
Complexity of Concrete Type-Inference 
in the Presence of Exceptions* 

Ramkr ishna  Chatterjee 1 Barbara  G. Ryder 1 Will iam A. Landi 2 

1 Department of Computer Science, Rutgers University, Piscataway, NJ 08855 USA, 
Fax: 732 445 0537, {ramkrish,ryder}@cs.rutgers.edu 

2 Siemens Corporate Research Inc, 755 College Rd. East, Princeton, NJ 08540 USA, 
wlandi~scr.siemens.com 

A b s t r a c t .  Concrete type-inference for statically typed object-oriented 
programming languages (e.g., Java, C ++) determines at each program 
point, those objects to which a reference may refer or a pointer may 
point during execution. A precise compile-time solution for this problem 
requires a flow-sensitive analysis. Our new complexity results for con- 
crete type-inference distinguish the difficulty of the intraproeedural and 
interproeedural problem for languages with combinations of single-level 
types 3, exceptions with or without subtyping, and dynamic dispatch. 
Our results include: 

- The first polynomial-time algorithm for concrete type-inference in 
the presence of exceptions, which handles Java without threads, and 
C++; 

- Proofs that the above algorithm is always safe and provably precise 
on programs with single-level types, exceptions without subtyping, 
and without dynamic dispatch; 

- Proof that intraprocedural concrete type-inference problem with 
single-level types and exceptions with subtyping is PSPACE-  
comple te ,  while the interprocedural problem without dynamic dis- 
patch is P S P A C E - h a r d .  

Other complexity characterizations of concrete type-inference for pro- 
grams without exceptions are also presented. 

1 I n t r o d u c t i o n  

Concrete type-inference (CTI from now on) for statically typed object-oriented 
programming languages (e.g., Java, C ++) determines at each program point, 
those objects to which a reference may refer or a pointer may  point during exe- 
cution. This information is crucial for static resolution of dynamical ly dispatched 
calls, side-effect analysis, testing, program slicing and aggressive compiler opti- 
mization. 

* The research reported here was supported, in part, by NSF grant GER-9023628 and 
the Hewlett-Packard Corporation. 

3 These are types with data members only of primitive types. 



58 

The problem of CTI is both intraprocedurally and interprocedurally flow- 
sensitive. However, there are approaches with varying degrees of flow-sensitivity 
for this problem. Although some of these have been used for pointer analysis 
of C, they can be adapted for CTI of Java without exceptions and threads, or 
C ++ without exceptions. At the one end of the spectrum are intraprocedurally 
and interprocedurally flow-insensitive approaches [Ste96, SH97, ZRL96, And94], 
which are the least expensive, but also the most imprecise. While at the other 
end are intraprocedurally and interproceduraUy flow-sensitive approaches [LR92, 
EGH94, WL95, CBC93, MLR+93, Ruf95], which are the most precise, but also 
the most expensive. Approaches like [PS91, PC94, Age95] are in between the 
above two extremes. 

An intraprocedurally flow-insensitive algorithm does not distinguish between 
program points within a method; hence it reports the same solution for all pro- 
gram points within each method. In contrast, an intraprocedurally flow-sensitive 
algorithm tries to compute different solutions for distinct program points. 

An interprocedurally flow-sensitive (i.e. context-sensitive) algorithm consid- 
ers (sometimes approximately) only interprocedurally realizable paths [RHS95, 
LR91]: paths along which calls and returns are properly matched, while an inter- 
procedurally flow-insensitive (i.e. context-insensitive) algorithm does not make 
this distinction. For the rest of this paper, we will use the term flow-sensitive to 
refer to an intra- and interprocedurally flow-sensitive analysis. 

In this paper, we are interested in a flow-sensitive algorithm for CTIof  a ro- 
bust subset of Java with exceptions, but without threads (this subset is described 
in Section 2). The complexity of flow-sensitive CTI in the presence of excep- 
tions has not been studied previously. None of the previous flow-sensitive pointer 
analysis algorithms [LR92, WL95, EGH94, PR96, Ruf95, CBC93, MLR+93] for 
C/C ++ handle exceptions. However, unlike in C ++, exceptions are frequently 
used in Java programs, making it an important problem for Java. 

The main contributions of this paper are: 

- The first polynomial-time algorithm for CTI in the presence of exceptions 
that handles a robust subset of Java without threads, and C ++4, 

- Proofs that the above algorithm is always safe and provably precise on pro- 
grams with single-level types, exceptions without subtyping, and without 
dynamic dispatch; thus this case is in P, 

- Proof that intraprocedural CTI for programs with single-level types and 
exceptions with subtyping is PSPACE-eomple te ,  while the interprocedural 
problem (even) without dynamic dispatch is PSPACE-hard .  

- New complexity characterizations of CTI in the absence of exceptions. 

These results are summarized in table 1, which also gives the sections of the 
paper containing these results. 

The rest of this paper is organized as follows. First, we present a flow-sensitive 
algorithm, called the basic algorithm, for CTI in the absence of exceptions, and 
discuss our results about complexity of CTI in the absence of exceptions. Next, 
f 

4 In this paper, we present our algorithm only for Java. 



59 

results paper 
sectior 

interprocedural CTI sec 4 
in P, O(n ~) 

intraprocedural GTI sec 4 
PSPACE-complete 
interprocedural CTI sec 4 

PSPACE-hard  
interprocedural CTI sec 3 

PSPACE-hard  
interprocedural GTI sec 3 

in P, O(n s) 
intraprocedural CTI sec 3 

in N C  

single-level 
types 

exceptions 
iwithout subtypes 

exceptions dynamic 
with subtypes dispatch 

X X 

X X 

X X 

X 

X 

X 

Table 1. Complexity results for CTI summarized 

we extend the basic algori thm for CTIin the presence of exceptions, and discuss 
the complexity and correctness of the extended algorithm. Finally, we present 
P S P A C E - h a r d n e s s  results about  CTIin the presence of exceptions. Due to lack 
of space, we have omit ted  all proofs. These proofs and further details about  the 
results in this paper  are given in [CRL97] 5. 

2 B a s i c  d e f i n i t i o n s  

P r o g r a m  r e p r e s e n t a t i o n .  Our algori thm operates on an interprocedural con- 
trol flow graph or ICFG [LR91]. An ICFG contains a control flow graph (CFG) 
for each method in the program. Each s ta tement  in a method is represented by 
a node in the method ' s  CFG. Each call site is represented using a pair of nodes: 
a call-node and a return-node. Information flows from a call-node to the entry- 
node of a target  method and comes back from the exit-node of the target  method 
to the return-node of the call-node. Due to dynamic dispatch, interprocedural 
edges are constructed iteratively during data-flow analysis as in [EGH94]. De- 
tails of this construction are shown in Figure 3. We will denote the entry-node 
of main by start-node in the rest of this paper. 

Representat ion  o f  d y n a m i c a l l y  c r e a t e d  o b j e c t s .  All run-t ime objects (or 
arrays) created at a program point n are represented symbolically by object_n. 
No distinction is made  between different elements of an array. Thus, if an array 
is created at n, object_n represents all elements of the array. 

P r e c i s e  solut ion for CTI. A reference variable is one of the following: 

- a static variable (class variable) of reference 6 type; 

5 available at http://www.prolangs.rutgers.edu/refs/docs/tr341.ps. 
6 may refer to an instance of a class or an array. 



60 

- a local variable of reference type; 
- Av, where Av is V[tl]...[Q], and 

�9 V is a s tat ic/ local  variable or V is an array object~ allocated at program 
point n, such that  V is either a d-dimensional array of reference type or 
an array of any type having more than d dimensions and 

�9 each ti is a non-negative integer; or 

- V.sl...sk, where 

�9 V is either a stat ic/ local  variable of reference type or V is Av or V is 
object objectn created at program point n, 

�9 for 1 < i < k, each V.sl . . .si-1 (V  for i = 1) has the type of a reference to 
a class T / a n d  each si is a field of reference type of T /o r  si = fi [tQ]...[ti.i] 
and fi is a field of ~ and fi is an array having at least ri dimensions 
and each tij is a non-negative integer, and 

�9 V.sl...sk is of reference type. 

Using these definitions, the precise solution for C T I  can be defined as follows: 
given a reference variable R V  and an object objecLn, (RV, objecLn ) belongs 
to the precise solution at a program point n if and only if R V  is visible at n 
and there exists an execution pa th  from the start-node of the program to n 
such that  if this pa th  is followed, R V  points to objecLn at n (i.e., at  the top 
of n). Unfortunately, all paths in a program are not necessarily executable and  
determining which are executable is undecidable. Barth[Bar78] defined precise 
up to symbolic execution to be the precise solution under the assumption that  all 
program paths are executable (i.e., the result of a test is independent of previous 
tests and all the branches are possible). In the rest of this paper  we use precise 
to mean precise up to symbolic execution. 

P o i n t s - t o .  A points-to has the form (var, obj >; where varis one of the following: 
(1) a static variable of reference type, (2) a local variable of reference type, (3) 
objec~_m - an array object created at program point m or (4) object_n.f- field f, 
of reference type, of an object created at a program point n; and obj is object_s 
- an object created at a program point s. 

S i n g l e - l e v e l  t y p e .  A single-level type is one of the following: (1) a primitive 
type defined in [GJS96] (e.g., int, float etc.), (2) a class that  has all non-static 
da ta -members  of primitive types (e.g., class A { int i,j; }) or (3) an array of a 
primitive type. 

S u b t y p e .  We use Java ' s  definition ofsubtyping: a class A is a subtype of another  
class B if A eztends B, either directly or indirectly through inheritance. 

Sa fe  s o l u t i o n .  An algori thm is said to compute  a safe solution for C T I  if and 
only if at each program point, the solution computed by the algori thm is a 
superset of the precise solution. 



6] 

S u b s e t  o f  J a v a  c o n s i d e r e d .  We essentially consider a subset that  excludes 
threads, but  in some cases we may need to exclude three other features: final- 
ize methods, static initializations and dynamically defined classes. Since finalize 
methods are called (non-deterministically) during garbage collection or unload- 
ing of classes, if a finalize method modifies a variable of reference type (extremely 
rare), it cannot be handled by our algorithm. Static initializations complicate 
analysis due to dynamic loading of classes. If static initializations can be done in 
program order, our algorithm can handle them. Otherwise, if they depend upon 
dynamic loading (extremely rare), our algorithm cannot handle them. Similarly, 
our algorithm cannot handle classes that  are constructed on the fly and not 
known statically. We will refer to this subset as Java Wo Threads. 

Also, we have considered only exceptions generated by throw statements. 
Since run-time exceptions can be generated by almost any statement,  we have 
ignored them. Our algorithm can handle run-time exceptions if the set of state- 
ments that  can generate these exceptions is given as an input. If all statements 
that  can potentially generate run-time exceptions are considered, we will get 
a safe solution; however, this may generate far more information than what is 
useful. 

3 C T I i n  t h e  a b s e n c e  o f  e x c e p t i o n s  

Our basic algorithm for CTI is an iterative worklist algorithm [KU76]. It oper- 
ates on an ICFG and is similar to the Landi-Ryder algorithm [LR92] for alias 
analysis, but  instead of aliases, it computes points-tos. In Section 4, we will 
extend this algorithm to handle exceptions. 

L a t t i c e  fo r  da t a - f l ow  ana lys i s .  In order to restrict data-flow only to realiz- 
able paths, points-tos are computed conditioned on assumed-points-tos (akin to 
reaching alias in [LIL92] [PR96]), which represent points-tos reaching the entry 
of a method, and approximate the calling context in which the method has been 
called (see the example in Appendix A). A points-to along with its assumed- 
points-to is called a conditional-points-to. A conditional-points-to has the form 
(condition, points-to), where condition is an assumed-points-to or empty (mean- 
ing this points-to is applicable to all contexts). For simplicity, we will write 
(empty,points-to I as points-to. Also a special data-flow element reachable is used 
to check whether a node is reachable from the start-node through a realizable 
path. This ensures that  only such reachable nodes are considered during data- 
flow analysis and only points-tos generated by them are put on the worklist 
for propagation. The lattice for data-flow analysis (associated with a program 
point) is a subset lattice consisting of sets of such conditional-points-tos and the 
data-flow element reachable. 

Q u e r y .  Using these conditional-points-tos, a query for CTI is answered as 
follows. Given a reference variable V and a program point l, the conditional- 
points-tos with compatible assumed-points-tos computed at l are combined to 



62 

determine the possible values of V. Assumed-points-tos are compatible if and 
only if they do not imply different values for the same user defined variable. For 
example, if V is p.fl, and the solution computed at I contains (empty, (p, objl)), 
(z, (objl.fl, obj2)) and (u, (objl.fl, obj3)), then the possible values of Y are obj2 
and obj3. 

Algorithm description. Figure 1 contains a high-level description of the main 
loop of the basic algorithm, apply computes the effect of a statement on an 
incoming conditional-points-to. For example, suppose l labels the statement p.fl 
= q, ndf_clm (i.e. the points-to reaching the top of l) is (z, (p, object_s)) and 
(u, (q, object_n)) is present in the solution computed at I so far. Assuming z and 
u are compatible, apply generates (object_s.fl, object_n) under the condition that  
both z and u hold at the entry-node of the method containing I. Then either z or u 
is chosen as the condition for the generated data-flow element. For example, if u is 
chosen then (u, (object_s.fl, object_n)) will be generated. When a conjunction of 
conditions is associated with a points-to, any fixed-size subset of these conditions 
may be stored without affecting safety. At a program point where this data-flow 
element is used, if all the conjuncts are true then any subset of the conjuncts 
is also true. This may cause overestimation of solution at program points where 
only a proper subset of the conjuncts is true. At present, we store only the first 
member of the list of conditions, apply is defined in Appendix B. 

add_to_solution_and_worklist_if_nccded checks whether a data-flow element is 
present in the solution set (computed so far) of a node. If not, it adds the data- 
flow element to the solution set, and puts the node along with this data-flow 
element on the worklist. 

process_exiLnode propagates dat~-flow elements from the exit-node of a 
method to the return-node of a call site of this method. Suppose (z, u) holds 
at the exit-node of a method M. Consider a return-node R of a call site C of M. 
For each assumed-points-to m such that  (z, t) is in the solution set at C and t 
implies z at the entry-node of M, (z, u) is propagated by process_exit_node to R. 
process_eziLnode is defined in Figure 2. 

process_caILnode propagates data-flow elements from a call site to the entry- 
node of a method called from this site. Due to dynamic dispatch, the set of 
methods invoked from a call site is iteratively computed during the data-flow 
analysis as in [EGH94]. Suppose (z, t) holds at a call site C which has a method 
M in its set of invocable methods computed so far. If t implies a points-to z 
at the entry-node of M (e.g., through an actual to formal binding), (z,z) is 
forwarded to the entry-node of M. proccss_calLnodc also remembers the associa- 
tion between z and z at C because this is used by proccss_ezit_node as described 
above, process_call_node is defined in Figures 3 and 4. 

Other functions used by the above routines are defined in Appendix B. Ap- 
pendix A contains an example which illustrates the basic algorithm. 

Precision of the basic algorithm. By induction on the number of iterations 
needed to compute a data-flow element and the length of a path associated with 
a data-flow element, in [CRL97], we prove that  the basic algorithm computes the 



63 

/•/ initialize worklist. Each worklist node contains a data-flow element, which 
is a conditional-points-to or reachable, and an ICFG node. 

create a .orklist node containing the entry-node of main 
and reachable, and add it to the .orklist; 

.hile ( .orklist is not emptyt e)h { 
WLnode = remove a node from eorklist ; 
ndf_elm = WLnode.data-flow-element; 
node = WLnode.node; 

if ( node ~ a call_node and node ~ exit_node of a method ) { 
/ /compute  the effect of the statement associated with node on nd/_elm. 
generated~lata_flo._elements = apply( node, ndf_elm ); 

for ( each successor suet of node ) 
for ( each dr_elm in generated_data_flo,_elements ) 

add_to_solution_and_worklist_if_needed( dr_elm, succ ); 

} ~ / e n d o l i I  

if ( node is an exit.node of a method ) 
process_exit_node( node, ndf_elm ) ; 

if ( node is a call_node ) 
process_call_node( node, ndf_elm ) ; 

} / / e n d  of while 

Fig. 1. High-level description of the basic algorithm 

precise solution for programs with only single-level types and without dynamic 
dispatch, exceptions or threads. For programs of this form, CTI  is distributive 
and a conditional-points-to at a program point can never require the simulta- 
neous occurrence of multiple conditional-points-tos at (any of) its predecessors. 
Intuitively this is why the above proof works. The presence of general types, 
dynamically dispatched calls or exceptions with subtyping violate this condition 
and hence CTI  is not polynomial-time solvable in the presence of these con- 
structs. We also prove that the basic algorithm computes a safe solution for 
programs written in Java Wo Threads, but without exceptions. 

Complex i ty  of  the  basic a lgor i thm.  The complexity of the basic algo- 
rithm for programs with only single-level types and without dynamic dispatch, 
exceptions or threads is O(nS), where n is approximately the number of state- 
ments in the input program. This an improvement over the O(n 7) worst-case 
bound achievable by applying previous approaches of [RHS95] and [LR91] to 
this case. Note that O(n 3) is a trivial worst-case lower bound for obtaining 
a precise solution for this case. For programs written in Java Wo Threads, but 
without exceptions, the basic algorithm is polynomial-time. 

O the r  resul ts  on the  complexi ty  of  CTI  in the absence of  exceptions.  
In [C1~L97], we prove the following two theorems: 

T h e o r e m  1 Intraprocedural CTI  for programs with only single-level types is in 
non-deterministic log-space and hence NC. 



64 

void process_exit_node( exit_node, ndf_olm ) { 
/ / L e t  M be the method containing the exit_node. 
if ( ndf_elm represents the value of a local variable ) 

/ / i t  need not be forwarded to the successors (return-nodes of call sites for 
this method) because the local variable is not visible outside this method. 

return; 

if ( ndf_elm is reachable ) { 
for ( each call site C in the current sot of call sites of M ){ 

if ( solution at C contains reachable ) { 
add_to_solution_and_.orklist_if_needed( ndf_elm, R ) ; 
/ / R  is the return-node for C. 
for ( each s in C.waiting_local_points_to_table ) { 

/~/ conditional-points-tos representing values of local variables reaching 
//~/ C are not forwarded to R until it is found reachable. 

C.waiting_local_points_to_table contains such conditional-points-tos. 

f / S i n c e  R has been found to be reachable 
delete s from C.waiting_local_poinst_to_tablo; 
add_to_solution_and_.orklist_if_needed( s, R ) ; 
} 

} 

r) eturn; 
} 
add_to_table_of_condi$ions( ndf_olm, exit_node ) ; 
//This table is accessed from the call sites of M for expanding assumed-points-tos. 

for ( each call site C in the current set of call sites of M ) { 
Sor get_assumed_points_tos( C, ndf_olm.assumed-points_to, M ) ; 

( each assumed_points_to Apt in S ) { 
CPT = new conditional-points-to( Apt, half_elm.points_to ); 
add_to_~olu$ion_and_worklist_if_neoded( CPT, It ); 
//R is the return-node for C. }1 

} / / e n d  of process_exit_node 

Fig. 2. Code for processing an exit-node 

Recall that non-deterministic log-space is the set of languages accepted by non- 
deterministic Turing machines using logarithmic space[Pap94] and NC is the 
class of efficiently parallelizable problems which contains non-deterministic log- 
space. 

T h e o r e m  2 
CT I  for programs with only single-level types and dynamic dispatch is PSPACE-  
hard. 

4 Algorithm for CTIin the presence of exceptions 

In this section we extend the basic algorithm for C T I o f  Java Wo Threads, and 
discuss the complexity and precision of this extended algorithm. 

Data-flow Elements: The data-flow elements propagated by this extended 
algorithm have one of the following forms: 



65 

v o i d  process_caILnode( C, ndf_elm ){ 
/ / R  is the return-node for caILnode C. 

if ( ndf_elm implies an increase in the set CM of methods invoked 
from this site ) { 

/ /Recal l  that due to dynamic dispatch, the interprocedural 
/ / edges  are constructed on the fly, as in [EGH94]. 
add t h i s  new method ~ to CM; 
for ( each dfelm in the solution set of C ) 

interprocedurally_propagate( dfelm, C, nM) ; //defined in Figure 
} 
if ( ndf_elm represents value of a local variable ) 

if ( solution set for R contains reachable ) 
/~/ Forward ndf_elm to the return-node because (unlike C ++) 

a local variable cannot be modified by a call in Java. 
add_to_solution_and_worklist_if_needed( ndf_elm, R ); 

else 
/ /  Cannot forward till R is found to be reachable. 
add ndf_elm to waiting_local_points_to_table; 

} 
for ( each method M in CM ) 

interprocedurally~ropagate( ndf_elm, C, M ); 

Fig. 3. Code for processing a call-node 

1. (reachable), 
2. (label, reachable), 
3. (ezcp-type, reachable), 
4. (z, u>, 
5. (label, z, u), 
6. (ezcp-typc, z, u), 
7. (ezcp, z, obj). 

Here z and u are points-tos. The lattice for data-flow analysis associated with a 
program point is a subset lattice consisting of sets of these data-flow elements. 
In the rest of this section, we present definitions of these data-flow elements 
and a brief description of how they are propagated. Further details are given in 
[CKL97]. First we describe how a throw statement  is handled. Next, we describe 
propagat ion at a method exit-node. Finally, we describe how a finally s ta tement  
is handled. 

throw statement: In addition to the conditional-points-tos described previously, 
this algori thm uses another  kind of conditional-points-tos, called ezceptional- 
conditional-points-tos, which capture propagation due to exceptions. The con- 
ditional par t  of these points-tos consists of an exception type and an assumed 
points-to (as before). Consider a throw statement  l in a method Proc, which 
throws an object of type T (run-time type and not the declared type). More- 
over let ((q, objl), (p, objil) be a conditional-points-to reaching the top of l. At 
the throw statement,  this points-to is t ransformed to (T, (q, objl),  (p, obj2)> and 



66 

interprocedurally_propagate( ndf_elm, C, M) { 
/ /  C ks a call_node, R is the return-node o] C and M is a method called from C. 
i f  ( ndf_elm == reachable ) { 

add_t o_solut ion_and_~orklist_if_needed (ndf_elm, M. entrymode) ; 
if ( M.exit_node has reachable ) { 

add_to_solution_and_worklist_if_needed(ndf_elm, R) ; 
for ( each s in C.waiting_local_points_to_table ) { 

/ / S ince  R has been found to be reachable 
de le te  s from C.waiting_loea1_poinst_to_table; 
add_to_solution_andJorklist_if_needed( s, R ) ; 

} 
} 
propagat e_conditional_points_t os_with_empty_condit ion(C ,M) ; 
return; 

} 
/ / g e t  the points-tos implied by ndf_elm at the entry-node o/ M 
S = get_implied_conditional_points_tos (ndf_elm,M, C) ; 

for ( each s in S ) { 
add_to_solution_andJorklist_if_needed( s, M.engry_node ) ; 
add_t o_t able_of_assumed_point s_t os ( $. assumed_points_t o, 

ndf_elm.assumed_points_to, C ) ; 

//S This table is accessed ~rom exit-nodes o/methods called from C 
for expanding assumed points-tos. 

i f  ( ndf_elem.apt is  a new apt fo r  s .ap t  ) { 
/ / a p t  stands ]:or assumed-points-to 
Pts = lookup_table_of_conditions( s.assumed_points_to, M. exit_node ) ; 
//nd/_elm.assumed_points_to is an assumed-points-to for each element o/ Pts 

for ( each pts in Pts ) { 
opt = nov conditional_points_to( ndf_elm.assumed_points_to, pts ) ; 
add_to_solution_and_,orklist_ifaxeeded( cpt, R ) ; 

} 

} }/ /end o/each s in S 
} 

Fig. 4. Code for interproeedurally_propagate 

propagated to the exit-node of the corresponding try statement,  if there is one. 
A precalculated catch-table at this node is checked to see if this exception (iden- 
tified by its type T) can be caught by any of the corresponding catch statements. 
If so, this exceptional-conditional-points-to is forwarded to the entry-node of this 
catch statement,  where it is changed back into an ordinary conditional-points-to 
((q, obj 1), (p, obj2)). If not, this exceptional-conditional-points-to is forwarded to 
the entry-node of a finally statement (if any), or the exit-node of the innermost 
enclosing try, catch, finally or the method body. 

A throw statement also generates a data-flow element for the exception itself. 
Suppose the thrown object is obj and it is the thrown object under the assumed 
points-to (p, objl). Then (ezcp, (p, objl), obj) representing the exception is gen- 
erated. Such data-flow elements are handled like exceptional-conditional-points- 
tos, described above. If such a data-flow element reaches the entry of a catch 
statement,  it is used to instantiate the parameter of the catch statement. 



67 

In addition to propagat ing reachable (defined in section 3), this algorithm 
also propagates data-flow elements of the form (ezcp-type, reachable). When 
(reachable) reaches a ~hrow s ta tement ,  it is t ransformed into (ezcp-type, reachable), 
where emcp-type is a run-t ime type of the exception thrown, which is then prop- 
agated like other exceptional-conditional-points-tos. 

I f  the throw is not directly contained in a try statement,  then the data-  
flow elements generated by it are propagated to the exit-node of the innermost 
enclosing catch, finally or method body. 

ezit-node of a method: At the exit-node of a method,  a data-flow element of 
type 4,6 or 7 is forwarded (after replacing the assumed points-to as described 
in section 3) to the return-node of a call site of this method if and only if the 
assumed points-to of the data-flow element holds at  the call site. At a return- 
node, ordinary conditional-points-tos (type 4) are handled as before. However, 
a data-flow element of type 6 or 7 is handled as if it were generated by a throw 
at this return-node. 

finally statement: The semantics of exception handling in Java  is more compli- 
cated than other languages like C ++ because of the finally statement.  A try state- 
ment  can optionally have a finally statement  associated with it. It  is executed 
no mat te r  how the try statement  terminates: normally or due to an exception. A 
finally s ta tement  is always entered with a reason, which could be an exception 
thrown in the corresponding try s ta tement  or one of the corresponding catch 
statements ,  or leaving the try s ta tement  or one of its catch clauses by a return, 
(labelled) break or (labelled) continue, or by falling through. This reason is re- 
membered  on entering a finally, and unless the finally statement  itself creates 
its own reason to exit the finally, at the exit-node of the finally this reason is 
used to decide control flow. If  the finally itself creates its own reason to exit 
itself (e.g., due to an exception), then this new reason o v e r r i d e s  any previous 
reason for entering the finally. Also, nested finally statements cause reasons for 
entering them to stack up. In order to correctly handle this involved semantics, 
for all data-flow elements entering a finally, the algori thm remembers  the reason 
for entering it. For data-flow elements of type 3, 6 or 7 (enumerated above), the 
associated exception already represents this reason. A label is associated with 
data-flow elements of type 1 or 4, which represents the s ta tement  number to 
which control should go after exit from the finally. Thus the data-flow elements 
in a finally have one of the following forms: 

1. (label, reachable), 
2. ( ezcp-type, reachable), 
3. (label, z, u) , 
4. (ezcp-type, z, u), 
5. (ezcp, z, ob3). 

When a labelled data-flow element reaches the labelled s tatement ,  the label 
is dropped and it is t ransformed into the corresponding unlabelled data-flow 
element. 



68 

Inside a finally, due to labels and exception types associated with data-flow 
elements, apply uses a different criterion for combining data-flow elements (at 
an assignment node) than the one given in section 3. Two data-flow elements 
(xl,yl,zl) and (x2,y2,zZ) can be combined if and only if both xl and xZ represent 
the same exception type or the same label, and y1 and y2 are compatible (as 
defined in section 3). 

At a call s tatement (inside a finally), if a data-flow element has a label or 
an exception type associated with it, it is treated as part  of the context (as- 
sumed points-to) and not forwarded to the target node. It is put  back when 
assumed points-tos are expanded at an exit-node of a method. For exceptional- 
conditional-points-tos or data-flow elements representing exceptions, the excep- 
tions associated with them at the exit-node o v e r r i d e  any label or exception type 
associated with their assumed points-tos at a corresponding call site. Data-flow 
elements of the form (label, reachable) or (excp-type, reachable) are propagated 
across a call if and only if (reachable) reaches the exit-node of one of the called 
methods. A mechanism similar to the one used for handling a call is used for 
handling a try statement nested inside a finally because it can cause labels and 
exceptions to stack up. Details of this are given in [CRL97]. 

If the finally generates a reason of its own for exiting itself, the previous 
label/exception-type associated with a data-flow element is discarded, and the 
new label/exception-type representing this reason for leaving the finally is asso- 
ciated with the data-flow element. 

E x a m p l e .  The example in Figure 5 illustrates the above algorithm. 

Precision o f  t h e  extended algorithm. In [CRL97], we prove that  the ex- 
tended algorithm described in Section 4 computes the precise solution for pro- 
grams with only single-level types, exceptions without subtyping, and without 
dynamic dispatch. We also prove that  this algorithm computes a safe solution 
for programs written in Java WoThreads. 

Complexity of  the extended a l g o r i t h m .  The the worst-case complexity 
of the extended algorithm for programs with only single-level types, exceptions 
without subtyping, and without dynamic dispatch is O(nT). Since we have proved 
that  the algorithm is precise for this case, this shows that  this case is in P. If we 
disallow trys nested inside a finally, the worst-case complexity is O(n6). For gen- 
eral programs written in Java WoThreads, the extended algorithm is polynomial- 
time. 

C o m p l e x i t y  d u e  t o  e x c e p t i o n s  w i t h  s u b t y p i n g .  In [CRL97], we prove the 
following theorem: 

Theorem 3 Intraprocedural CTI for programs with only single-level types and 
exceptions with subtyping is PSPACE-complete; while the interprocedural case 
(even) without dynamic dispatch is PSPACE-hard. 



69 

/ / N o t e :  for simplicity only a part of the solution is shown 
class A {}; class .xcp_t extends Exception {}; 
class base { 

public static A a; 
public static void method( A parma ) throws excp_t { 

sxcp_t unexp; 

a = parma; 
ii: unexp = new excp_t; 

/r empty, ( unexp, object_ll ) >, 
( ( p ~ m ,  obje~t_12 >, (~, objectS2> > 
ow unexp; 

/~/ (excp, empty, object_ll ), 
(excp_t, (param, object_f2 >, (a, object_12 > > 

};} 
class test { 

public static void test_method( ) { 
A local ; 

12: local = new A; 

try { 
base.method( local ); 

//<excp, empty, object_Zl >, (excp_t, empty, (a, object_Z2 > ) 
} 
ca t ch (  excp_t parma ) { 

~3/:(empty, <p~m, object_Z1 ) ), (empty, <~, objectS2 ) ) 
} 
finally { 

// (l~, empty, (a, objectS2> ) 

<empty, <a, object_12 > > 

};} 

Fig. 5. CTI in the presence of exceptions 

Theorems 2 and 3 show that in the presence of exceptions, among all the rea- 
sonable special cases that we have considered, programs with only single-level 
types, exceptions without subtyping, and without dynamic dispatch comprise 
the only natural special case that is in P. Note that just adding subtyping for 
exception types and allowing overloaded catch clauses increase complexity from 
P to PSPACE-hard.  

5 Re la ted  work 

As mentioned in the introduction, no previous algorithm for pointer analysis or 
C T I  handles exceptions. This work takes state-of-the-art in pointer analysis one 
step further by handling exceptions. Our algorithm differs from other pointer 
analysis and C T I  algorithms [EGH94, WL95, l~uf95, PC94, PS91, CBC93, 



70 

MLR+93] in the way it maintains context-sensitivity by associating assumed- 
points-tos with each data-flow element, rather than using some approximation 
of the call stack. This way of handling context-sensitivity enables us to obtain 
precise solution for polynomial-time solvable cases, and handle exceptions. This 
way of maintaining context is similar to Landi-Ryder's[LR92] method of storing 
context using reaching aliases, except that our algorithm uses points-tos rather 
than aliases. Our algorithm also differs from approaches like [PS91, Age95] in 
being intraprocedurally flow-sensitive. 

6 C o n c l u s i o n  

In this paper, we have studied the complexity CTI for a subset of Java, which 
includes exceptions. To the best of our knowledge, the complexity of CTIin  the 
presence of exceptions has not been studied before. The following are the main 
contributions of this work (proofs are not presented in this paper, but appear in 
[CRL97]): 

1. The first polynomial-time algorithm for CTI in the presence of exceptions 
which handles a robust subset of Java without threads, and C ++. 

2. A proof that CTIfor programs with only single-level types, exceptions with- 
out subtyping, and without dynamic dispatch is in P and can be solved in 
O(n 7) time. 

3. A proof that intraprocedural CTIfor programs with only single-level types, 
exceptions with subtyping, and without dynamic dispatch is P S P A C E -  
complete, and the interprocedural case is PSPACE-hard.  

Additional contributions are: 

1. A proof that CTI for programs with only single-level types, dynamic dis- 
patch, and without exceptions is PSPACE-hard.  

2. A proof that CTI for programs with only single-level types can be done 
in O(n 5) time. This is an improvement over the O(n 7) worst-case bound 
achievable by applying previous approaches of [RHS95] and [LlZ91] to this 
c a s e .  

3. A proof that intraprocedural CTI for programs with only single-level types 
is in non-deterministic log-space and hence NC. 

R e f e r e n c e s  

[Age95] 

[And94] 

Ole Agesen. The cartesian product algorithm: Simple and precise type infer- 
ence of parametric polymorphlsm. In Proceedings of European Conference 
on Object-oriented Programming (ECOOP '95), 1995. 
L. O. Andersen. Program Analysis and Specialization for ~he C Program- 
ming Language. PhD thesis, DIKU, University of Copenhagen, 1994. Also 
available as DIKU report 94/19. 



71 

[Bar78] 

[CBC93] 

[CRL97] 

[EGH94] 

[GJS96] 

[KU76] 

[LR91] 

[LR92] 

[MLR+93] 

[Pap94] 
[PC94] 

[P1~96] 

[PSgl] 

[RHS95] 

[Ruf95] 

[SI-I97] 

[Ste96] 

J. M. Barth. A practical interprocedural data flow analysis algorithm. Com- 
munications of the ACM, 21(9):724-736, 1978. 
Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive 
interprocedural computation of pointer-induced aliases and side effects. In 
Proceedings of the ACM SIGPLAN/SIGACT Symposium on Principles of 
Programming Languages, pages 232-245, January 1993. 
Ramkrishna Chatterjee, Barbara Ryder, and William Landi. Complexity 
of concrete type-inference in the presence of exceptions. Technical Report 
DCS-TR-341, Dept of CS, Rutgers University, September 1997. 
Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive 
interprocedural points-to analysis in the presence of function pointers. In 
Proceedings of the ACM SIGPLAN Conference on Programming language 
design and implementation, pages 242-256, 1994. 
James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. 
Addison-Wesley, 1996. 
J.B. Kam and J.D. Ullman. Global data flow analysis and iterative algo- 
rithms. Journal of ACM, 23(1):158-171, 1976. 
W.A. Landi and Barbara G. Ryder. Pointer-induced allasing: A problem 
classification. In Proceedings of the A CM SIGPLAN/SIGA CT Symposium 
on Principles of Programming Languages, pages 93-103, January 1991. 
W.A. Landi and Barbara G. Ryder. A safe approximation algorithm for 
interprocedural pointer allasing. In Proceedings of the ACM SIGPLAN 
Conference on Programming Language Design and Implementation, pages 
235-248, June 1992. 
T . J .  Marlowe, W.A.  Landi, B .G.  Ryder, J. Choi, M. Burke, and 

P. Carini. Pointer-induced aliasing: A clarification. ACM SIGPLAN No- 
tices, 28(9):67-70, September 1993. 
C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. 
J. Plevyak and A. Chien. Precise concrete type inference for object ori- 
ented languages. In Proceeding of Conference on Object-Oriented Program- 
ming Systems, Languages and Applications (OOPSLA '95}~ pages 324-340, 
October 1994. 
Hemant Pande and Barbara G. Ryder. Data-flow-based virtual function res- 
olution. In LNCS 1155, Proceedings of the Third International Symposium 
on Static Analysis, 1996. 
J. Palsberg and M. Schwartzbach. Object-oriented type inference. In 
Proceedings of Conference on Object-Oriented Programming Systems, Lan- 
guages, and Applications (OOPSLA '91), pages 146-161, October 1991. 
T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analy- 
sis via graph teachability. In Proceedings of the ACM StGPLAN/SIGACT 
Symposium on Principles of Programming Languages, pages 49-61, 1995. 
E. Ruf. Context-insensitive alias analysis reconsidered. In Proceedings of 
the ACM SIGPLAN Conference on Programming language design and im- 
plementation, pages 13-22, June 1995. 
M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to 
analysis. In Proceedings of the A CM SIGPLAN/SIGA CT Symposium on 
Principles of Programming Languages, pages 1-t4, 1997. 
Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings 
of the A CM SIGPLAN//SIGA CT Symposium on Principles of Programming 
Languages, pages 32-41, 1996. 



72 

[WL95] 

[ZRL96] 

Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer 
analysis for c programs. In Proceedings of the A CM SIGPLAN Conference 
on Programming language design and implementation, pages 1-12, 1995. 
S. Zhang, B. G. Ryder, and W. Land<. Program decomposition for pointer 
aliasing: A step towards practical analyses. In Proceedings of the ~th Sym- 
posium on the Foundations of S o ,  ware Engineering, October 1996. 

A E x a m p l e  for  t h e  basic a l g o r i t h m  

/ / N o t e :  due to lack of space only a part o~ the solution is shown 

class A {}; class B { class c { 
public B fieldl; public B fieldl; 

}; }; 

class base { 
public static A a; 
publ ic  void method( ){ 

ii: a = new A; 

//<empty, <a, o~ect;1 > > 
exit_~ode: 

class derived extends base ( 
public void method( ) { 

//overrides base::method 
12: a = new A; 

//<empty, <a, object_f2 ) 
exitmods : 

class caller { 

public static void call( base Param ) i{ I 
/ / ( (param,  objecLl4 ), (param, object_14 
//<<param, object J5 >, (param, objectS5 : 
13: ,aram.method() ; 

/ param, object_14 ) => base::method is called. 
param, object_15 ) => derived::method is called. 

/ ~.mpty, (a, object_ll > ) is changed to 
/ <param, objectd4 >, (a, object_ll }} because base"method.. ~s 
/ called only when <param, object_14). 
/ (empty, (a, object_12 ) > is changedto 
/ <(param, objectd5 >, <a, object_12 ) > because derived::method is 

is called only when <param, object_15 >. };/ 
}; // end of class caller 

class potpourri { 
public static void example( C param ) { 

/ / L e t  S = { ( (param, object_16 >, (param, object_f6 > >, 
//((param, objectS7>, <param, objectS7> ), 
//((object~6.1~eldl, null ), < object~6.1~eldl, null> >, 
//<(object~7.1~eld~, null ), < object~7.1~eld~, null> >} 
/ / so lu t ion  at this point is S 
local = param; 

/ / /Let  $1 = S U {<(param, object_16 ), <local, object_16 ) ) 
(<param, object_rz ), (local, object_l~> >'} 

solution at this point is $1 
18: l o c a l . f i e l d l  = n e w  B; 

////solution = 
s~ u { <<param, object_IS >, <object~.~eldl, object~S > /// <<param, object J7 I, <object~Z~eldl, objectJS > >>; 

<empty, < object~S.~eldl, null> ) } 



73 

exit_node: 

};}; 

class test { 
public void test1( ) { 

base p; 
14: p = ne. base; 

//(empty, (p, o~ect~ ) ) 
19: caller.call(p); 

//(empty, (p, o~ect~4 ) ) . 
//At 19 (p, o~ectJ4 ) 
//=> (empty, (a, o~ect~1 ) ). 
exit.node: 

}; 
public void test3( ) { 

C q; 
16: q = ne. C; 
potpouri.example( q ); 

}; 
}; 

public void test2( ) { 
derived p; 
15: p = he. derived; 

110: caller.call(p); 

~ (empty, (p, object_IS) ) .  
At 110 (p, object_15 ) = >  
(empty, (a, objectS2) ). 

exit_node: 

public void test4( ) { 

p o t p o u r i . e x a m p l e (  q ) ;  }; 

B Auxiliary functions 

/~/ CPT stands for a conditional-points-to. DFE stands for a 
data-flow-element which could be a CPT or 'reachable'. 

set of data-flo.-elements apply( node, rDFE ) { 
/ / t h i s  ]unction computes the effect of the statement (if any) associated 
/ / w i t h  node on rDFE, i.e. the resulting data-flow-elements at the bottom 
//I oI node. 

set of data-flo.-elements retVal = empty set; 
if ( node is a not an assignment node ) { 

add rDFE to retVal; 
return retVal ; 

} 
i f  ( rDFE == reachable ) { 

add rDFE to  r e t V a l ;  
if (node unconditionally generates a conditional-points-to) { 

/~/ e.g. l: p = new A; unconditionally generates 
<empty, (p, object_Z) ). 

add this conditional-points-to to retVal; 

else { 
rDFE is a conditional-points-to 
_set = combine compatible CPTs in the solution set computed 

so far (including rDFE) to generate the set of locations 
represented by the left-hana-side. 

/ / N o t e :  each element in lhs_set has a set of assumed 
/ / po in t s - to s  associated with i t '  

similarly compute rhs_sot for the right-hand-side. 

retVal = combine compatible elements from lhs_set and rhs-set. 
/~// only one of the assumed points-tos associated with a 

resulting points-to is chosen as its assumed points-to. 

if ( rDFE is not killed by this node ) 
add rDFE to retVal; 



74 

return retVal ; 
} / / e n d  of apply 

v o i d  add_to_table_of_conditions( rCPT, e x i t - n o d e  ) { 
/~/ each exit-node has a table condTable associated with it, 

which stores for each assumed points-to, the points-tos 
which hold at the exit-node with this assumed points-to. 
This function stores rCPT in this table. } 

v o i d  add_to_table_of_assumed_points_tos(s, c o n d i t i o n ,  C) { 
/~/~/ C is a call-node, condition is an assumed-points-to and s is a 

points-to passed to the entry-node of a method invoked from C. 

l 
each call-node has a table asPtTtable associated with it, which 
stores for each points-to that is passed to the entry-node of a 
method invoked from this site, the assumed-points-tos which 
imply this point-to at the call site. This function stores 
condition with s in this table. } 

s e t  of  p o i n t s - t o s  get_assumed_points_tos( C, s ,  M ) { 
i~ ( s i s  empty ) { 

if ( the solution set at C does not contain reachable ) 
return empty set ; 

else I 
if C is a dynamically-dispatched-call site) 

return the set of assume~-points-tos for the values 
of receiver, which result in a call to method M; 

else 
return a set containing empty; 

} 
} 
else { 

return the assumed-points-tos stored with s in C.asPtTtable; 
//asPtTtable is defined in add_to_table_of_assumed_points_tos. 

} 
} 
s e t  of  p o i n t s - t o s  lookup_table_of_conditions( c o n d i t i o n ,  e x i t - n o d e  ) { 

l / I t  returns the points-tos stored with condition in 
exit-node.condTable, which is defined in add_to_table_of_conditions. 

} 
set of conditional-points-tos get_implied_conditional_points_tos( rCPT, M, C ) { 

l / l /I t  returns conditional-points.tos implied by rCPT.points-to 
at the entry-node of method M at call-node C. This means it also 
performs actual to formal binding. Note that it may return 

//an empty set. } 

void propagate_conditionaLpoints_tos_with_empty_condition( C, M) { 
if ( C is not a dynamicallyxlispatched_r site ) 

s -- { empty }; 
else 

S = set of assumed-points-tos for the values 
of receiver, which result in a call to method M; 

Pts = lookup_table_of_conditions( empty, M.exit_node ) ; 
for ( each s in S ) { 

for ( each pts in Pts ) { 
cpt = new conditional_points_to( s, pts ); 
add_to_solution_and_worklist_if_needed( cpt, R ) ; 
/ / R  is the return-node of C 

} 
} 


