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A b s t r a c t .  We introduce a definition of bisimulation for cryptographic 
protocols. The definition includes a simple and precise model of the 
knowledge of the environment with which a protocol interacts. Bisim- 
ulation is the basis of an effective proof technique, which yields proofs of 
classical security properties of protocols and also justifies certain protocol 
optimisations. The setting for our work is the spi calculus, an extension 
of the pi calculus with cryptographic primitives. We prove the soundness 
of the bisimulation proof technique within the spi calculus. 

1 I n t r o d u c t i o n  

In reasoning about  a reactive system, it is necessary to consider not only the 
steps taken by the system but  also the steps taken by its environment.  In the 
case where the reactive system is a cryptographic protocol, the environment may 
well be hostile, so little can be assumed about  its behaviour. Therefore, the envi- 
ronment  may be modelled as a nondeterministic process capable of intercepting 
messages and of sending any message that  it can construct at  any point. This 
approach to describing the environment is fraught with difficulties; the result- 
ing model can be somewhat  arbitrary, hard to understand, and hard to reason 
about.  

Bisimulation techniques [Par81,Mi189] provide an alternative approach. Ba- 
sically, using bisimulation techniques, we can equate two systems whenever we 
can establish a correspondence between their steps. We do not need to describe 
the environment explicitly, or to analyse its possible internal computations.  

Bisimulation techniques have been applied in a variety of areas and under 
many  guises. Their application to cryptographic protocols, however, presents 
new challenges. 

- Consider, for example, a secure communication protocol P ( M ) ,  where some 
cteartext M is t ransmit ted  encrypted under a session key. We may like to 
argue that  P(M) preserves the secrecy of M,  and may want to express this 
secrecy proper ty  by saying that  P(M) and P(N) are equivalent, for every M 
and N.  This equivalence may  be sensible because, al though P(M) and P(N) 
send different messages, an attacker that  does not have the session key cannot 
identify the cleartext. Unfortunately, a s tandard notion of bisimulation would 
require tha t  P(M) and P(N) send identical messages. So we should relax 
the definition of bisimulation to permit  indistinguishable messages. 
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- In reasoning about a protocol, we need to consider its behaviour in reaction 
to inputs from the environment. These inputs are not entirely arbitrary. 
For example, consider a system P(M) which discloses M when it receives a 
certain password. Assuming that the password remains secret, P(M) should 
be equivalent to P(N). In order to argue this, we need to characterise the set 
of possible inputs from the environment, and to show that it cannot include 
the password. 

- Two messages that are indistinguishable at one point in time may become 
distinguishable later on. In particular, the keys under which they are en- 
crypted may be disclosed to the environment, which may then inspect the 
cleartext that these keys were concealing. Thus, the notion of indistinguisha- 
bility should be sensitive to future events. 
Conversely, the set of possible inputs from the environment grows with time, 
as the environment intercepts messages and learns values that were previ- 
ously secret. 

In short, a definition of bisimulation for cryptographic protocols should ex- 
plain what outputs are indistinguishable for the environment, and what inputs 
the environment can generate at any point in time. In this paper we introduce a 
definition of bisimulation that provides the necessary account of the knowledge 
of the environment. As we show, bisimulation can be used for reasoning about 
examples like those sketched informally above. More generally, bisimulation can 
be used for proving authenticity and secrecy properties of protocols, and also for 
justifying certain protocol optimisations. 

We develop our bisimulation proof technique in the context of the spi cal- 
culus [AG97a,AG97b,AG97c,Aba97], an extension of the pi calculus [MPW92] 
with cryptographic primitives. For simplicity, we consider only shared-key cryp- 
tography, although we believe that public-key cryptography could be treated 
through similar methods. Within the spi calculus, we prove the soundness of our 
technique. More precisely, we prove that bisimulation yields a sufficient condi- 
tion for testing equivalence, the relation that we commonly use for specifications 
in the spi calculus. 

We have developed other proof techniques for the spi calculus in earlier work. 
The one presented in this paper is a useful addition to our set of tools. Its 
distinguishing characteristic is its kinship to bisimulation proof techniques for 
other classes of systems. In particular, bisimulation proofs can often be done 
without creativity, essentially by state-space exploration. 

The next section is a review of the spi calculus. Section 3 describes our proof 
method and Section 4 illustrates its use through some small examples. Section 5 
discusses related work. Section 6 concludes. 

2 T h e  S p i  C a l c u l u s  ( R e v i e w )  

This section reviews the spi calculus, borrowing from earlier presentations. It 
gives the syntax and informal semantics of the spi calculus, introduces the main 
notations for its operational semantics, and finally defines testing equivalence. 
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2.1 Syntax 

We assume an infinite set of names and an infinite set of variables. We let c, 
m,  n, p, q, and r range over names, and let w, x, y, and z range over variables. 
When they represent keys, we let k and K range over names too. 

The set of terms is defined by the grammar:  

L, M, N ::= terms 
n name 

(M, N)  pair 
0 zero 
suc(M) successor 
{ M } N encryption 
x variable 

Intuitively, {M}N represents the ciphertext obtained by encrypting the t e rm 
M under the key N using a shared-key cryptosystem such as DES [DES77]. In 
examples, we write 1 as a shorthand for the term suc(O). 

The set of processes is defined by the grammar:  

P, Q, R ::= processes 
M (N).P output  
M(x) .P input (scope of x is P )  
P IQ composition 
(vn)P restriction (scope of n is P )  
!P replication 
[M is N] P match 
0 nil 
let (x, y) = M in P pair splitting (scope of x, y is P )  
case M of 0 : P suc(x) : Q integer case (scope of x is Q) 
case L of {X}N in P decryption (scope of x is P)  

We abbreviate  M(N).O to M(N).  We write P[M/x] for the outcome of replacing 
each free occurrence of x in process P with the term M, and identify processes 
up to renaming of bound variables and names. Intuitively, processes have the 
following meanings: 

- An output process M(N) .P  is ready to output  N on M,  and then to behave 
as P .  The  output  happens only when there is a process ready to input from 
M. An input process M(x).Q is ready to input from M, and then to behave 
as Q[N/x], where N is the input received. 

- A composition P [ Q behaves as P and Q running in parallel. 
- A restriction (vn)P is a process tha t  makes a new, private name n, which 

may occur in P,  and then behaves as P.  
- A replication !P behaves as infinitely many  replicas of P running in parallel. 
- A match [M is N] P behaves as P provided that  M and N are the same 

term; otherwise it is stuck, tha t  is, it does nothing. 
- The nil process 0 does nothing. 
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- A pair splitting process let (x,y) = M in P behaves as P[N/x][L/y] if M is 
a pair (N, L), and it is stuck if M is not a pair. 

- An integer case process case M of 0 : P suc(x) : Q behaves as P if M is 0, 
as Q[N/x] if M is suc(N) for some N, and otherwise is stuck. 

- A decryption process case L of {x}g in P attempts to decrypt L with 
the key N. If L has the form {M}N, then the process behaves as P[M/x]. 
Otherwise the process is stuck. 

For example, P ~= m(x).case x of {Y}K in ~({0}y) is a process that  is ready 
to receive a message x on the channel m. When the message is a ciphertext of 
the form {Y}K, process P sends 0 encrypted under y on the channel m. This 

process may be put in parallel with a process Q ~ ~ ( { K ' } K ) ,  which sends the 
name K '  encrypted under K on the channel m. In order to restrict the use of 
g to P and Q, we may form (vK)(PJQ) .  The environment of ( v K ) ( P I Q )  
will not be able to construct any message of the form {Y}K, since K is bound. 
Therefore, the component P of (vK)(PJQ)  may output  {0}g,, but not {0}z 
for any z different from K' .  Alternatively, the component P of (vK)(P [ Q) may 
produce no output: for example, were it to receive 0 on the channel m, it would 
get stuck. 

We write fn(M) and fn (P)  for the sets of names free in term M and process 
P respectively, and write fv(M) and fv(P) for the sets of variables free in M 
and P respectively. A term or process is closed if it has no free variables. 

2 . 2  O p e r a t i o n a l  S e m a n t i c s  

An abstraction is an expression of the form (x)P, where x is a bound variable 
and P is a process. Intuitively, (x)P is like the process p(x).P minus the name 
p. A concretion is an expression of the form (v rn l , . . . ,  mk)(M)P,  where M is a 
term, P is a process, k _ 0, and the names ml ,  . . . ,  mk are bound in M and P.  
Intuitively, (1]ml, . . . ,  mk)(M)P is like the process ( v m l ) . . .  (vmk)~(M)P minus 
the name p, provided p is not one of ml,  . . . ,  mk. We often write concretions 
as (vr~)(M)P, where r~ = m l , . . .  ,mk, or simply (v)(M)P if k = 0. Finally, an 
agent is an abstraction, a process, or a concretion. We use the metavariables A 
and B to stand for arbitrary agents, and let fv(A) and fn(A) be the sets of free 
variables and free names of an agent A, respectively. 

A barb is a name m (representing input) or a co-name ~ (representing out- 
put). An action is a barb or the distinguished silent action T. The commitment 
relation is written P ~ A, where P is a closed process, a is an action, and A 
is a closed agent. The exact definition of commitment appears in earlier papers 
on the spi calculus [AG97b,AG97c]; informally, the definition says: 

- P ~ Q means that P becomes Q in one silent step (a T step). 

- P --~ (x)Q means that,  in one step, P is ready to receive an input x on m 
and then to become Q. 

- P --~ (vml , . . .  ,mk)(M)Q means that,  in one step, P is ready to create the 
new names ml,  . . . ,  ink, to send M on m, and then to become Q. 
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2 . 3  T e s t i n g  E q u i v a l e n c e  

We say that  two closed processes P and Q are testing equivalent, and write 
P ~_ Q, when for every closed process R and every barb/~, if 

for some P' and A, then 

for some Q' and B, and vice versa. 
For example, the processes (vK)~({0}K)  and (v K )~ ({ 1 } K )  are testing 

equivalent. We may interpret this equivalence as a security property, namely 
that  the process ( v K ) ~ ( { X } K )  does not reveal to its environment whether x 
is 0 or 1. In the examples contained in Section 4 and in earlier papers, various 
other properties (including, in particular, secrecy properties) are formulated in 
terms of testing equivalence. 

In this paper we develop a sound technique for proving testing equivalence: 
we introduce a definition of bisimulation and show that  if two closed processes 
are in one of our bisimulation relations then they are testing equivalent. 

3 F r a m e d  B i s i m u l a t i o n  

This section defines our notion of bisimulation, which we call framed bisimula- 
tion. 

3 . 1  F r a m e s  a n d  T h e o r i e s  

Our definition of bisimulation is based on the notions of a frame and of a theory. 
A bisimulation does not simply relate two processes P and Q, but instead relates 
two processes P and Q in the context of a frame and a theory. The frame and 
the theory represent the knowledge of the environment of P and Q. 

- A frame is a finite set of names. Intuitively, a frame is a set of names available 
to the environment of the processes P and Q. We use f r  to range over frames. 

- A theory is a finite set of pairs of terms. Intuitively, a theory that  includes a 
pair (M, N) indicates that  the environment cannot distinguish the data  M 
coming from process P and the data  N coming from process Q. We use th  
to range over theories. 

Next we define the predicate (fr, th)  ~- M ++ N inductively, by a set of rules. 
Intuitively, this predicate means that  the environment cannot distinguish M 
coming from P and N coming from Q, and that  the environment has (or can 
construct) M in interaction with P and N in interaction with Q. 

(Eq Frame) (Eq Theory) (Eq Variable) 

n �9 f r  ( M , N )  �9 th 

(fr, th) ~- n ~ n (fr, th) }- M ~ N (fr, th)  }- x <-+ x 
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(Eq Pair) 

(fr, th) F- M ~ M'  (fr, th) F- N ~ N'  

(fr, th) F- (M, N) e+ (M',  N')  

(Eq Suc) (Eq Encrypt) 

(fr, th) f- M ++ M'  

(fr, th) ~- suc(M) ++ suc(M') 

(Eq Zero) 

(fr, th) t- 0 ~ 0 

(fr, th) ~- M +~ M'  (fr, th) t- N ++ N'  

(fr, th) F- { M } N  ++ {M'}N,  

For example, if fr  = {n} and th = {({0}K,{n}g)}, where n and K are 
distinct names, then we have (fr, th) F- n ~-~ n and (fr, th) F- {0}g ++ {n}K, and 
also (fr, th) t- (n, {O}g) ++ (n, {n}K), but we have neither (fr, th) t- g ~ g nor 
(fr, th) F { n } g  ~ {0}g. 

We say that  the pair (fr, th) is ok, and write (fr, th) F- ok, if two conditions 
hold: 

(1) whenever (M, N) E th: 
- M is closed and there are terms M1 and M2 such that  M = {M1}M2 

and there is no N2 such that  (fr, th) ~- M2 ++ N2; 
- N is closed and there are terms N1 and N2 such that  N = {N1}N2 and 

there is no M2 such that  (fr, th) F- M2 ++ N2; 
(2) whenever (M, N) E th and (M',  N')  E th, M = M'  if and only if N = N' .  

Intuitively, the first condition requires that  each term in a pair (M, N) in a the- 
ory be formed by ciphertexts that  the environment cannot decrypt. For example, 
the requirement that  there be no N2 such that  (fr, th) f- M2 ++ N2 means that  
the environment cannot construct M2 for decrypting M. The second condition 
guarantees that  no ciphertext is equated to two other ciphertexts. This condi- 
tion is essential because the environment can compare ciphertexts even when it 
cannot decrypt them (see Example 2 of Section 4). 

3 . 2  O r d e r i n g  F r a m e - T h e o r y  P a i r s  

We define an ordering between pairs of frames and theories as follows: we let 
(fr, th) < (fr',  th') if and only if for all M and N, (fr, th) F- M ~ N implies 
(fr ~, th t) F- M t-~ N .  This relation is reflexive and transitive. It is not the same 
as the pairwise ordering induced by subset inclusion; fr  C_ fr  ~ and th C th ~ imply 
(fr, th) ~ (fr ~, the), but the converse implication does not hold. 

P r o p o s i t i o n  1. Suppose (fr', th') F- ok. Then (fr, th) <_ (fr ' ,  th') i] and only if  
fr  C_ fr' and (fr', th') F- M ~ N for each (M, N)  e th. 

As indicated above, we view a pair (fr, th) as a representation for the knowl- 
edge of an environment. With this view, and assuming that  (fr~,th ~) ~ ok, 
the relation (fr, th) < (fr t, th ~) means that  the environment may go from the 
knowledge represented in (fr, th) to the knowledge represented in (fr ~, the). The 
definition of (fr, th) < (fr ' ,  th') implies that  the set of names and terms that  the 
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environment has (or can construct) grows in this transition. It also implies that  
any indistinguishable pair of terms remains indistinguishable after the transi- 
tion. So, if ever we assert that  (fr, th) characterises an environment, we should 
take care that  (fr, th) does not imply that  the environment cannot distinguish 
two terms M and N if later information would allow the environment to distin- 
guish these terms. For example, if f r '  includes the name n, then th should not 
contain ({0}n, {1}n). Intuitively, the acquisition of the name n would allow the 
environment to distinguish {O}n and {1}n, so ( f r ' , th ' )  }- {O}n ++ {1}~ would 
not hold. On the other hand, th may contain ({O}n, {0}~); in that  case, th' could 
not contain ({0}n, {0}n), but we would at least have (fr ' ,  th') ~- {0}n ~ {0}n. 

3 . 3  F r a m e d  R e l a t i o n s  a n d  B i s i m u l a t i o n s  

For a theory th, we let fn(th) = U{fn(M) u fn(N) I (M,N)  E th}. We let 
7rl(th) = {M I ( M , N )  E th} and 7r2(th) = { g  ] (M,N)  E th}, and write 
fn(~rl(th)) and fn(~r2(th)) for the sets of names U{fn(M) I M e ~rl(th)} and 
U{fn(g)  i N �9 ~'2(th)} respectively. 

A framed process pair is a quadruple (fr, th, P, Q) such that  P and Q are 
closed processes, f r  is a frame, and th is a theory. When 7~ is a set of framed 
process pairs, we write (fr, th) ~- P 7~ Q to mean (fr, th, P, Q) �9 T~. A framed 
relation is a set ~ of framed process pairs such that  (fr, th) ~- ok whenever 
(fr, th) t- P T4 Q. 

A framed simulation is a framed relation ,.q such that ,  whenever (fr, th) t- 
P S Q, the following three conditions hold. 

- If P r > p ,  then there is a process Q' with Q ~ > Q' and (fr, th) ~ P' 8 Q'. 
- If P c > (x)P' and c �9 f r  then there is an abstraction (x)Q' with Q _!+ 

(x)Q' and, for all sets {~} disjoint from fn(g)  U fn(Q) u fr u fn(th) and all 
closed M and N,  if (fr  U {g}, th)  ~- M ++ g then (fr  U {g) , th )  F- P'[M/x] S 
Q'[g/x]. 

- If P ~> (y~)(M)P' ,  c �9 fr ,  and the set {r~} is disjoint from fn(P) U 
fn(Trl(th)) U fr  then there is a concretion (u~)(N)Q' with Q ~> (~g)(N)Q' 
and the set {if} is disjoint from fn(Q) Ufn(Tr2(th)) U fr,  and there is a frame- 
theory pair (fr ' ,  th') such that  (fr, th) < (fr', th'), (fr', th') F- M ++ N, and 
(fr', th') ~- P' S Q'. 

We may explain these conditions as follows. 

- The first condition simply requires that  if P can take a ~- step then Q can 
match this step. 

- The second condition concerns input steps where the channel c on which 
the input happens is in f r  (that is, it is known to the environment). In this 
case, we must consider the possible inputs M from the environment to (x)P ' ,  
namely the terms M that the environment can construct according to (fr  U 
{if), th). The names in ~ are fresh names, intuitively names just generated 
by the environment. Correspondingly, we consider the possible inputs N 
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for (x)Q', for an appropriate (x)Q' obtained from Q. We then require that  
giving these inputs to (x )P ~ and (x)Q t, respectively, yields related processes 
P'[M/x] and Q'[N/x]. 
The choice of (x)Q t is independent of the choices of M and N.  So, in the 
technical jargon, we may say that  S is a late framed simulation. 

- The third condition concerns output  steps where the channel c on which 
the output  happens is in f r  (that is, it is known to the environment). In 
this case, P outputs the term M while creating the names ~ .  The condition 
requires that  Q can output  a corresponding term N while creating some 
names ~. It also constrains M and N,  and the resulting processes P '  and Qq 
The constraints concern a new frame-theory pair ( f r  t, thl). Intuitively, this 
pair represents the knowledge of the environment after the output  step. The 
requirement that  (]C, th  ~) ~- M ++ N means that  the environment obtains 
M in interaction with P and N in interaction with Q, and that  it should 
not be able to distinguish them from one another. 
Because we do not impose a minimality requirement on (fC, the), this pair 
may attr ibute "too much" knowledge to the environment. For example, fC 
may contain names that  are neither in f r  nor in M or N, so intuitively the 
environment would not be expected to know these names. On the other hand, 
the omission of a minimality requirement results in simpler definitions, and 
does not compromise soundness. 

A framed bisimulation is a framed relation S such that  both S and 3 -1 
are framed simulations. Framed bisimilarity (written .-~/) is the greatest framed 
bisimulation. By the Knaster-Tarski fixpoint theorem, since the set of framed 
relations ordered by subset inclusion forms a complete lattice, framed bisimilarity 
exists, and equals the union of all framed bisimulations. 

Our intent is that  our definition of framed bisimulation may serve as the 
basis for an algorithm, at least for finite-state processes. Unfortunately, the defi- 
nition contains several levels of quantification. The universal quantifiers present 
a serious obstacle to any algorithm for constructing framed bisimulations. In 
particular, the condition for input steps concerns all possible inputs M and N; 
these inputs are of unbounded size, and may contain an arbitrary number of 
fresh names. However, we conjecture that  the inputs can be classified according 
to a finite number of patterns--intuitively,  because the behaviour of any finite- 
state process can depend on at most a finite portion of its inputs. An algorithm 
for constructing framed bisimulations might consider all inputs tha t  match the 
same pat tern at once. We leave the invention of such an algorithm for future 
work. 

3 . 4  S o u n d n e s s  ( S u m m a r y )  

Our main soundness theorem about framed bisimulation is that  it is a sufficient 
condition for testing equivalence. 

T h e o r e m  2. Consider any closed processes P and Q, and any name n f[ f~(P)U 
fn(Q).  Suppose that ( fn(P) U fn(Q) u {n}, O) ~- P ~ f  Q. Then P "~ Q. 
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This theorem implies that if we want to prove that two processes are testing 
equivalent, then we may construct a framed bisimulation S such that (fn(P) U 
fn(Q) u {n}, 0) ~- P S Q where n is a single, arbitrary new name. (The addition 
of the name n is technically convenient, but may not be necessary.) The next 
section illustrates this approach through several examples. 

The proof of this theorem requires a number of auxiliary notations, defini- 
tions, and lemmas. We omit the details of the proof, and only indicate its main 
idea. In the course of the proof, we extend the relation ~-~ to processes: we define 
the predicate (fr, th) F- P ++ Q by the following rules. 

(EQ Out) 

(fr, th) F- M ~ M'  (fr, th) F N ~ g '  (fr, th) F P ++ P'  

(fr, th) F M ( N ) . P  ~ M' (N ' ) .P '  

(Eq In) (Eq Repl) 

(fr, th) I- M ~ M'  (fr, th) ~- P ++ P'  (fr, th) I- P ++ P'  

(fr, th) F- M ( x ) . P  ~ M'(x) .P '  (fr, th) F- !P ~ !P' 

(Eq Par) 

(fr, th) ~- P ~ P'  (fr, th) F- Q ++ Q' 

(~ , th )  F- P I Q ~ P ' I Q '  

(Eq Match) 

(fr, th) F M ~ M'  

(Eq Res) (where n • fr  U fn(th)) 

(fr U {n}, th) ~- P ++ P'  

(fr, th) F (vn)P ~ (un)P' 

(fr, th) ~- N ~-~ N'  (fr, th) ~- P ++ P' 

(Eq Nil) 

(fr, th) ~- 0 ++ 0 

(Eq IntCase) 

(fr, th) F [M is N] P ++ [M' is N'] P' 

(EQ Let) 

(fr, th) F M o M'  (fr, th) F P + 4 P '  

(fr, th) ~- let (x, y) = M in P ++ let (x, y) = M'  in P'  

(fr, th) F M ++ M' (fr, th) t- P ~ P' (fr, th) t- Q o Q' 

(fr, th) ~- case M of 0 : P suc(x) : Q ~ case M'  of 0 : P' suc(x) : Q' 

(Eq Decrypt) 

(fr, th) ~- M ++ M' (fr, th) F g ++ N'  (fr, th) t- P ++ P'  

(fr, th) t- case M of {X}N in P ~ case M'  of {x}g,  in P'  

The core of the proof depends on a relation, $, defined so that P S Q if and 
only if there is a frame fr, a theory th, and processes P1, P2, Q1, Q2, such that 

P = (vp-~(P1 ]P2) Q -- (yq~(Q1 ]Q2) 

and (fr, th) t- ok, (fr, th) ~- P1 ~ I  Q~, and (fr, th) b P2 ++ Q2, where {p~ = 
(fn(P1) u/n(~rl (th))) - fr and {q~} = (fn(Q1) u fn(~r~(th))) - f t .  By a detailed 
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case analysis, we may show that  S satisfies the definition of a standard notion of 
bisimulat ion--a barbed bisimulation up to restriction and barbed equivalence. 
Given some auxiliary lemmas about testing equivalence, the theorem then follows 
easily. The construction of S also yields that  framed bisimilarity is a sufficient 
condition for a strong equivalence called barbed congruence. 

The converse of soundness--completeness--does not hold. The failure of com- 
pleteness follows from the fact that  framed bisimilarity is a sufficient condition 
for barbed congruence. (Barbed congruence and a fortiori framed bisimilarity 
are sensitive to T steps and to branching structure, while testing equivalence is 
not.) Incompleteness may be somewhat unfortunate but, in our experience, it 
seems to be compatible with usefulness. 

4 E x a m p l e s  

This section shows how bisimulations can be exploited in proofs through some 
small examples. These examples could not be handled by standard notions of 
bisimulation (like that  of our earlier work [AG97b,AG97c]). We have worked 
through further examples, including some examples with more steps. In all cases, 
the proofs are rather straightforward. 

Throughout  this section, c, K,  K1, a n d / ( 2  are distinct names, and n is any 
name different from c. Moreover, M, M ~, M ' ,  M1,/1//2, N1, and N2 are closed 
terms; it is convenient to assume that  no name occurs in them. 

Example 1 As a first example, we show that  the processes (vK)~({M}K) and 
(~K)-6({M'}K) are in a framed bisimulation, so they are testing equivalent. 
Intuitively, this means that  these processes do not reveal M and M' ,  respectively. 

For this example, we let S be the least relation such that: 

- ({c, n}, O) F- (vK)~({M}K) S (vK)~({M'}K) 
- ({c ,n} ,  { ({M}k,  {M'}k)}) f- 0 S 0 

for all names k ~t {c, n} 

Since ({c,n}, 0) ~- ok and ({c,n}, {({M}k, {M'}k)}) I- ok, 8 is a framed relation. 
Next we show that  S is a framed simulation; symmetric reasoning establishes 
that  8 -1 is one too. Assuming that  (fr, th) t- P S Q, we need to examine the 
commitments of P and Q. We consider two cases, which correspond to the two 
clauses of the definition of S. 

- Suppose that  P = (L,K)-6({M}K) and Q = (vK)-6({M'}K). In this case, 
we have f r  = {c, n} and th = 0. Up to renaming of the bound name K,  

the only commitment of P is P ~ ~ (vK)({M}K)O. To establish that  S is 
a framed simulation, we need only consider the case where K is renamed 
to some k r fn(P) U/n(Th(0)) U {c,n}, tha t  is, k r {c,n}. By renaming, 

we have Q "~ (~/k)({M'}k)O. We let th' = {({M}k, {M'}k)}. We have 
(fr, th) <_ (fr, th'), (fr, th') f- {M}k <-~ {M'}k, and (fr, th') F- 0 ~ O. Thus, 
Q can match P ' s  commitment. 
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- Suppose that  P = 0 and Q = 0. This case is trivial, since 0 has no commit- 
ments. 

In short, ({c, n}, 0) t- (vK)-5({M}K) S (vK)-~({M'}K), and 8 is a framed bisim- 
ulation, as desired. 

Example 2 As a small variant of the first example, we consider the processes 
(vK)-g(({M}K, {M}K)) and (vg)~(({M'}g, {M"}K)).  

When M ~ = M",  the argument of the first example works for this example 
too, with only trivial modifications. We define 8 as the least relation such that: 

- ({c, n}, O) ~- (uK)~(({M}K, {M}K)) S (uK)-6(({M'}K, {M"}K)) 
- ({c, n}, {({M}k,  {M'}k),  ({M}k, {M"}k)}) t- 0 S 0 

for all names k ~ {c, n} 

This relation is a framed bisimulation when M'  = M" .  On the other hand, it is 
not a framed bisimulation when M'  # M".  In fact, in that  case it is not even a 
framed relation, because ({c,n}, {({M}k, {M'}k), ({M}k, {M"}k)}) t- ok does 
not hold (because condition (2) of the definition of ok is not satisfied). 

The fact that  S is not a framed bisimulation in this case should not be 
a concern. It is actually necessary: the processes (uK)-5(({M}K, {M}K)) and 
(vK)-~(({M'}K, {M"}K)) are not testing equivalent when M'  # M".  The en- 
vironment c(z).let (x, y) -- z in [x is y] E(0) distinguishes them. Thus, this ex- 
ample illustrates that  two ciphertexts that  cannot be decrypted can still be 
compared, and justifies part of the definition of framed bisimulation. 

Example 3 As a further variant, we study an example with nested encryption. We 
consider the processes (vK1)(vK2)e({M1, {M2}K2}K~).e(K1) and (vK1)(uK2) 
~({N1, {N2}K2 }K~ ).~(K1). Each of these processes creates two keys K 1 and / (2 ,  
sends a ciphertext, and then reveals K1. Anyone who receives K1 can partially 
decrypt the ciphertext. 

In order to analyse these processes, we let 8 be the least relation such that:  

- ({c,n},O) ~- (uK1)(vK2)-5<{M1, {M2}K2}Kl>.-5<K1> S 
(vK1) (vK2)c<{N1, {N2 }K2 }K1 > .c<K1 > 

- ({c, n, kl}, {({M2}k2, {N2}k2)}) F- ~(kl) S ~(kl> 
for all names kl, k2 with kl # k2 and {kl, k2} N {c, n} = 0 

- ({c,n, kl},{({M2}k2,{N2}k2)}) ~- OS 0 
for all names kl, k2 with kl # k2 and {kl, k2} N {c, n} = 0 

Note how, between the first and the second clauses, the frame has been enlarged 
with kl, although the processes considered in the second clause have not yet sent 
kl; this simplifies the construction of S and is permitted by the definitions of 
Section 3. The assumptions guarantee that  ({c, n, kl}, {({M2}k2, {g2}k2)}) I- ok 
and hence that  S is a framed relation. Moreover, S is a framed bisimulation if 
and only if the following condition holds: 

((c, n, f- {M2}k  (N1, 
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In turn, this condition holds if and only if M1 -- N1. Intuitively, the equality 
M1 = N1 becomes necessary only when the two processes send the key kl, since 
M1 and N~ are not visible in the first message. Our definition of _< guarantees 
that  the necessity of M1 = N1 is propagated correctly. 

Example 4 While all the examples above concern the secrecy of certain outputs, 
this one concerns the impossibility of certain inputs. We consider the processes 
(vK)'~({O}K).c(x).[x is K] ~({0}g) and (vg)-5({O}K>.C(x).O. The former process 
creates a key K,  sends {0}g, listens for an input, and if it receives K then it 
sends {0}g again. However, we would expect that  K will never arrive as an 
input to this process, since the process never discloses K (but only {0}g, from 
which K itself cannot be deduced). Therefore, we would expect this process to 
be equivalent to the latter process, which simply stops upon receipt of a message. 

For this example, we let S be the least relation such that:  

- ({c, n}, 0)~- ((vK)-5({O}g).c(x).[x is K] ~({0}K))S ((vK)-~<{O}g).c(x).O) 
- ((c, n}, (((0)k, (c(x).[x is k] S (e(x).0) 

for all names k with k ~ {c, n} 
- ( ( c , n , ~ } ,  ( ((0}k,  (0}k)}) }- (IN is k] ~((0}k)) S 0 

for all names k with k ~ {c, n}, for all sets {~} disjoint from {c, n, k}, 
and all closed terms Y and g '  with ({c,n, fft},{({O}k,{O}k)}) ~ N <--+ g '  
(We are not assuming that  no names occur in the closed terms N and N'.) 

Since ({c,n, r5}, {({0}k, {0}k)}) ~- N ~ N'  and k ~ {c,n, rh}, the term Y is not 
k, so [N is k] ~{{0}k) ~> A is not true for any a and A. In other words, the 
process [N is k] e({0}k) is stuck. It follows easily that  S is a framed bisimulation. 

Example 5 In cryptographic protocols, some keys are generated by consulting 
sources of randomness, but it is also common to generate keys by applying 
one-way functions to other keys. (Whereas many one-way functions are quite 
efficient, randomness and key agreement can be relatively expensive [Sch96b].) 
As a final example, we consider a simple protocol transformation inspired by 
a common method for generating keys. We compare the process (vK1)(vK2) 
~({M1 }K1)-~{{M2 }K2 ), which generates and uses two keys, with the process (vK) 
~({N1}{o}~).~({N2}{I}K), which generates the master key K and then uses the 
derived keys {0}K and {1}K. 

In order to show that  these processes are testing equivalent, we construct 
once more a framed bisimulation. We let S be the least relation such that:  

- ({c, n}, O) t- (vK1)(vK2)-5({M1}KI).-5({M2}K2) S 
(.K)~<{N1}{o}K >.U({N2 }{I}K ) 

- ({c,n}, {({M1}k,, {N1}{0},)}) ~- (vK2)~{{M2}K2> S c<{/'V2}{1}~> 
for all names k and kl with {k, kl} C1 {c, n} -- 0 

- ( {c ,n} ,  { ( { / 1 } k , ,  {N1}{o}~), ( { / 2 } k : ,  {N2}{1}~)}) t- 0 S 0 
for all names k and kl with {k, kl} A {c,n} = O 
and all names k2 with k2 ~ {c,n, kl} 

It is somewhat laborious but not difficult to check that  S is a framed bisimula- 
tion, much as in the examples above. 
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5 R e l a t e d  W o r k  

Park [Par81] first suggested the bisimulation proof technique, in the context 
of Milner's CCS. After Park's work, bisimulation became a cornerstone of the 
theory of CCS [Mil89]. Milner, Parrow, and Walker [MPW92] extensively studied 
a variety of forms of bisimulation for the pi calculus, their generalisation of CCS 
with name-passing and mobile restrictions. Our definition of framed bisimulation 
generalises (and relaxes) the definition of strong bisimulation from earlier work 
on the spi calculus [AG97b,AG97c]. We can show that  if processes P and Q 
are strongly bisimilar, then, for all frames fr ,  (fr, 0) ~- P "-'f Q. The converse 
implication fails. 

According to most other definitions, a bisimulation is a set of pairs of pro- 
cesses. According to our definition, a framed bisimulation is a set of quadruples 
consisting of a pair of processes grouped with a frame and a theory. According to 
a definition of Pierce and Sangiorgi [PS96] for a typed pi calculus, a bisimulation 
is a set of pairs of processes indexed by a type assumption that  binds types to 
channel names. Our use of a frame is a little like their use of typing assumptions, 
in that  both a frame and a typing assumption delimit the channels on which the 
environment may observe the processes in the bisimulation. On the other hand, 
the spi calculus is untyped, and our use of a theory to represent compound terms 
possessed but  not decomposable by the environment seems to be new. 

There are also parallels with the work of Pi t ts  and Stark [PS93] on the ~,- 
calculus, a simply-typed A-calculus enriched with dynamic allocation of names. 
Pit ts  and Stark define a logical relation on programs, parameterised by a partial 
bijection on the names free in related programs. Their logical relation is sound 
for proving observational equivalence; it is incomplete but  more generous than 
the usual notion of applicative bisimilarity for the v-calculus. A logical relation 
is one in which two abstractions are related if and only if they send related 
arguments to related results. Given the clause for inputs in the definition of 
framed bisimulation, which requires the bodies of two abstractions ( x ) P  ~ and 
(x)Q ~ to be related on all related terms M and N,  we may say that  the relations 
(fr, th) F- M ~ N and (fr, th) F- P ~ /  Q form a parametric logical relation 
on the terms and processes of the spi calculus. Like Pit ts  and Stark's logical 
relation, our logical relation is sound for proving testing equivalence. Further, it 
is incomplete but  more generous than the usual notion of strong bisimilarity; it 
has parameters (the frame and the theory) that  serve to identify certain processes 
that  are distinguished by the usual relation of strong bisimilarity. However, the 
analogy with Pit ts  and Stark's work is not perfect; in particular, their use of 
partial bijections on names is different from our use of frames and theories. 

In the last few years, several methods for analysing cryptographic protocols 
have been developed within action-based or state-based models (see for exam- 
ple [MCF87,Mi195,Kem89,Mea92,GM95,Low96,Sch96a,Bo196,Pau97]). Some of 
these models are presented as process algebras, others in logical forms. Often, 
the analysis of a protocol requires defining a particular attacker (an environment) 
for the protocol; recently, there has been promising progress towards automat-  
ing the construction of this attacker. Bisimulation techniques do appear in the 
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security literature (as in the work of Focardi and Gorrieri [FG95]), but rarely, 
and without special tailoring to cryptographic applications. 

6 C o n c l u s i o n s  

When reasoning about a cryptographic protocol, we must take into account the 
knowledge of the environment with which the protocol interacts. In our definition 
of bisimulation, this knowledge is represented precisely as a set of names that  
the environment has obtained, and as a set of pairs of ciphertexts tha t  the 
environment has received but  cannot distinguish. This precise representation of 
the knowledge of the environment is the basis for an effective and sound proof 
technique. Using this technique, we can construct proofs for small but  subtle 
cryptographic protocols. The proofs are fairly concise and do not require much 
creativity. Therefore, although we have not yet a t tempted to mechanise our 
proofs, we believe that  such a mechanisation is possible, and that  it may enable 
the automatic verification of substantial examples. 
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