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A b s t r a c t .  Integrating semi-naive fixpoint i terat ion from deductive da ta  
bases [3, 2, 4] as well as continuations into worklist-based solvers, we 
derive a new application independent local fixpoint algorithm for dis- 
t r ibutive constraint systems. Seemingly different efficient algorithms for 
abstract  interpretat ion like those for linear constant propagation for im- 
perative languages [17] as well as for control-flow analysis for functional 
languages [13] turn out to be instances of our scheme. Besides this sys- 
tematizing contribution we also derive a new efficient algorithm for ab- 
stract  0LDT-resolution as considered in [15, 16, 25] for Prolog. 

1 I n t r o d u c t i o n  

Efficient application independent local solvers for general classes of constraint systems 
have been successfully used in program analyzers like GAIA [9,6], PLAIA [20] or 
GENA [10, 11] for Prolog and PAG [1] for imperative languages. The advantages of 
application independence are obvious: the algorithmic ideas can be pointed out more 
clearly and are not superseded by application specific aspects. Correctness can therefore 
be proven more easily. Once proven correct, the solver then can be instantiated to 
different application domains - thus allowing for reusable implementations. For the 
overall correctness of every such application it simply remains to check whether or not 
the constraint system correctly models the problem to be analyzed. Reasoning about 
the solution process itself can be total ly abandoned. 

In [12], we considered systems of equations of the form x = f~ (x a variable and tried 
to minimize the number of evaluations of r ight-hand sides f~ during the solution pro- 
cess. Accordingly, we viewed these as (almost) atomic actions. In practical  applications, 
however, like the abstract  interpretat ion of Prolog programs, r ight-hand sides represent 
complicated functions. In this paper,  we therefore t ry  to minimize not just  the number 
of evaluations but  the overall work on right-hand sides. Clearly, improvements in this 
direction can no longer abstract  completely from algorithms implementing r ight-hand 
sides. Nonetheless, we aim at optimizations in an as application independent setting 
as possible. 

We start  by observing that  r ight-hand sides f~ of defining equations x --- f~ often are 
of the form f~ -- t l  U . . .  IA tk where the tl represent independent contributions to the 
value of x. We take care of tha t  by considering now systems of constraints of the form 
x ~ t. Having adapted s tandard worklist-based equation solvers to such constraint 
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systems, we investigate the impact  of two further optimizations. First ,  we t ry  to avoid 
identical subcomputat ions which would contribute nothing new to the  next iteration. 
Thus, whenever a variable y accessed during the last evaluation of r ight-hand side t 
has changed it 's  value, we t ry  to avoid reevaluation of t as a whole. Instead, we resume 
evaluation just  with the access to y. 

To do this in a clean way, we adapt  the model of (generalized) computation trees. 
We argue that  many common expression languages for r ight-hand sides can easily and 
automatical ly be translated into this model. This model has the advantage to make 
continuations, i.e., remaining parts  of computations after returns from variable look- 
ups, explicit. So far, continuations have not been used in connection with worklist-based 
solver algorithms. Only for topdown-solver T D  of Le Charlier and Van Hentenryck [5, 
12] a related technique has been suggested and practically applied to the analysis of 
Prolog, by Englebert et al. in [9]. 

In case, however, computat ion on larger values is much more expensive than on 
smaller ones, continuation based worklist solvers can be further improved by calling 
continuations not with the complete new value of the modified variable but just  its 
increment. This concept clearly is an instance of the very old idea of optimization 
through reduetwn in strength as considered, e.g., by Paige [22]. A similar idea has been 
considered for recursive query evaluation in deductive databases to avoid computing the 
same tuples again and again [3, 4]. Semi-naive iteration, therefore, propagates just those 
tuples to the respective next i teration which have been newly encountered. Originally, 
this optimization has been considered for rules of the form x D f y where x and y are 
mutually recursive relations and unary operator f is distributive, i.e., f (sl tA s2) = 
f sl U f  s2. An extension to n-ary f is contained in [2]. A general combination, however, 
of this principle with continuations and local worklist solvers seems to be new. To make 
the combination work, we need an operator diff which when applied to abstract  values 
dl and d2 determines the necessary part  from dl LA d2 given dl for which reevaluation 
should take place. We then provide a set of sufficient conditions guaranteeing the 
correctness of the resulting algorithm. 

Propagat ing differences is orthogonal to the other optimizations of worklist solvers 
considered in [12]. Thus, we are free to add t imestamps or just  depth-first  priorities to 
obtain even more competit ive fixpoint algorithms (see [12]). We refrained from doing 
so to keep the exposition as simple as possible. We underline generality as well as 
usefulness of our new fixpoint algorithm by giving three important  applications, namely, 
distributive framework IDE for interprocedural analysis of imperative languages [17], 
control-flow analysis for higher-order functional languages [13], and abstract  OLDT- 
resolution as considered in [15, 16] for Prolog. In the first two cases, we obtain similar 
complexity results as for known special purpose algorithms. Completely new algorithms 
are obtained for abstract  0LDT-resolution. 

Another effort to exhibit computat ional  similarities at least between control-flow 
analysis and certain interprocedural analyses has been undertaken by Reps and his 
coworkers [18, 19]. It is based on the graph-theoretic notion of context-free language 
reachability. This approach, however, is much more limited in its applicability than 
ours since it does not work for binary operators and lattices which are not of the form 
D -- 2 A for some un-ordered base set A. 

The paper is organized as follows. In sections 2 through 6 we introduce our basic 
concepts. Especially, we introduce the notions of computat ion trees and weak mono- 
tonicity of computat ion trees. In the following three sections, we successively derive 
differential fixpoint algorithm W R y .  Conventional worklist solver W R  is introduced 
in section 7. Continuations are added in section 8 to obtain solver W R y  from which we 
obtain algorithm W R ~  in section 9. The results of section 9 are sufficient to derive fast 
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algorithms for framework IDE (section 10) as well as control-flow analysis (section 11). 
Framework IDE has been proposed by Horwitz, Reps and Sagiv for interprocedural 
analysis of imperative programs and applied to interprocedurai linear constant propa- 
gation [17]. A variant of control-flow analysis ("set-based analysis") has been proposed 
by Heintze for the analysis of ML [13]. Another  variant, even more in the spiri t  of the 
methods used here, has been applied in [26] to a higher-order functional language with 
call-by-need semantics to obtain a termination analysis for deforestation. In section 12 
we extend applicability of algorithm WRza further by introducing generalized compu- 
tation trees. This generalization takes into account independence of subcomputations.  
Especially, it allows to derive new algorithms for abstract  0LDT-resolution [15, 16, 25] 
(section 13). As an example implementation, we integrated an enhanced version of fix- 
point  algorithm W R a  into program analyzer generator GENA for Prolog [10, 11] and 
practically evaluated the generated analyzers on our benchmark suite of large Prolog 
programs. The results are reported in section 14. 

2 Constraint  Sys tems  

Assume D is a complete latt ice of values. A constraint system ~ with set variables 
V over latt ice D consists of a set of constraints x ~ t where left-hand side x E V is 
a variable and t, the r ight-hand side, represents a function It] : (V --~ D) --+ D from 
variable assignments to values. Le Charlier and Van Hentenryck in [5] and Fecht and 
Seidl in [12] presented their solvers in a setting which was (almost) independent of the 
implementation of r ight-hand sides. In this paper, we insist on a general formulation 
as well. As in [12] we assume that  

1. set V of variables is always finite; 

2. complete lattice D has finite height; 

3. evaluation of r ight-hand sides is always terminating. 

In contrast  to [5, 12], however, our new algorithms take also into account how right- 
hand sides are evaluated. 

3 C o m p u t a t i o n  Trees 

Operationally, every evaluation of r ight-hand side t on variable assignment a can be 
viewed as a sequence alternating between variable lookups and internal computations 
which, eventually, terminates to return the result. Formally, this type of evaluation 
can be represented as a D-branching computation tree (ct for short) of finite depth.  
The set T(V, D) of all computat ion trees is the least set T containing d E D, x E V 
together with all pairs (x, C) where x E V and C : D -~ T. Given t E T(V, D), function 
It] : (V --~ D) -~ D implemented by t and set dep(t, _) of variables accessed during 
evaluation of t are given by: 

[d] a = d dep(d, a) -- 0 
[x~ a = a x dep(x, a) = (x} 
~(x,C)] a = IC (a x)] ~r dep((x,C),a) = ( x }Udep(C(ax ) , a )  

Clearly, ct x can be viewed as an abbreviation of ct (x,)~d.d). Representations of equiv- 
alent computat ion trees can be obtained for various expression languages. 
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Example 1. Assume right-hand sides are given by 

e ::= d l x l f x J g ( x l , x 2  ) 

where, d denotes an element in D, and f and g represent monotonic functions D --+ 
D and D 2 -+ D, respectively. For simplicity, we do not distinguish inotationally) 
between these symbols and their respective meanings. Standard intra-procedural data- 
flow analyzes for imperative languages naturally introduce constraint systems of this 
simple type imostly even without occurrences of binary operators g). The computation 
tree t for expression e can be chosen as e itself if e �9 D U V .  For e -- .f x, we set t = ix, ])  
and for e - - -g ix l , x2 ) ,  t : <xl,C) where C d  = Ix2,Cd> and Cdd' = gid ,  d'). [3 

Further examples of useful expression languages together with their translations into 
igeneralized) computation trees can be found in sections 11, 12, and 13. It should be 
emphasized that we do not advocate ct's as specification language for right-hand sides. 
In the first place, ct's serve as an abstract notion of algorithm for right-hand sides. In 
the second place, however, ct's (resp. their generalization as considered in section 12) 
can be viewed as the conceptual intermediate representation for our fixpoint iterators 
to rely on, meaning, that evaluation of right-hand sides should provide for every access 
to variable y some representation C of the remaining part of the evaluation. As in 
example 1, such C typically consists of a tuple of values together with the reached 
program point. 

4 So lu t ions  

Variable assignment a : V ~ D is called solution for S if a x -1 It] a for all constraints 
x ~ t in S. Every system S has at least one solution, namely the trivial one mapping 
every variable to T, the top element of D. In general, we are interested in computing 
a "good" solution, i.e., one which is as small as possible or, at least, non-trivial. With 
system S we associate function Gs : i V --~ D) --~ V ~ D defined by Gs a x = 
~ ]{~t] a I x ~ t �9 S}. If we are lucky, all right-hand sides t represent monotonic 
functions. Then Gs is monotonic as well, and therefore has a least fixpoint which is also 
the least solution of 2. As observed in [8, 12], the constraint systems for interprocedural 
analysis of (imperative or logic) languages often are not monotonic but  just weakly 
monotonic. 

5 Weak Monotonicity of Computat ion Trees 

Assume we are given a partial ordering "<" on variables. Variable assignment a : V --+ 
D is called monotonic if for all Xl < xu, a Xl E a x2. On computation trees we define 
a relation "<" by: 

�9 _l_ < t for every t; and dl < d~ if dl E d2; 

�9 x l  ~ x :  as ct's if also Xl < x2 as variables; 

�9 <Xl, e l )  <~ ix2,C2) if xl < x2 and C1 dl _ C2 d2 for all dl __ d2. 

Constraint system S is called weakly monotonic iff for every xl < x2 and constraint 
xl _~ tl in S, some constraint x2 _ t2 E S exists such that  tl  < t2. S is called monotonic 
if it is weakly monotonic for variable ordering "=". We have: 

P r o p o s i t i o n  2. Assume al ,  a2 are variable assignments where a l  E a2 and at least 
one of the a~ is monotonic. Then tl < t2 implies: 
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1. d e p ( t l , a l )  _< dep(t2,a2);  2. It1] a l  _E It2] a2. 

Here, Sl _< 82 for sets Sl,S2 C V iff for all Xl E Sl, Xl _< x2 for some x2 E s2. Semant ic  
proper ty  2 coincides with what  was called "weakly monotonic" in [12] - adapted  to 
constraint  systems. I t  is a derived proper ty  here since we s tar ted  out  from syntactic 
properties of computa t ion  trees (not jus t  their  meanings as in [12]). As in [12] we 
conclude: 

C o r o l l a r y  3. If S is weakly monotonic,  then:  

1. If a is monotonic,  then  Gs a is again monotonic;  

2. S has a unique least solution # given by /z  = L]:>0 G ~ / .  
Especially, this least solution # is monotonic.  

6 Local Fixpoint  C o m p u t a t i o n  

Assume set V of variables is t remendous ly  large while at the  same t ime we are only 
interested in the values for a rather  small  subset  X of variables. Then  we should t ry  to 
compute  the  values of a solution only for variables from X and  all those variables y tha t  
"influence" values for variables in X.  This  is the idea of local fixpoint computa t ion .  

Evaluat ion of computa t ion  tree t on a rgument  a does not  necessarily consult  all 
values a x, x E V. Therefore, evaluat ion of t may succeed already for partial a : V ".~ D. 
If evaluat ion of t on a succeeds, we can define the set dep(t, a)  accessed dur ing  this 
evaluat ion in the same way as in section 3 for complete functions.  Given part ial  variable 
ass ignment  a : V ---* D, variable y directly influences (relative to a)  variable x if 
y E dep(t, a)  for some r ight -hand side t of x. Let then "influencing" denote the  reflexive 
and  t ransi t ive  closure of this relation. Par t ia l  variable assignment  a is called X-s tab le  
if[ for every y E V influencing some x E X relative to a, and  every constra int  y ~_ t 
in S for y, It] a is defined with a y __] It] a .  A solver, finally, computes  for const ra int  
system S and  set X of variables an X-s tab le  partial  ass ignment  (7; furthermore,  if S is 
weakly monotonic  and  # is its least solution, then  a y --/~ y for all y influencing some 
variable in X (relative to a) .  

7 The  Worklist  Solver wi th  Recurs ion 

The first solver W i t  we consider is a local worklist algori thm enhanced with recursive 
descent into new variables (Fig. 1). Solver W i t  is an adapt ion  of a simplification of 
solver W R T  in [12] to constraint  systems. Opposed to W i t T ,  no t ime s tamps  are 
mainta ined.  

For every encountered variable x algori thm W i t  (globally) main ta ins  the current  
value a x together with a set infl x of constraints  z _] t such tha t  evaluat ion of t 
(on a) may access value a x. The set of constraints  to be reevaluated is kept in da ta  
s t ructure  W, called worklist. Initially, W is empty. The algori thm star ts  by init ial izing 
all variables from set X by calling procedure Init. Procedure  Init when applied to 
variable x first checks whether  x has already been encountered,  i.e., is conta ined in set 
dorn. If this is not  the case, x is added to dora, a x is init ialized to _L and  set inf lx  of 
constra ints  potent ia l ly  influenced by x is initialized to 0. T h e n  a first approximat ion  
for x is computed  by evaluat ing all r igh t -hand  sides t for x and  adding the results to 
a x. If a value different from _L has been obtained,  all e lements from set inf lx have to 
be added to W. After tha t ,  set infl x is emptied.  
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d o r n = O ;  W = O ;  
f o r a l l  (x E X )  I n i t ( x ) ;  
while (W ~ 0) { 

x _~ t = Ex t rac t (W) ;  
n e w  = lit] (Ay .Eva l ( x  ___ t, y ) ) ;  
i f  ( n e w  17- a x )  { 

a x = a  x U  new;  
W = W U inf l  x; 
i n f i x  = 0; 

} 
} 
v o i d  Init(V x) { 

i f  (x~dom) { 
dora = dora U {x}; 
a x = _l_; inf l x = 0; 
f o r a l l  (x _~ t E S)  

a x = a x U It] (Ay.Eval(x _ t, y)); 
i f ( a x e _ L )  { 

W = W U infl x; 
infl x = 0; 

} 
} 

} 
D E v a l ( C o n s t r a i n t  r, V y) { 

Init(y); 
inf l  y = infl y U {r}; 
r e t u r n  a y; 

} 

F i g .  1. Algor i thm W R .  

As long as W is nonempty,  the  a lgor i thm now i terat ively extracts  constraints  x _~ t 
f rom W and evaluates  r ight -hand side t on current  par t ia l  variable assignment  a.  If  
It] a is not  subsumed by a x, the  value of a for x is updated .  Since the  value for x has 
changed, the  constraints  r in infi x may  no longer be satisfied by a;  therefore,  they  are 
added to W. Afterwards,  inf lx  is reset  to 0. 

However,  r igh t -hand sides t of constraints  r are n o t  evaluated on a directly. There  
are two reasons for this. First ,  a may  not  be defined for all variables y the  evaluat ion of 
t may  access; second, we have to de termine  all y accessed by the evaluat ion of t on a. 
Therefore,  t is applied to auxil iary funct ion Ay.Evai(r, y). When  applied to constraint  
r and variable y, Eval first initializes y by calling Init. Then  r is added to infl y, and 
the  value of a for y (which now is always defined) is re turned.  

T h e o r e m  4. Algor i thm W R  is a solver. [2 

8 T h e  C o n t i n u a t i o n  So lver  

Solver W i t  contains  inefficiencies. Consider constra int  x _~ t where, dur ing evaluat ion 
of t, value a y has been accessed at subtree t ~ = (y, C) of t. Now assume a y obtains  
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new value new. Then reevaluation of complete right-hand side t is initiated. Instead of 
doing so, we would like to initiate reevaluation only of subtree C new. Function C in 
subtree t '  can be interpreted as (syntactic representation of) the continuation where 
reevaluation of t has to proceed if the value of a for y has been returned. We modify 
solver W R  therefore as follows: 

�9 Whenever during evaluation of right-hand side of constraint x ~ t, subtree t '  --- 
(y, C) is reached, we not just access value a y and apply continuation C but  
additionally add (x, C) to the infl-set of variable y. 

�9 Whenever a y has obtained a new value, we add to W all pairs (x, (y, C)), (x, C) E 
infl y, to initiate their later reevaluations. 

The infi-sets of resulting algorithm W R c  now contain elements from V x C o n t  where 
C o n t  = D --~ T(V,  D), whereas worklist W obtains elements from V x T(V, D). In 
order to have continuations explicitly available for insertion into infl-sets, we change the 
functionality of the argument of [.] (and hence also N)  by passing down the current 
continuation into the argument. We define: 

~d] a' = d ~x] a' = or' (Ad.d) x [(x, C)] a '  = ~C (a'  C x)] a '  

where a f C x --- a x. Using this modified definition of the semantics of computation 
trees we finally adapt the functionality of Eval. The new function Eval consumes three 
arguments, namely variables x and y together with continuation C. Here, variable 
x represents the left-hand side of the current constraint, y represents the variable 
whose value is being accessed, and C is the current continuation. Given these three 
arguments, Eval first calls Init for y to make sure that cry as well as infl y have already 
been initialized. Then it adds (x, C) to set infl y. Finally, it returns a y. We obtain: 

T h e o r e m  5. Algorithm W R c  is a solver. O 

A similar optimization for topdown solver T D  [5, 12] in the context of analysis of Prolog 
programs has been called clause prefix optimization [9]. As far we know, an application 
independent exposition for worklist based solvers has not considered before. 

9 The Differential Fixpoint Algorithm 

Assume variable y has changed its value. Instead of reevaluating all trees (y, C) from 
set infl of y with the new value, we may initiate reevaluation just  for the increment. 
This optimization is especially helpful, if computation on "larger" values is much more 
expensive than computations on "smaller" ones. The increase of values is determined 
by some function diff : D • D --~ D satisfying 

dl 0 dill(d1, d2) -- dl 0 d2 

Example 6. If D ---- 2 A, A a set, we may choose for diff set difference. 
If D = M --~ R, M a set and R a complete lattice, ditT(fl,fe) can be defined as 

diff(fl, f2) v = _L if f2 v _ f l  v and dill(f1, f2) v = f2 v otherwise. 0 

To make our idea work, we have to impose further restrictions onto the structure of 
right-hand sides t. We call 8 distributive if S is weakly monotonic and for every subterm 
(x, C) of right-hand sides of 8, dl, d2, and d such that d = d l  Od2 and arbitrary variable 
assignment a: 

dep(C dl, or) U dep(C d2, a) D dep(C d, a) and fC dl] a LJ ~C d2] a ~_ lie d] a 
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d o m = 0 ;  W = 0 ;  
fo ra l l  (x E X)  Init(x); 
wh i l e  (W • 0) { 

(x, C, A) = Extract(W); 
new = [C A] (AC, y.Eval(x, C, y)); 
i f  (new [Z a x ) {  

A = diff(a x, new); 
(x x = dr x U n e w ;  

foran ((x', c ' )  �9 infl x) 
W = W U {(x', C', ~)}; 

} 
} 
v o i d  Init(V x){  

i f ( x ~ d o m )  { 
dom = dom U {x};  
a x = / ;  infl x = 0; 
foraU (x -1 t �9 S) )  

a x = a x U it] (AC, y .Eval(x ,C,y));  
i f  (a x ~: Z) 

forall ((~', c ' )  �9 i.fl ~) 
w = w u {(~', c ' ,  (o ~))}; 

} 
} 
D EvaI(V x, C o n t  C, V y) { 

Init(y); 
infl y ---- infl y U {(x,C)};  
r e t u r n  a y; 

} 

Fig .  2. Algori thm W R . a .  

In interesting applications, 3 is even monotonic and variable dependencies are "static", 
i.e., independent of a. Furthermore, equality holds in the second inclusion. This is 
especially the case if r ight-hand sides are given through expressions as in Example 1, 
where all operators f and g are distributive in each of their arguments. 

In order to propagate increments, we change solver W R . c  as follows. Assume a y 
has obtained a new value which differs from the old one by A and ( x, C) E infl y. 

�9 Instead of adding (x, (y, C)) to W (as for W R c ) ,  we add (x, C, A). Thus, now 
worklist W contains elements from V x C o n t  x D. 

�9 If we extract  triple (x, C, A) from W, we evaluate ct C A to obtain a (possibly) 
new increment for x. 

In contrast,  however, to W R c  and W R ,  it is no longer safe to empty sets infl y 
after use. The resulting differential worklist algorithm with recursive descent into new 
variables ( W R ~  for short) is given in Figure 2. 

T h e o r e m  7. For distributive S,  W R . a  computes an X-stable  part ial  least solution. 
[] 



98 

Note that we did not claim algorithm W R ~  to be a solver: and indeed this is not 
the case. Opposed to solvers W R  and W R c ,  algorithm WR.a  may fail to compute 
the least solution for constraint systems which are not distributive. 

1 0  T h e  D i s t r i b u t i v e  F r a m e w o r k  IDE 

As a first application, let us consider the distributive framework IDE for interproce- 
dural analysis of imperative languages as suggested by Horwitz et al. [17] and applied, 
e.g., to linear constant propagation. Framework IDE assigns to program points elements 
from lattice D = M -+ L of program states, where M is some finite base set (e.g., the 
set of currently visible program variables), and L is a lattice of abstract values. 

The crucial point of program analysis in framework IDE consists in determining 
summary functions from D --+ D to describe effects of procedures. The lattice of pos- 
sible transfer functions for statements as well as for summary functions for procedures 
in IDE is given by 5 r ---- M 2 --~ T~ where ~ C L -+ L is assumed to be a lattice of 
distributive functions of (small) finite height (e.g., 4 for linear constant propagation) 
which contains Ax._l_ and is closed under composition. The transformer in D --+ D 
defined by f E 9 r is given as 

Clearly, If] is distributive, i.e., If] (~/1 Uy~) = If]  ~/1 U If] Tie. Computing the summary 
functions for procedures in this framework boils down to solving a constraint system 
8 over ~" where right-hand sides e are of the form: 

e : : = / I x l f o x l x ~ o ~ l  

where f E Y. Since all functions in 9 r are distributive, function composition o : ~-2 _~ ~- 
is distributive in each argument. Thus, constraint system 8 is a special case of the 
constraint systems from example 1. Therefore, we can apply W R ~  to compute the 
least solution of S efficiently - provided operations "o" and "U" can be computed 
efficiently. Using a diff-function similar to the last one of Example 6, we obtain: 

T h e o r e m  8. If operations in T~ can be executed in time O(1), then the summary 
functions for program p according to interprocedural framework IDE can be computed 
by W R ~  in time C0([p[. [M[3). [] 

The complexity bound in Theorem 8 should be compared with O([p[. [M[ s) which can 
be derived for W R .  By saving factor [M[ ~, we find the same complexity as has been 
obtained in [17] for a special purpose algorithm. 

11  C o n t r o l - F l o w  A n a l y s i s  

Control-flow analysis (cfa for short) is an analysis for higher-order functional languages 
possibly with recursive data types [13]. Cfa on program p tries to compute for every 
expression t occurring in p a superset of expressions into which t may evolve during 
program execution, see, e.g., [23, 24, 21, 26]. Let A denote the set of subexpressions of 
p and D - 2 A. Then cfa for a lazy language as in [26] can be formalized through a 
constraint system 8 over domain D with set V of in variables y~, t E A, where right- 
hand sides of constraints consist of expressions e of one of the following forms: 

e ::= {a} Ix I (a e xl);x2 
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for a E A. Here, we view (a E xl) ;x2 as specification of ct (xl ,C) where C d = 0 
if a ~ d and C d = x2 otherwise. Let us assume set V of variables is just ordered 
by equality. Then S is not only monotonic but also distributive. As function dill, we 
simply choose set diffrence. With these definitions, algorithm W R n  can be applied. 

Let us assume that  the maximal cardinality of an occurring set is bounded by s _< 
IPl. Furthermore, let I denote the complexity of inserting a single element into a set 
of maximally s elements. In case, for example, we can represent sets as bit vectors, 
I = O(1). In case, the program is large but we nevertheless expect sets to be sparse 
we may use some suitable hashing scheme to achieve approximately the same effect. 
Otherwise, we may represent sets through balanced ordered trees giving extra cost 
I = O(log s). 

Cfa introduces O(IPl 2) constraints of the form y _D (a E xl); x2. Inorder to avoid cre- 
ation of (a representation of) all these in advance, we introduce the following additional 
optimization. We start iteration with constraint system So lacking all constraints of 
this form. Instead, we introduce function r : V -+ D --+ 2 . . . .  traints which, depending 
on the value of variables, returns the set of constraints to be added to the present 
constraint system, r is given by: 

r x d =  {y D x2 la ~ d, y O_ (a ~ x);x2 ~ 3} 

Thus especially, r x (dl Ud2) = (r x d l )U (r x d2). Whenever variable x is incremented 
by A, we add all constraints from r x A to the current constraint system by inserting 
them into worklist W. For cfa, each application r x A can be evaluated in time O(IAI). 
Thus, if the cardinalities of all occurring sets is bounded by s, at most O(IPl . s) 
constraints of the form y D x are added to So. Each of these introduces an amount 
O(s. I) of work. Therefore, we obtain: 

T h e o r e m  9. If s is the maximal cardinality of occurring sets, the least solution of 
constraint system S for cfa on program p can be computed by the optimized W R n  
algorithm in time O(Ipl . 82 �9 I ) .  [] 

The idea of dynamic extension of constraint systems is especially appealing and clearly 
can also be cast in a more general setting. Here, it results in an efficient algorithm 
which is comparable to the one proposed by Heintze in [13]. 

12 Genera l ized C o m p u t a t i o n  Trees 

In practical applications, certain subcomputations for right-hand sides turn  out to be 
independent. For example, the values for a set of variables may be accessed in any order 
if it is just  the least upper bound of returned values which matters. To describe such 
kinds of phenomena formally, we introduce set GT(V, D) of generalized computation 
trees (gct's for short). Gct's t are given by: 

t : : = d  I x l  S l  (t,C) 

where S C GT(V, D) is finite and C : D --+ GT(V, D). Thus, we not only allow sets 
of computation trees but  also (sets of) computation trees as selectors of computation 
trees. Given t e ~T(V, D), function It] : (V --+ D) --+ D implemented by t as well as 
set dep(t, _) of variables accessed during evaluation are defined by: 

[d] a = d dep(d, a) = 0 
i x  I a = a x dep(x, a) = { x }  
Is1 ~ = I I{Irt]l o I t  ~ s }  dep(S, a) -~ U{dep( t ,  ~ ) l t  e s }  
lit,  C)] a = IV (It] a)] a dep((t, C), a) = dep(t, a) U dep(C (It] a), a) 
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While sets of trees conveniently allow to make independence of subcomputations ex- 
plicit (see our example application in section 13), nesting of trees into selectors eases 
the translation of deeper nesting of operator applications. 

Example 10. Assume expressions e are given by the grammar: 

e ::= d l x  I fe  t g(e l ,e2)  

where d E D and f and g denote monotonic functions in D --~ D and D 2 --+ D, 
respectively. The gct t~ for e can then be constructed by: 

�9 t~ = e i f e E D U V ;  

�9 t~ = ( te , ,Ad. fd)  i r e  = re ' ;  

�9 te = (t~l, C) with Cdl  = (t~:, Ad2.g (dl, 42)) if e - g (el, e2). [] 

For partial ordering "<" on set V of variables, we define relation "_<" on gct's by: 

�9 _L _< t for every t; and dl < d2 if dl _ d2; 

�9 xl < x2 as gct's if also xl < x2 as variables; 

�9 $1 < $2 if for all t l  E $1, tl  _< t2 for some t2 E $2; 

�9 {tl,C1) < (t2,C2) if tl  < t2 and for all dl E_ d2, Cdl  <_ Cd2. 

Now assume the right-hand sides of constraint system S all are given through gct's. 
Then S is called weakly monotonic iff for every xl < x2 and constraint Xl _~ tl  in S 
some constraint x2 _~ t2 in ,9 exists such that tt < t2. With these extended definitions 
prop. 2, cor. 3 as well as Theorem 4 hold. Therefore, algorithm W R  is also a solver 
for constraint systems where right-hand sides are represented by gct's. 

Function C in t = (t ~, C) can now only b e interpreted as a representation of the 
continuation where reevaluation of t has to start if the evaluation of subtree t ~ on a has 
terminated, t ~ again may be of the form (s, C ) .  Consequently, we have to deal with 
lists 7 of continuations. Thus, whenever during evaluation of t an access to variable y 
occurs, we now have to add pairs (x, 7) to the infl-set of variable y. As in section 8, we 
therefore change the functionality of [.] by defining: 

[d E o ' ~ / =  d IS] a '  ~ = [ ~{[t] a " / [  t e S} 
Ix] o'  ~ = o' 7 x [(~, c ) I  o'  7 = i v  (it] o'  ( c :~ ) ) ]  o'  

where 0 t 7 x = a x. The goal here is to avoid reevaluation of whole set S just because 
one of its elements has changed its value. Therefore, we propagate list .~/arriving at set 
S of trees immediately down to each of its elements. 

Now assume a y  has changed its value by A. Then we add all triples (x,% A) to W 
where (x,'~) E infl y. Having extracted such a triple from the worklist, the new solver 
applies list ~ to the new value A. The iterative application process is implemented by: 

app ~ d 0'  = d app (C:7) d 0 '  = app 7 ( I t  d] a '  -/) 0'  

The resulting value then gives the new contribution to the value of a for x. As for 
W R a  for ordinary evaluation trees, infl-sets cannot be emptied after use. Carrying the 
definition of distributivity from section 9 over to gct's, we obtain: 

T h e o r e m  11. For distributive ,9 with gct's as right-hand sides, algorithm W R ~  com- 
putes an X-stable partial least solution. [] 

As an advanced application of gct's, we consider abstract 0LDT-resolution [15, 16, 25]. 



13 A b s t r a c t  0LDT-Resolut ion 

Given Prolog program p, abstract 0LDT-resolution tries to compute for every program 
point x the set of (abstract) values arriving at x. Let A denote the set of possible 
values. Lattice D to compute in is then given by D --- 2 A. Coarse-grained analysis 
assigns to each predicate an abstract state transformer A --+ D, whereas fine-grained 
analysis additionally assigns transformers also to every program point [15]. Instead of 
considering transformers as a whole (as, e.g., in the algorithm for framework IDE in 
section 10), transformer valued variable x is replaced by a set of variables, namely 
x a, a E A, where x a represents the return value of the transformer for x on input 
a. Thus, each variable x a potentially receives a value from D. The idea is that, in 
practice, set A may be tremendously large, while at the same time each transformer is 
called only on a small number of inputs. Thus, in this application we explicitly rely on 
demand-driven exploration of the variable space. 

To every transformer variable x the analysis assigns a finite set of constraint schemes 
x �9 2 e where �9 formally represents the argument to the transformer, and e is an 
expression built up according to the following grammar (see [25]): 

e : : = s o l g f e  f : : = ) ~ a . s ( g a ) l x l ~ a . ( x ( g a ) o a  ) 

Here, s : A --+ D denotes the singleton map defined by s a  = (a}, and g : (A --~ D) --+ 
D -+ D denotes the usual extension function defined by g f d = ( J ( ]  a I a e d}. Thus, 
expressions e are built up from s �9 = (�9 by successive applications of extensions g f 
for three possible types of functions ] : A --~ D. Unary functions g : A --~ A are used 

~to model basic computation steps, passing of actual parameters into procedures and 
returning of results, whereas binary operators [] : D • A --+ D conveniently allow to 
model local states of procedures. They are used to combine the set of return values 
of procedures with the local state before the call [25]. In case of fine-grained analysis, 
every scheme for right-hand sides contains at most two occurrences of "s  whereas 
coarse-grained analysis possibly introduces also deeper nesting. 

The set of constraints for variable x a, a E A, are obtained from the set of constraint 
schemes for x by instantiating �9 with actual parameter a. The resulting right-hand 
sides can be implemented through gct's ti~ }. For d E D, gct td is of the form td ---- d or 
td = (Sd, C) such that  C d' returns some tree trd ,, and Sd = (s~ I a E d). The forms for 
elements sa of Sd correspond to the three possible forms for f in expressions g .f e, i.e, 

s~ ::---- s (ga)  [ x a  [ (x(ga) ,)~d' .d 'oa)  

Constraint system S for abstract 0LDT-resolution then turns out to be monotonic as 
well as distributive. As operator diff, we choose: diff(dl, d2) = d2\dl. Therefore, we can 
apply algorithm W R a .  Let us assume that applications g a and insertion into sets can 
be executed in time O(1), whereas evaluation of d D a needs time O(#d) .  Then: 

T h e o r e m  12. Fine-grained 0LDT-resolution for program p with abstract values from 
A can be executed by W R a  in time O ( N .  s 2) where N < [p[. ~ A  is the number of 
considered variables, and s < # A  is the maximal cardinality of occurring sets. [] 

W R a  saves an extra factor O(s 2) over solver W R .  An algorithm with similar savings 
has been suggested by Horwitz et al. [18]. Their graph-based algorithm, however, is 
neither able to treat binary operators nor deeper nested right-hand sides as ours. 

In the usual application for program analysis, A is equipped with some partial ab- 
straction ordering "E", implying that  set d C A contains the same information as its 
lower closure d~ = {a E A I Ba' E d : a E_ a'}. In this case, we may decide to compute 
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with lower subsets of A right from the beginning [15, 25]. Here, subset d C_ A is called 
lower iff d -- d$. If all occurring functions f as well as operators [] are monotonic, then 
we can represent lower sets d by their maximal elements and do all computations just  
with such anti-chains. The resulting constraint system then turns out to be no longer 
monotonic. However, it is still weakly monotonic w.r.t, variable ordering "_<" given by 
xl  a l  < x2 a2 iff xl  ~ x2 and al  U a2. As function diff for anti-chains, we choose 

diff(dl,d2)=d2\(dl$)={a2 E d2 I Val E dl: a2 ~ a l }  

Again, we can apply the differential worklist algorithm. Here, we found no compara- 
ble algorithm in the literature. W i t h  beats conventional solvers for this application 
(see section 14). A simple estimation of the runtime complexity, however, is no longer 
possible since even large sets may have succinct representations by short anti-chains. 

14 Practical Experiments 

We have adapted the fastest general-purpose equation solver from [12], namely W D F S  
(for a distinction called W D F S  Eq~ here), to constraint systems giving general-purpose 
constraint  solver W D F S  Co~. Solver W D F S  c~ is similar to solver W i t ,  but  addition- 
ally maintains priorities on variables and, before return from an update  of a for variable 
x, evaluates all constraints y _] t from the worklist where y has higher priority as the 
variable below x (cf. [12]). To solver W D F S  c~ we added propagation of differences 
(the "A") in the same way as we added propagation of differences to solver W i t  in 
section 9. All fixpoint algorithms have been integrated into GENA [10, 11]. GENA is 
a generator for Prolog program analyzers writ ten in SML. We generated analyzers for 
abstract  0LDT-resolution for PS+POS-I-LIN which is S0ndergaard's pair sharing domain 
enhanced with POS for inferring groundness [27, 7]. Its abstract  substi tutions are pairs 
of bdd ' s  and graphs over variables. Thus, we maintain anti-chains of such elements. 
The generated analyzers were run on large real-world programs, aqua-c  (about 560KB) 
is the source code of an early version of Peter van Roy's Aquarius Prolog compiler. 
cha t  (about 170KB) is David H.D. Warren's chat-80 system. The numbers reported 
in table 1, are the absolute runtimes in seconds (including system time) obtained for 
SML-NJ, version 109.29, on a Sun 20 with 64 MB main memory. 

Comparing the three algorithms for 0LDT-resolution, we find that  all of these have 
still quite acceptable runtimes (perhaps with exeption of aqua-c)  where algorithm 
W D F S ~  ~ almost always outperforms the others. Compared with equation solver 
W D F S  Equ, algorithm W D F S ~  ~ saves approximately 40% of the runtime where usu- 
ally less than half of the gain is obtained by maintaining constraints. The maximal 
relative gain of 48% could be observed for program readq where no advantage at all 
could be drawn out of constraints. Opposed to that ,  for Stefan Diehl's interpreter for 
action semantics ac t ion ,  propagation of differences did not give (significantly) bet ter  
numbers than considering constraints alone - program ann even showed a (moderate) 
decrease in efficiency (factor 3.32). Also opposed to the general picture, constraints 
for aqua-c resulted in an improvement of 25% only - of which 9% was lost through 
propagation of differences! This slowdown is even more surprising, since it could not be 
confirmed with analyzer runs on aqua-c for other abstract  domains. Table 2 reports the 
runtimes found for aqua-c on domain CompCon. Abstract  domain CompCon analyzes 
whether variables are bound to atoms or are composite. For CompCon, constraints in- 
t roduced a slowdown of 18% whereas propagation of differences resulted in a gain of 
efficiency by 38% over W D F S  ~qu. 
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WDFSB'~ ~ WDFS~'O,~ W D F S , ~  ~ 
19.35 

program 
action.pl 32.97 19.37 
ann.pl 1.36 1.62 4.52 
aqua-c.pl 1618.0( 1209.00 1361.00 
b2.pl 2.41 2.14 1.82 
chat.pl 77.7: 67.94 53.14 
chat-parser.pl 29.62 27.72 17.28 
chess.pl 0.4( 0.38 0.37 
flatten.pl 0.36 0.34 0.26 
nand.pl  0.47 0.38 0.32 
readq.pl 14.96 15.09 7.85 
sdda.pl 0.59 0.73 0.50 

Table 1. Comparison of WDFSEqU, W D F S  Con, and W D F S ~  ~ with PS+ POS+LIN. 

program WDFS~q~ WDFSC~ I WDFS'~~ 
aqua-c.pl 214.67 252.43 133.61 

Table 2. Comparison of W D F S  Eq~, W D F S  c~ and W D F S ~  ~ with CompCom 

15 C o n c l u s i o n  

We succeeded to give an application independent exposition of two further improve- 
ments to worklist-based local fixpoint algorithms. This allowed us not only to exhibit 
a common algorithmic idea in seemingly different fast special purpose algorithms like 
the one of Horwitz et al. for interprocedural framework IDE [17] of Heintze's algorithm 
for control-flow analysis [13]. Our exposition furthermore explains how such algorithms 
can be practically improved - namely by incorporating recursive descent into variables 
as well as timestamps [12]. Finally, our approach allowed to develop completely new 
efficient algorithms for abstract 0LDT-resolution. 
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