P and Q, and any name n f[f~(P)U
fn(Q). Suppose that (fn(P) U fn(Q) u {n}, O) ~- P ~ f Q. Then P "~ Q.

20

This theorem implies that if we want to prove that two processes are testing
equivalent, then we may construct a framed bisimulation S such that (fn(P) U
fn(Q) u {n}, 0) ~- P S Q where n is a single, arbitrary new name. (The addition
of the name n is technically convenient, but may not be necessary.) The next
section illustrates this approach through several examples.

The proof of this theorem requires a number of auxiliary notations, defini-
tions, and lemmas. We omit the details of the proof, and only indicate its main
idea. In the course of the proof, we extend the relation ~-~ to processes: we define
the predicate (fr, th) F- P ++ Q by the following rules.

(EQ Out)

(fr, th) F- M ~ M' (fr, th) F N ~ g ' (fr, th) F P ++ P'

(fr, th) F M (N) . P ~ M' (N ') .P '

(Eq In) (Eq Repl)

(fr, th) I- M ~ M' (fr, th) ~- P ++ P' (fr, th) I- P ++ P'

(fr, th) F- M (x) . P ~ M'(x) .P ' (fr, th) F- !P ~ !P'

(Eq Par)

(fr, th) ~- P ~ P' (fr, th) F- Q ++ Q'

(~ , th) F- P I Q ~ P ' I Q '

(Eq Match)

(fr, th) F M ~ M'

(Eq Res) (where n • fr U fn(th))

(fr U {n}, th) ~- P ++ P'

(fr, th) F (vn)P ~ (un)P'

(fr, th) ~- N ~-~ N' (fr, th) ~- P ++ P'

(Eq Nil)

(fr, th) ~- 0 ++ 0

(Eq IntCase)

(fr, th) F [M is N] P ++ [M' is N'] P'

(EQ Let)

(fr, th) F M o M' (fr, th) F P + 4 P '

(fr, th) ~- let (x, y) = M in P ++ let (x, y) = M' in P'

(fr, th) F M ++ M' (fr, th) t- P ~ P' (fr, th) t- Q o Q'

(fr, th) ~- case M of 0 : P suc(x) : Q ~ case M' of 0 : P' suc(x) : Q'

(Eq Decrypt)

(fr, th) ~- M ++ M' (fr, th) F g ++ N' (fr, th) t- P ++ P'

(fr, th) t- case M of {X}N in P ~ case M' of {x}g, in P'

The core of the proof depends on a relation, $, defined so that P S Q if and
only if there is a frame fr, a theory th, and processes P1, P2, Q1, Q2, such that

P = (vp-~(P1]P2) Q -- (yq~(Q1]Q2)

and (fr, th) t- ok, (fr, th) ~- P1 ~ I Q~, and (fr, th) b P2 ++ Q2, where {p~ =
(fn(P1) u/n(~rl (th))) - fr and {q~} = (fn(Q1) u fn(~r~(th))) - f t . By a detailed

21

case analysis, we may show that S satisfies the definition of a standard notion of
bisimulat ion--a barbed bisimulation up to restriction and barbed equivalence.
Given some auxiliary lemmas about testing equivalence, the theorem then follows
easily. The construction of S also yields that framed bisimilarity is a sufficient
condition for a strong equivalence called barbed congruence.

The converse of soundness--completeness--does not hold. The failure of com-
pleteness follows from the fact that framed bisimilarity is a sufficient condition
for barbed congruence. (Barbed congruence and a fortiori framed bisimilarity
are sensitive to T steps and to branching structure, while testing equivalence is
not.) Incompleteness may be somewhat unfortunate but, in our experience, it
seems to be compatible with usefulness.

4 E x a m p l e s

This section shows how bisimulations can be exploited in proofs through some
small examples. These examples could not be handled by standard notions of
bisimulation (like that of our earlier work [AG97b,AG97c]). We have worked
through further examples, including some examples with more steps. In all cases,
the proofs are rather straightforward.

Throughout this section, c, K, K1, a n d / (2 are distinct names, and n is any
name different from c. Moreover, M, M ~, M ' , M1,/1//2, N1, and N2 are closed
terms; it is convenient to assume that no name occurs in them.

Example 1 As a first example, we show that the processes (vK)~({M}K) and
(~K)-6({M'}K) are in a framed bisimulation, so they are testing equivalent.
Intuitively, this means that these processes do not reveal M and M' , respectively.

For this example, we let S be the least relation such that:

- ({c, n}, O) F- (vK)~({M}K) S (vK)~({M'}K)
- ({c ,n} , { ({M}k, {M'}k)}) f- 0 S 0

for all names k ~t {c, n}

Since ({c,n}, 0) ~- ok and ({c,n}, {({M}k, {M'}k)}) I- ok, 8 is a framed relation.
Next we show that S is a framed simulation; symmetric reasoning establishes
that 8 -1 is one too. Assuming that (fr, th) t- P S Q, we need to examine the
commitments of P and Q. We consider two cases, which correspond to the two
clauses of the definition of S.

- Suppose that P = (L,K)-6({M}K) and Q = (vK)-6({M'}K). In this case,
we have f r = {c, n} and th = 0. Up to renaming of the bound name K,

the only commitment of P is P ~ ~ (vK)({M}K)O. To establish that S is
a framed simulation, we need only consider the case where K is renamed
to some k r fn(P) U/n(Th(0)) U {c,n}, tha t is, k r {c,n}. By renaming,

we have Q "~ (~/k)({M'}k)O. We let th' = {({M}k, {M'}k)}. We have
(fr, th) <_ (fr, th'), (fr, th') f- {M}k <-~ {M'}k, and (fr, th') F- 0 ~ O. Thus,
Q can match P ' s commitment.

22

- Suppose that P = 0 and Q = 0. This case is trivial, since 0 has no commit-
ments.

In short, ({c, n}, 0) t- (vK)-5({M}K) S (vK)-~({M'}K), and 8 is a framed bisim-
ulation, as desired.

Example 2 As a small variant of the first example, we consider the processes
(vK)-g(({M}K, {M}K)) and (vg)~(({M'}g, {M"}K)).

When M ~ = M", the argument of the first example works for this example
too, with only trivial modifications. We define 8 as the least relation such that:

- ({c, n}, O) ~- (uK)~(({M}K, {M}K)) S (uK)-6(({M'}K, {M"}K))
- ({c, n}, {({M}k, {M'}k), ({M}k, {M"}k)}) t- 0 S 0

for all names k ~ {c, n}

This relation is a framed bisimulation when M' = M" . On the other hand, it is
not a framed bisimulation when M' # M". In fact, in that case it is not even a
framed relation, because ({c,n}, {({M}k, {M'}k), ({M}k, {M"}k)}) t- ok does
not hold (because condition (2) of the definition of ok is not satisfied).

The fact that S is not a framed bisimulation in this case should not be
a concern. It is actually necessary: the processes (uK)-5(({M}K, {M}K)) and
(vK)-~(({M'}K, {M"}K)) are not testing equivalent when M' # M". The en-
vironment c(z).let (x, y) -- z in [x is y] E(0) distinguishes them. Thus, this ex-
ample illustrates that two ciphertexts that cannot be decrypted can still be
compared, and justifies part of the definition of framed bisimulation.

Example 3 As a further variant, we study an example with nested encryption. We
consider the processes (vK1)(vK2)e({M1, {M2}K2}K~).e(K1) and (vK1)(uK2)
~({N1, {N2}K2 }K~).~(K1). Each of these processes creates two keys K 1 and / (2 ,
sends a ciphertext, and then reveals K1. Anyone who receives K1 can partially
decrypt the ciphertext.

In order to analyse these processes, we let 8 be the least relation such that:

- ({c,n},O) ~- (uK1)(vK2)-5<{M1, {M2}K2}Kl>.-5<K1> S
(vK1) (vK2)c<{N1, {N2 }K2 }K1 > .c<K1 >

- ({c, n, kl}, {({M2}k2, {N2}k2)}) F- ~(kl) S ~(kl>
for all names kl, k2 with kl # k2 and {kl, k2} N {c, n} = 0

- ({c,n, kl},{({M2}k2,{N2}k2)}) ~- OS 0
for all names kl, k2 with kl # k2 and {kl, k2} N {c, n} = 0

Note how, between the first and the second clauses, the frame has been enlarged
with kl, although the processes considered in the second clause have not yet sent
kl; this simplifies the construction of S and is permitted by the definitions of
Section 3. The assumptions guarantee that ({c, n, kl}, {({M2}k2, {g2}k2)}) I- ok
and hence that S is a framed relation. Moreover, S is a framed bisimulation if
and only if the following condition holds:

((c, n, f- {M2}k (N1,

23

In turn, this condition holds if and only if M1 -- N1. Intuitively, the equality
M1 = N1 becomes necessary only when the two processes send the key kl, since
M1 and N~ are not visible in the first message. Our definition of _< guarantees
that the necessity of M1 = N1 is propagated correctly.

Example 4 While all the examples above concern the secrecy of certain outputs,
this one concerns the impossibility of certain inputs. We consider the processes
(vK)'~({O}K).c(x).[x is K] ~({0}g) and (vg)-5({O}K>.C(x).O. The former process
creates a key K, sends {0}g, listens for an input, and if it receives K then it
sends {0}g again. However, we would expect that K will never arrive as an
input to this process, since the process never discloses K (but only {0}g, from
which K itself cannot be deduced). Therefore, we would expect this process to
be equivalent to the latter process, which simply stops upon receipt of a message.

For this example, we let S be the least relation such that:

- ({c, n}, 0)~- ((vK)-5({O}g).c(x).[x is K] ~({0}K))S ((vK)-~<{O}g).c(x).O)
- ((c, n}, (((0)k, (c(x).[x is k] S (e(x).0)

for all names k with k ~ {c, n}
- ((c , n , ~ } , (((0}k, (0}k)}) }- (IN is k] ~((0}k)) S 0

for all names k with k ~ {c, n}, for all sets {~} disjoint from {c, n, k},
and all closed terms Y and g ' with ({c,n, fft},{({O}k,{O}k)}) ~ N <--+ g '
(We are not assuming that no names occur in the closed terms N and N'.)

Since ({c,n, r5}, {({0}k, {0}k)}) ~- N ~ N' and k ~ {c,n, rh}, the term Y is not
k, so [N is k] ~{{0}k) ~> A is not true for any a and A. In other words, the
process [N is k] e({0}k) is stuck. It follows easily that S is a framed bisimulation.

Example 5 In cryptographic protocols, some keys are generated by consulting
sources of randomness, but it is also common to generate keys by applying
one-way functions to other keys. (Whereas many one-way functions are quite
efficient, randomness and key agreement can be relatively expensive [Sch96b].)
As a final example, we consider a simple protocol transformation inspired by
a common method for generating keys. We compare the process (vK1)(vK2)
~({M1 }K1)-~{{M2 }K2), which generates and uses two keys, with the process (vK)
~({N1}{o}~).~({N2}{I}K), which generates the master key K and then uses the
derived keys {0}K and {1}K.

In order to show that these processes are testing equivalent, we construct
once more a framed bisimulation. We let S be the least relation such that:

- ({c, n}, O) t- (vK1)(vK2)-5({M1}KI).-5({M2}K2) S
(.K)~<{N1}{o}K >.U({N2 }{I}K)

- ({c,n}, {({M1}k,, {N1}{0},)}) ~- (vK2)~{{M2}K2> S c<{/'V2}{1}~>
for all names k and kl with {k, kl} C1 {c, n} -- 0

- ({c ,n} , { ({ / 1 } k , , {N1}{o}~), ({ / 2 } k : , {N2}{1}~)}) t- 0 S 0
for all names k and kl with {k, kl} A {c,n} = O
and all names k2 with k2 ~ {c,n, kl}

It is somewhat laborious but not difficult to check that S is a framed bisimula-
tion, much as in the examples above.

24

5 R e l a t e d W o r k

Park [Par81] first suggested the bisimulation proof technique, in the context
of Milner's CCS. After Park's work, bisimulation became a cornerstone of the
theory of CCS [Mil89]. Milner, Parrow, and Walker [MPW92] extensively studied
a variety of forms of bisimulation for the pi calculus, their generalisation of CCS
with name-passing and mobile restrictions. Our definition of framed bisimulation
generalises (and relaxes) the definition of strong bisimulation from earlier work
on the spi calculus [AG97b,AG97c]. We can show that if processes P and Q
are strongly bisimilar, then, for all frames fr , (fr, 0) ~- P "-'f Q. The converse
implication fails.

According to most other definitions, a bisimulation is a set of pairs of pro-
cesses. According to our definition, a framed bisimulation is a set of quadruples
consisting of a pair of processes grouped with a frame and a theory. According to
a definition of Pierce and Sangiorgi [PS96] for a typed pi calculus, a bisimulation
is a set of pairs of processes indexed by a type assumption that binds types to
channel names. Our use of a frame is a little like their use of typing assumptions,
in that both a frame and a typing assumption delimit the channels on which the
environment may observe the processes in the bisimulation. On the other hand,
the spi calculus is untyped, and our use of a theory to represent compound terms
possessed but not decomposable by the environment seems to be new.

There are also parallels with the work of Pi t ts and Stark [PS93] on the ~,-
calculus, a simply-typed A-calculus enriched with dynamic allocation of names.
Pit ts and Stark define a logical relation on programs, parameterised by a partial
bijection on the names free in related programs. Their logical relation is sound
for proving observational equivalence; it is incomplete but more generous than
the usual notion of applicative bisimilarity for the v-calculus. A logical relation
is one in which two abstractions are related if and only if they send related
arguments to related results. Given the clause for inputs in the definition of
framed bisimulation, which requires the bodies of two abstractions (x) P ~ and
(x)Q ~ to be related on all related terms M and N, we may say that the relations
(fr, th) F- M ~ N and (fr, th) F- P ~ / Q form a parametric logical relation
on the terms and processes of the spi calculus. Like Pit ts and Stark's logical
relation, our logical relation is sound for proving testing equivalence. Further, it
is incomplete but more generous than the usual notion of strong bisimilarity; it
has parameters (the frame and the theory) that serve to identify certain processes
that are distinguished by the usual relation of strong bisimilarity. However, the
analogy with Pit ts and Stark's work is not perfect; in particular, their use of
partial bijections on names is different from our use of frames and theories.

In the last few years, several methods for analysing cryptographic protocols
have been developed within action-based or state-based models (see for exam-
ple [MCF87,Mi195,Kem89,Mea92,GM95,Low96,Sch96a,Bo196,Pau97]). Some of
these models are presented as process algebras, others in logical forms. Often,
the analysis of a protocol requires defining a particular attacker (an environment)
for the protocol; recently, there has been promising progress towards automat-
ing the construction of this attacker. Bisimulation techniques do appear in the

25

security literature (as in the work of Focardi and Gorrieri [FG95]), but rarely,
and without special tailoring to cryptographic applications.

6 C o n c l u s i o n s

When reasoning about a cryptographic protocol, we must take into account the
knowledge of the environment with which the protocol interacts. In our definition
of bisimulation, this knowledge is represented precisely as a set of names that
the environment has obtained, and as a set of pairs of ciphertexts tha t the
environment has received but cannot distinguish. This precise representation of
the knowledge of the environment is the basis for an effective and sound proof
technique. Using this technique, we can construct proofs for small but subtle
cryptographic protocols. The proofs are fairly concise and do not require much
creativity. Therefore, although we have not yet a t tempted to mechanise our
proofs, we believe that such a mechanisation is possible, and that it may enable
the automatic verification of substantial examples.

Acknowledgements

Discussions with Davide Sangiorgi were helpful at the start of this work. Andy
Pit ts made useful comments.

Gordon held a Royal Society University Research Fellowship at the University
of Cambridge Computer Laboratory for most of the t ime we worked on this
paper. He now holds a position at Microsoft Research.

R e f e r e n c e s

[Aba97]

[AG97a]

[AG97b]

[AG97c]

[Bo196]

IDES77]

[FG95]

M. Abadi. Secrecy by typing in security protocols. In Theoretical Aspects
of Computer Software, volume 1281 of Lecture Notes in Computer Science,
pages 611-638. Springer-Verlag, 1997.
M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. In Proceedings of the Fourth A CM Conference on Computer and
Communicatwns Security, pages 36-47, 1997.
M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Technical Report 414, University of Cambridge Computer Lab-
oratory, January 1997.
M. Abadi and A. D. Gordon. Reasoning about cryptographic protocols in the
spi calculus. In CONCUR'97: Concurrency Theory, volume 1243 of Lecture
Notes in Computer Science, pages 59-73. Springer-Verlag, 1997.
D. Bolignano. An approach to the formal verification of cryptographic pro-
tocols. In 3rd A CM Conference on Computer and Communications Security,
pages 106-118, March 1996.
Data encryption standard. Fed. Inform. Processing Standards Pub. 46, Na-
tional Bureau of Standards, Washington DC, January 1977.
R. Focardi and R. Gorrieri. A classification of security properties. Journal
of Computer Security, 3(1), 1995.

26

[GM951

[Kem89]

[Low96]

[MCF87]

[Mea92]

[Mi189]

[Mil95]

[MPW92]

[Par81]

[Pau97]

[PS93]

[PS96]

[Sch96a]

[Sch96b]

J. Gray and J. McLean. Using temporal logic to specify and verify crypto-
graphic protocols (progress report). In Proceedings of the 8th IEEE Computer
Security Foundations Workshop, pages 108-116, 1995.
R. A. Kemmerer. Analyzing encryption protocols using formal verification
techniques. IEEE Journal on Selected Areas in Communications, 7, 1989.
G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Tools and Algorithms for the Construction and Analysis of
Systems, volume 1055 of Lecture Notes in Computer Science, pages 147-166.
Springer-Verlag, 1996.
J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: Protocol se-
curity analysis. IEEE Transactions on Software Engineering, SE-13(2):274-
288, February 1987.
C. Meadows. Applying formal methods to the analysis of a key management
protocol. Journal of Computer Security, 1(1):5-36, 1992.
R. Milner. Communication and Concurrency. Prentice-Hall International,
1989.
J. K. Millen. The Interrogator model. In IEEE Symposium on Security and
Privacy, pages 251-260, 1995.
R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts

I and II. Information and Computation, pages 1-40 and 41-77, September
1992.
D. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Theoretical Computer Science: 5th GI-Conference, Karlsruhe, volume
104 of Lecture Notes in Computer Science, pages 167-183. Springer-Verlag,
March 1981.
L. Paulson. Proving properties of security protocols by induction. In Pro-
ceedings of the lOth IEEE Computer Security Foundations Workshop, pages
70-83, 1997.
A. M. Pitts and I. D. B. Stark. Observable properties of higher order func-
tions that dynamically create local names, or: What 's new? In Mathematical
Foundations of Computer Science, Proe. 18th Int. Syrup., Gdadsk, 1993,
volume 711 of Lecture Notes in Computer Science, pages 122-141. Springer-
Verlag, 1993.
B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409-453, October 1996.
S. Schneider. Security properties and CSP. In IEEE Symposium on Security
and Privacy, pages 174-187, 1996.
B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code
in C. John Wiley & Sons, Inc., second edition, 1996.

