
Propagating Differences:
An Efficient New Fixpoint Algorithm
for Distributive Constraint Systems

Christian Fecht 1 and Helmut Seidl 2

1Univers i t s des Saarlandes, Postfach 151150, D-66041Saarbrficken, Germany,
fecht@cs.uni-sb.de

2 Fachbereich IV - In fo rma t ik , Universi t~tTrier , D-54286Trier, Germany,
seidl@psi.uni-trier.de

A b s t r a c t . Integrating semi-naive fixpoint i terat ion from deductive da ta
bases [3, 2, 4] as well as continuations into worklist-based solvers, we
derive a new application independent local fixpoint algorithm for dis-
t r ibutive constraint systems. Seemingly different efficient algorithms for
abstract interpretat ion like those for linear constant propagation for im-
perative languages [17] as well as for control-flow analysis for functional
languages [13] turn out to be instances of our scheme. Besides this sys-
tematizing contribution we also derive a new efficient algorithm for ab-
stract 0LDT-resolution as considered in [15, 16, 25] for Prolog.

1 I n t r o d u c t i o n

Efficient application independent local solvers for general classes of constraint systems
have been successfully used in program analyzers like GAIA [9,6], PLAIA [20] or
GENA [10, 11] for Prolog and PAG [1] for imperative languages. The advantages of
application independence are obvious: the algorithmic ideas can be pointed out more
clearly and are not superseded by application specific aspects. Correctness can therefore
be proven more easily. Once proven correct, the solver then can be instantiated to
different application domains - thus allowing for reusable implementations. For the
overall correctness of every such application it simply remains to check whether or not
the constraint system correctly models the problem to be analyzed. Reasoning about
the solution process itself can be total ly abandoned.

In [12], we considered systems of equations of the form x = f~ (x a variable and tried
to minimize the number of evaluations of r ight-hand sides f~ during the solution pro-
cess. Accordingly, we viewed these as (almost) atomic actions. In practical applications,
however, like the abstract interpretat ion of Prolog programs, r ight-hand sides represent
complicated functions. In this paper, we therefore t ry to minimize not just the number
of evaluations but the overall work on right-hand sides. Clearly, improvements in this
direction can no longer abstract completely from algorithms implementing r ight-hand
sides. Nonetheless, we aim at optimizations in an as application independent setting
as possible.

We start by observing that r ight-hand sides f~ of defining equations x --- f~ often are
of the form f~ -- t l U . . . IA tk where the tl represent independent contributions to the
value of x. We take care of tha t by considering now systems of constraints of the form
x ~ t. Having adapted s tandard worklist-based equation solvers to such constraint

91

systems, we investigate the impact of two further optimizations. First , we t ry to avoid
identical subcomputat ions which would contribute nothing new to the next iteration.
Thus, whenever a variable y accessed during the last evaluation of r ight-hand side t
has changed it 's value, we t ry to avoid reevaluation of t as a whole. Instead, we resume
evaluation just with the access to y.

To do this in a clean way, we adapt the model of (generalized) computation trees.
We argue that many common expression languages for r ight-hand sides can easily and
automatical ly be translated into this model. This model has the advantage to make
continuations, i.e., remaining parts of computations after returns from variable look-
ups, explicit. So far, continuations have not been used in connection with worklist-based
solver algorithms. Only for topdown-solver T D of Le Charlier and Van Hentenryck [5,
12] a related technique has been suggested and practically applied to the analysis of
Prolog, by Englebert et al. in [9].

In case, however, computat ion on larger values is much more expensive than on
smaller ones, continuation based worklist solvers can be further improved by calling
continuations not with the complete new value of the modified variable but just its
increment. This concept clearly is an instance of the very old idea of optimization
through reduetwn in strength as considered, e.g., by Paige [22]. A similar idea has been
considered for recursive query evaluation in deductive databases to avoid computing the
same tuples again and again [3, 4]. Semi-naive iteration, therefore, propagates just those
tuples to the respective next i teration which have been newly encountered. Originally,
this optimization has been considered for rules of the form x D f y where x and y are
mutually recursive relations and unary operator f is distributive, i.e., f (sl tA s2) =
f sl U f s2. An extension to n-ary f is contained in [2]. A general combination, however,
of this principle with continuations and local worklist solvers seems to be new. To make
the combination work, we need an operator diff which when applied to abstract values
dl and d2 determines the necessary part from dl LA d2 given dl for which reevaluation
should take place. We then provide a set of sufficient conditions guaranteeing the
correctness of the resulting algorithm.

Propagat ing differences is orthogonal to the other optimizations of worklist solvers
considered in [12]. Thus, we are free to add t imestamps or just depth-first priorities to
obtain even more competit ive fixpoint algorithms (see [12]). We refrained from doing
so to keep the exposition as simple as possible. We underline generality as well as
usefulness of our new fixpoint algorithm by giving three important applications, namely,
distributive framework IDE for interprocedural analysis of imperative languages [17],
control-flow analysis for higher-order functional languages [13], and abstract OLDT-
resolution as considered in [15, 16] for Prolog. In the first two cases, we obtain similar
complexity results as for known special purpose algorithms. Completely new algorithms
are obtained for abstract 0LDT-resolution.

Another effort to exhibit computat ional similarities at least between control-flow
analysis and certain interprocedural analyses has been undertaken by Reps and his
coworkers [18, 19]. It is based on the graph-theoretic notion of context-free language
reachability. This approach, however, is much more limited in its applicability than
ours since it does not work for binary operators and lattices which are not of the form
D -- 2 A for some un-ordered base set A.

The paper is organized as follows. In sections 2 through 6 we introduce our basic
concepts. Especially, we introduce the notions of computat ion trees and weak mono-
tonicity of computat ion trees. In the following three sections, we successively derive
differential fixpoint algorithm W R y . Conventional worklist solver W R is introduced
in section 7. Continuations are added in section 8 to obtain solver W R y from which we
obtain algorithm W R ~ in section 9. The results of section 9 are sufficient to derive fast

92

algorithms for framework IDE (section 10) as well as control-flow analysis (section 11).
Framework IDE has been proposed by Horwitz, Reps and Sagiv for interprocedural
analysis of imperative programs and applied to interprocedurai linear constant propa-
gation [17]. A variant of control-flow analysis ("set-based analysis") has been proposed
by Heintze for the analysis of ML [13]. Another variant, even more in the spiri t of the
methods used here, has been applied in [26] to a higher-order functional language with
call-by-need semantics to obtain a termination analysis for deforestation. In section 12
we extend applicability of algorithm WRza further by introducing generalized compu-
tation trees. This generalization takes into account independence of subcomputations.
Especially, it allows to derive new algorithms for abstract 0LDT-resolution [15, 16, 25]
(section 13). As an example implementation, we integrated an enhanced version of fix-
point algorithm W R a into program analyzer generator GENA for Prolog [10, 11] and
practically evaluated the generated analyzers on our benchmark suite of large Prolog
programs. The results are reported in section 14.

2 Constraint Sys tems

Assume D is a complete latt ice of values. A constraint system ~ with set variables
V over latt ice D consists of a set of constraints x ~ t where left-hand side x E V is
a variable and t, the r ight-hand side, represents a function It] : (V --~ D) --+ D from
variable assignments to values. Le Charlier and Van Hentenryck in [5] and Fecht and
Seidl in [12] presented their solvers in a setting which was (almost) independent of the
implementation of r ight-hand sides. In this paper, we insist on a general formulation
as well. As in [12] we assume that

1. set V of variables is always finite;

2. complete lattice D has finite height;

3. evaluation of r ight-hand sides is always terminating.

In contrast to [5, 12], however, our new algorithms take also into account how right-
hand sides are evaluated.

3 C o m p u t a t i o n Trees

Operationally, every evaluation of r ight-hand side t on variable assignment a can be
viewed as a sequence alternating between variable lookups and internal computations
which, eventually, terminates to return the result. Formally, this type of evaluation
can be represented as a D-branching computation tree (ct for short) of finite depth.
The set T(V, D) of all computat ion trees is the least set T containing d E D, x E V
together with all pairs (x, C) where x E V and C : D -~ T. Given t E T(V, D), function
It] : (V --~ D) -~ D implemented by t and set dep(t, _) of variables accessed during
evaluation of t are given by:

[d] a = d dep(d, a) -- 0
[x~ a = a x dep(x, a) = (x}
~(x,C)] a = IC (a x)] ~r dep((x,C),a) = (x }Udep(C(ax) , a)

Clearly, ct x can be viewed as an abbreviation of ct (x,)~d.d). Representations of equiv-
alent computat ion trees can be obtained for various expression languages.

93

Example 1. Assume right-hand sides are given by

e ::= d l x l f x J g (x l , x 2)

where, d denotes an element in D, and f and g represent monotonic functions D --+
D and D 2 -+ D, respectively. For simplicity, we do not distinguish inotationally)
between these symbols and their respective meanings. Standard intra-procedural data-
flow analyzes for imperative languages naturally introduce constraint systems of this
simple type imostly even without occurrences of binary operators g). The computation
tree t for expression e can be chosen as e itself if e �9 D U V . For e -- .f x, we set t = ix,])
and for e - - -g ix l , x2) , t : <xl,C) where C d = Ix2,Cd> and Cdd' = gid , d'). [3

Further examples of useful expression languages together with their translations into
igeneralized) computation trees can be found in sections 11, 12, and 13. It should be
emphasized that we do not advocate ct's as specification language for right-hand sides.
In the first place, ct's serve as an abstract notion of algorithm for right-hand sides. In
the second place, however, ct's (resp. their generalization as considered in section 12)
can be viewed as the conceptual intermediate representation for our fixpoint iterators
to rely on, meaning, that evaluation of right-hand sides should provide for every access
to variable y some representation C of the remaining part of the evaluation. As in
example 1, such C typically consists of a tuple of values together with the reached
program point.

4 So lu t ions

Variable assignment a : V ~ D is called solution for S if a x -1 It] a for all constraints
x ~ t in S. Every system S has at least one solution, namely the trivial one mapping
every variable to T, the top element of D. In general, we are interested in computing
a "good" solution, i.e., one which is as small as possible or, at least, non-trivial. With
system S we associate function Gs : i V --~ D) --~ V ~ D defined by Gs a x =
~]{~t] a I x ~ t �9 S}. If we are lucky, all right-hand sides t represent monotonic
functions. Then Gs is monotonic as well, and therefore has a least fixpoint which is also
the least solution of 2. As observed in [8, 12], the constraint systems for interprocedural
analysis of (imperative or logic) languages often are not monotonic but just weakly
monotonic.

5 Weak Monotonicity of Computat ion Trees

Assume we are given a partial ordering "<" on variables. Variable assignment a : V --+
D is called monotonic if for all Xl < xu, a Xl E a x2. On computation trees we define
a relation "<" by:

�9 _l_ < t for every t; and dl < d~ if dl E d2;

�9 x l ~ x : as ct's if also Xl < x2 as variables;

�9 <Xl, e l) <~ ix2,C2) if xl < x2 and C1 dl _ C2 d2 for all dl __ d2.

Constraint system S is called weakly monotonic iff for every xl < x2 and constraint
xl _~ tl in S, some constraint x2 _ t2 E S exists such that tl < t2. S is called monotonic
if it is weakly monotonic for variable ordering "=". We have:

P r o p o s i t i o n 2. Assume al , a2 are variable assignments where a l E a2 and at least
one of the a~ is monotonic. Then tl < t2 implies:

94

1. d e p (t l , a l) _< dep(t2,a2); 2. It1] a l _E It2] a2.

Here, Sl _< 82 for sets Sl,S2 C V iff for all Xl E Sl, Xl _< x2 for some x2 E s2. Semant ic
proper ty 2 coincides with what was called "weakly monotonic" in [12] - adapted to
constraint systems. I t is a derived proper ty here since we s tar ted out from syntactic
properties of computa t ion trees (not jus t their meanings as in [12]). As in [12] we
conclude:

C o r o l l a r y 3. If S is weakly monotonic, then:

1. If a is monotonic, then Gs a is again monotonic;

2. S has a unique least solution # given by /z = L]:>0 G ~ / .
Especially, this least solution # is monotonic.

6 Local Fixpoint C o m p u t a t i o n

Assume set V of variables is t remendous ly large while at the same t ime we are only
interested in the values for a rather small subset X of variables. Then we should t ry to
compute the values of a solution only for variables from X and all those variables y tha t
"influence" values for variables in X. This is the idea of local fixpoint computa t ion .

Evaluat ion of computa t ion tree t on a rgument a does not necessarily consult all
values a x, x E V. Therefore, evaluat ion of t may succeed already for partial a : V ".~ D.
If evaluat ion of t on a succeeds, we can define the set dep(t, a) accessed dur ing this
evaluat ion in the same way as in section 3 for complete functions. Given part ial variable
ass ignment a : V ---* D, variable y directly influences (relative to a) variable x if
y E dep(t, a) for some r ight -hand side t of x. Let then "influencing" denote the reflexive
and t ransi t ive closure of this relation. Par t ia l variable assignment a is called X-s tab le
if[for every y E V influencing some x E X relative to a, and every constra int y ~_ t
in S for y, It] a is defined with a y __] It] a . A solver, finally, computes for const ra int
system S and set X of variables an X-s tab le partial ass ignment (7; furthermore, if S is
weakly monotonic and # is its least solution, then a y --/~ y for all y influencing some
variable in X (relative to a) .

7 The Worklist Solver wi th Recurs ion

The first solver W i t we consider is a local worklist algori thm enhanced with recursive
descent into new variables (Fig. 1). Solver W i t is an adapt ion of a simplification of
solver W R T in [12] to constraint systems. Opposed to W i t T , no t ime s tamps are
mainta ined.

For every encountered variable x algori thm W i t (globally) main ta ins the current
value a x together with a set infl x of constraints z _] t such tha t evaluat ion of t
(on a) may access value a x. The set of constraints to be reevaluated is kept in da ta
s t ructure W, called worklist. Initially, W is empty. The algori thm star ts by init ial izing
all variables from set X by calling procedure Init. Procedure Init when applied to
variable x first checks whether x has already been encountered, i.e., is conta ined in set
dorn. If this is not the case, x is added to dora, a x is init ialized to _L and set inf lx of
constra ints potent ia l ly influenced by x is initialized to 0. T h e n a first approximat ion
for x is computed by evaluat ing all r igh t -hand sides t for x and adding the results to
a x. If a value different from _L has been obtained, all e lements from set inf lx have to
be added to W. After tha t , set infl x is emptied.

95

d o r n = O ; W = O ;
f o r a l l (x E X) I n i t (x) ;
while (W ~ 0) {

x _~ t = Ex t rac t (W) ;
n e w = lit] (Ay .Eva l (x ___ t, y)) ;
i f (n e w 17- a x) {

a x = a x U new;
W = W U inf l x;
i n f i x = 0;

}
}
v o i d Init(V x) {

i f (x~dom) {
dora = dora U {x};
a x = _l_; inf l x = 0;
f o r a l l (x _~ t E S)

a x = a x U It] (Ay.Eval(x _ t, y));
i f (a x e _ L) {

W = W U infl x;
infl x = 0;

}
}

}
D E v a l (C o n s t r a i n t r, V y) {

Init(y);
inf l y = infl y U {r};
r e t u r n a y;

}

F i g . 1. Algor i thm W R .

As long as W is nonempty, the a lgor i thm now i terat ively extracts constraints x _~ t
f rom W and evaluates r ight -hand side t on current par t ia l variable assignment a. If
It] a is not subsumed by a x, the value of a for x is updated . Since the value for x has
changed, the constraints r in infi x may no longer be satisfied by a; therefore, they are
added to W. Afterwards, inf lx is reset to 0.

However, r igh t -hand sides t of constraints r are n o t evaluated on a directly. There
are two reasons for this. First , a may not be defined for all variables y the evaluat ion of
t may access; second, we have to de termine all y accessed by the evaluat ion of t on a.
Therefore, t is applied to auxil iary funct ion Ay.Evai(r, y). When applied to constraint
r and variable y, Eval first initializes y by calling Init. Then r is added to infl y, and
the value of a for y (which now is always defined) is re turned.

T h e o r e m 4. Algor i thm W R is a solver. [2

8 T h e C o n t i n u a t i o n So lver

Solver W i t contains inefficiencies. Consider constra int x _~ t where, dur ing evaluat ion
of t, value a y has been accessed at subtree t ~ = (y, C) of t. Now assume a y obtains

96

new value new. Then reevaluation of complete right-hand side t is initiated. Instead of
doing so, we would like to initiate reevaluation only of subtree C new. Function C in
subtree t ' can be interpreted as (syntactic representation of) the continuation where
reevaluation of t has to proceed if the value of a for y has been returned. We modify
solver W R therefore as follows:

�9 Whenever during evaluation of right-hand side of constraint x ~ t, subtree t ' ---
(y, C) is reached, we not just access value a y and apply continuation C but
additionally add (x, C) to the infl-set of variable y.

�9 Whenever a y has obtained a new value, we add to W all pairs (x, (y, C)), (x, C) E
infl y, to initiate their later reevaluations.

The infi-sets of resulting algorithm W R c now contain elements from V x C o n t where
C o n t = D --~ T(V, D), whereas worklist W obtains elements from V x T(V, D). In
order to have continuations explicitly available for insertion into infl-sets, we change the
functionality of the argument of [.] (and hence also N) by passing down the current
continuation into the argument. We define:

~d] a' = d ~x] a' = or' (Ad.d) x [(x, C)] a ' = ~C (a' C x)] a '

where a f C x --- a x. Using this modified definition of the semantics of computation
trees we finally adapt the functionality of Eval. The new function Eval consumes three
arguments, namely variables x and y together with continuation C. Here, variable
x represents the left-hand side of the current constraint, y represents the variable
whose value is being accessed, and C is the current continuation. Given these three
arguments, Eval first calls Init for y to make sure that cry as well as infl y have already
been initialized. Then it adds (x, C) to set infl y. Finally, it returns a y. We obtain:

T h e o r e m 5. Algorithm W R c is a solver. O

A similar optimization for topdown solver T D [5, 12] in the context of analysis of Prolog
programs has been called clause prefix optimization [9]. As far we know, an application
independent exposition for worklist based solvers has not considered before.

9 The Differential Fixpoint Algorithm

Assume variable y has changed its value. Instead of reevaluating all trees (y, C) from
set infl of y with the new value, we may initiate reevaluation just for the increment.
This optimization is especially helpful, if computation on "larger" values is much more
expensive than computations on "smaller" ones. The increase of values is determined
by some function diff : D • D --~ D satisfying

dl 0 dill(d1, d2) -- dl 0 d2

Example 6. If D ---- 2 A, A a set, we may choose for diff set difference.
If D = M --~ R, M a set and R a complete lattice, ditT(fl,fe) can be defined as

diff(fl, f2) v = _L if f2 v _ f l v and dill(f1, f2) v = f2 v otherwise. 0

To make our idea work, we have to impose further restrictions onto the structure of
right-hand sides t. We call 8 distributive if S is weakly monotonic and for every subterm
(x, C) of right-hand sides of 8, dl, d2, and d such that d = d l Od2 and arbitrary variable
assignment a:

dep(C dl, or) U dep(C d2, a) D dep(C d, a) and fC dl] a LJ ~C d2] a ~_ lie d] a

97

d o m = 0 ; W = 0 ;
fo ra l l (x E X) Init(x);
wh i l e (W • 0) {

(x, C, A) = Extract(W);
new = [C A] (AC, y.Eval(x, C, y));
i f (new [Z a x) {

A = diff(a x, new);
(x x = dr x U n e w ;

foran ((x', c ') �9 infl x)
W = W U {(x', C', ~)};

}
}
v o i d Init(V x){

i f (x ~ d o m) {
dom = dom U {x};
a x = / ; infl x = 0;
foraU (x -1 t �9 S))

a x = a x U it] (AC, y .Eval(x ,C,y));
i f (a x ~: Z)

forall ((~', c ') �9 i.fl ~)
w = w u {(~', c ' , (o ~))};

}
}
D EvaI(V x, C o n t C, V y) {

Init(y);
infl y ---- infl y U {(x,C)};
r e t u r n a y;

}

Fig . 2. Algori thm W R . a .

In interesting applications, 3 is even monotonic and variable dependencies are "static",
i.e., independent of a. Furthermore, equality holds in the second inclusion. This is
especially the case if r ight-hand sides are given through expressions as in Example 1,
where all operators f and g are distributive in each of their arguments.

In order to propagate increments, we change solver W R . c as follows. Assume a y
has obtained a new value which differs from the old one by A and (x, C) E infl y.

�9 Instead of adding (x, (y, C)) to W (as for W R c) , we add (x, C, A). Thus, now
worklist W contains elements from V x C o n t x D.

�9 If we extract triple (x, C, A) from W, we evaluate ct C A to obtain a (possibly)
new increment for x.

In contrast, however, to W R c and W R , it is no longer safe to empty sets infl y
after use. The resulting differential worklist algorithm with recursive descent into new
variables (W R ~ for short) is given in Figure 2.

T h e o r e m 7. For distributive S, W R . a computes an X-stable part ial least solution.
[]

98

Note that we did not claim algorithm W R ~ to be a solver: and indeed this is not
the case. Opposed to solvers W R and W R c , algorithm WR.a may fail to compute
the least solution for constraint systems which are not distributive.

1 0 T h e D i s t r i b u t i v e F r a m e w o r k IDE

As a first application, let us consider the distributive framework IDE for interproce-
dural analysis of imperative languages as suggested by Horwitz et al. [17] and applied,
e.g., to linear constant propagation. Framework IDE assigns to program points elements
from lattice D = M -+ L of program states, where M is some finite base set (e.g., the
set of currently visible program variables), and L is a lattice of abstract values.

The crucial point of program analysis in framework IDE consists in determining
summary functions from D --+ D to describe effects of procedures. The lattice of pos-
sible transfer functions for statements as well as for summary functions for procedures
in IDE is given by 5 r ---- M 2 --~ T~ where ~ C L -+ L is assumed to be a lattice of
distributive functions of (small) finite height (e.g., 4 for linear constant propagation)
which contains Ax._l_ and is closed under composition. The transformer in D --+ D
defined by f E 9 r is given as

Clearly, If] is distributive, i.e., If] (~/1 Uy~) = If] ~/1 U If] Tie. Computing the summary
functions for procedures in this framework boils down to solving a constraint system
8 over ~" where right-hand sides e are of the form:

e : : = / I x l f o x l x ~ o ~ l

where f E Y. Since all functions in 9 r are distributive, function composition o : ~-2 _~ ~-
is distributive in each argument. Thus, constraint system 8 is a special case of the
constraint systems from example 1. Therefore, we can apply W R ~ to compute the
least solution of S efficiently - provided operations "o" and "U" can be computed
efficiently. Using a diff-function similar to the last one of Example 6, we obtain:

T h e o r e m 8. If operations in T~ can be executed in time O(1), then the summary
functions for program p according to interprocedural framework IDE can be computed
by W R ~ in time C0([p[. [M[3). []

The complexity bound in Theorem 8 should be compared with O([p[. [M[s) which can
be derived for W R . By saving factor [M[~, we find the same complexity as has been
obtained in [17] for a special purpose algorithm.

11 C o n t r o l - F l o w A n a l y s i s

Control-flow analysis (cfa for short) is an analysis for higher-order functional languages
possibly with recursive data types [13]. Cfa on program p tries to compute for every
expression t occurring in p a superset of expressions into which t may evolve during
program execution, see, e.g., [23, 24, 21, 26]. Let A denote the set of subexpressions of
p and D - 2 A. Then cfa for a lazy language as in [26] can be formalized through a
constraint system 8 over domain D with set V of in variables y~, t E A, where right-
hand sides of constraints consist of expressions e of one of the following forms:

e ::= {a} Ix I (a e xl);x2

99

for a E A. Here, we view (a E xl) ;x2 as specification of ct (xl ,C) where C d = 0
if a ~ d and C d = x2 otherwise. Let us assume set V of variables is just ordered
by equality. Then S is not only monotonic but also distributive. As function dill, we
simply choose set diffrence. With these definitions, algorithm W R n can be applied.

Let us assume that the maximal cardinality of an occurring set is bounded by s _<
IPl. Furthermore, let I denote the complexity of inserting a single element into a set
of maximally s elements. In case, for example, we can represent sets as bit vectors,
I = O(1). In case, the program is large but we nevertheless expect sets to be sparse
we may use some suitable hashing scheme to achieve approximately the same effect.
Otherwise, we may represent sets through balanced ordered trees giving extra cost
I = O(log s).

Cfa introduces O(IPl 2) constraints of the form y _D (a E xl); x2. Inorder to avoid cre-
ation of (a representation of) all these in advance, we introduce the following additional
optimization. We start iteration with constraint system So lacking all constraints of
this form. Instead, we introduce function r : V -+ D --+ 2 traints which, depending
on the value of variables, returns the set of constraints to be added to the present
constraint system, r is given by:

r x d = {y D x2 la ~ d, y O_ (a ~ x);x2 ~ 3}

Thus especially, r x (dl Ud2) = (r x d l)U (r x d2). Whenever variable x is incremented
by A, we add all constraints from r x A to the current constraint system by inserting
them into worklist W. For cfa, each application r x A can be evaluated in time O(IAI).
Thus, if the cardinalities of all occurring sets is bounded by s, at most O(IPl . s)
constraints of the form y D x are added to So. Each of these introduces an amount
O(s. I) of work. Therefore, we obtain:

T h e o r e m 9. If s is the maximal cardinality of occurring sets, the least solution of
constraint system S for cfa on program p can be computed by the optimized W R n
algorithm in time O(Ipl . 82 �9 I) . []

The idea of dynamic extension of constraint systems is especially appealing and clearly
can also be cast in a more general setting. Here, it results in an efficient algorithm
which is comparable to the one proposed by Heintze in [13].

12 Genera l ized C o m p u t a t i o n Trees

In practical applications, certain subcomputations for right-hand sides turn out to be
independent. For example, the values for a set of variables may be accessed in any order
if it is just the least upper bound of returned values which matters. To describe such
kinds of phenomena formally, we introduce set GT(V, D) of generalized computation
trees (gct's for short). Gct's t are given by:

t : : = d I x l S l (t,C)

where S C GT(V, D) is finite and C : D --+ GT(V, D). Thus, we not only allow sets
of computation trees but also (sets of) computation trees as selectors of computation
trees. Given t e ~T(V, D), function It] : (V --+ D) --+ D implemented by t as well as
set dep(t, _) of variables accessed during evaluation are defined by:

[d] a = d dep(d, a) = 0
i x I a = a x dep(x, a) = { x }
Is1 ~ = I I{Irt]l o I t ~ s } dep(S, a) -~ U{dep(t , ~) l t e s }
lit, C)] a = IV (It] a)] a dep((t, C), a) = dep(t, a) U dep(C (It] a), a)

100

While sets of trees conveniently allow to make independence of subcomputations ex-
plicit (see our example application in section 13), nesting of trees into selectors eases
the translation of deeper nesting of operator applications.

Example 10. Assume expressions e are given by the grammar:

e ::= d l x I fe t g(e l ,e2)

where d E D and f and g denote monotonic functions in D --~ D and D 2 --+ D,
respectively. The gct t~ for e can then be constructed by:

�9 t~ = e i f e E D U V ;

�9 t~ = (te , ,Ad. fd) i r e = re ' ;

�9 te = (t~l, C) with Cdl = (t~:, Ad2.g (dl, 42)) if e - g (el, e2). []

For partial ordering "<" on set V of variables, we define relation "_<" on gct's by:

�9 _L _< t for every t; and dl < d2 if dl _ d2;

�9 xl < x2 as gct's if also xl < x2 as variables;

�9 $1 < $2 if for all t l E $1, tl _< t2 for some t2 E $2;

�9 {tl,C1) < (t2,C2) if tl < t2 and for all dl E_ d2, Cdl <_ Cd2.

Now assume the right-hand sides of constraint system S all are given through gct's.
Then S is called weakly monotonic iff for every xl < x2 and constraint Xl _~ tl in S
some constraint x2 _~ t2 in ,9 exists such that tt < t2. With these extended definitions
prop. 2, cor. 3 as well as Theorem 4 hold. Therefore, algorithm W R is also a solver
for constraint systems where right-hand sides are represented by gct's.

Function C in t = (t ~, C) can now only b e interpreted as a representation of the
continuation where reevaluation of t has to start if the evaluation of subtree t ~ on a has
terminated, t ~ again may be of the form (s, C) . Consequently, we have to deal with
lists 7 of continuations. Thus, whenever during evaluation of t an access to variable y
occurs, we now have to add pairs (x, 7) to the infl-set of variable y. As in section 8, we
therefore change the functionality of [.] by defining:

[d E o ' ~ / = d IS] a ' ~ = [~{[t] a " / [t e S}
Ix] o' ~ = o' 7 x [(~, c) I o' 7 = i v (it] o' (c :~))] o'

where 0 t 7 x = a x. The goal here is to avoid reevaluation of whole set S just because
one of its elements has changed its value. Therefore, we propagate list .~/arriving at set
S of trees immediately down to each of its elements.

Now assume a y has changed its value by A. Then we add all triples (x,% A) to W
where (x,'~) E infl y. Having extracted such a triple from the worklist, the new solver
applies list ~ to the new value A. The iterative application process is implemented by:

app ~ d 0' = d app (C:7) d 0 ' = app 7 (I t d] a ' -/) 0'

The resulting value then gives the new contribution to the value of a for x. As for
W R a for ordinary evaluation trees, infl-sets cannot be emptied after use. Carrying the
definition of distributivity from section 9 over to gct's, we obtain:

T h e o r e m 11. For distributive ,9 with gct's as right-hand sides, algorithm W R ~ com-
putes an X-stable partial least solution. []

As an advanced application of gct's, we consider abstract 0LDT-resolution [15, 16, 25].

13 A b s t r a c t 0LDT-Resolut ion

Given Prolog program p, abstract 0LDT-resolution tries to compute for every program
point x the set of (abstract) values arriving at x. Let A denote the set of possible
values. Lattice D to compute in is then given by D --- 2 A. Coarse-grained analysis
assigns to each predicate an abstract state transformer A --+ D, whereas fine-grained
analysis additionally assigns transformers also to every program point [15]. Instead of
considering transformers as a whole (as, e.g., in the algorithm for framework IDE in
section 10), transformer valued variable x is replaced by a set of variables, namely
x a, a E A, where x a represents the return value of the transformer for x on input
a. Thus, each variable x a potentially receives a value from D. The idea is that, in
practice, set A may be tremendously large, while at the same time each transformer is
called only on a small number of inputs. Thus, in this application we explicitly rely on
demand-driven exploration of the variable space.

To every transformer variable x the analysis assigns a finite set of constraint schemes
x �9 2 e where �9 formally represents the argument to the transformer, and e is an
expression built up according to the following grammar (see [25]):

e : : = s o l g f e f : : =) ~ a . s (g a) l x l ~ a . (x (g a) o a)

Here, s : A --+ D denotes the singleton map defined by s a = (a}, and g : (A --~ D) --+
D -+ D denotes the usual extension function defined by g f d = (J (] a I a e d}. Thus,
expressions e are built up from s �9 = (�9 by successive applications of extensions g f
for three possible types of functions] : A --~ D. Unary functions g : A --~ A are used

~to model basic computation steps, passing of actual parameters into procedures and
returning of results, whereas binary operators [] : D • A --+ D conveniently allow to
model local states of procedures. They are used to combine the set of return values
of procedures with the local state before the call [25]. In case of fine-grained analysis,
every scheme for right-hand sides contains at most two occurrences of "s whereas
coarse-grained analysis possibly introduces also deeper nesting.

The set of constraints for variable x a, a E A, are obtained from the set of constraint
schemes for x by instantiating �9 with actual parameter a. The resulting right-hand
sides can be implemented through gct's ti~ }. For d E D, gct td is of the form td ---- d or
td = (Sd, C) such that C d' returns some tree trd ,, and Sd = (s~ I a E d). The forms for
elements sa of Sd correspond to the three possible forms for f in expressions g .f e, i.e,

s~ ::---- s (ga) [x a [(x(ga) ,)~d' .d 'oa)

Constraint system S for abstract 0LDT-resolution then turns out to be monotonic as
well as distributive. As operator diff, we choose: diff(dl, d2) = d2\dl. Therefore, we can
apply algorithm W R a . Let us assume that applications g a and insertion into sets can
be executed in time O(1), whereas evaluation of d D a needs time O(#d) . Then:

T h e o r e m 12. Fine-grained 0LDT-resolution for program p with abstract values from
A can be executed by W R a in time O (N . s 2) where N < [p[. ~ A is the number of
considered variables, and s < # A is the maximal cardinality of occurring sets. []

W R a saves an extra factor O(s 2) over solver W R . An algorithm with similar savings
has been suggested by Horwitz et al. [18]. Their graph-based algorithm, however, is
neither able to treat binary operators nor deeper nested right-hand sides as ours.

In the usual application for program analysis, A is equipped with some partial ab-
straction ordering "E", implying that set d C A contains the same information as its
lower closure d~ = {a E A I Ba' E d : a E_ a'}. In this case, we may decide to compute

102

with lower subsets of A right from the beginning [15, 25]. Here, subset d C_ A is called
lower iff d -- d$. If all occurring functions f as well as operators [] are monotonic, then
we can represent lower sets d by their maximal elements and do all computations just
with such anti-chains. The resulting constraint system then turns out to be no longer
monotonic. However, it is still weakly monotonic w.r.t, variable ordering "_<" given by
xl a l < x2 a2 iff xl ~ x2 and al U a2. As function diff for anti-chains, we choose

diff(dl,d2)=d2\(dl$)={a2 E d2 I Val E dl: a2 ~ a l }

Again, we can apply the differential worklist algorithm. Here, we found no compara-
ble algorithm in the literature. W i t h beats conventional solvers for this application
(see section 14). A simple estimation of the runtime complexity, however, is no longer
possible since even large sets may have succinct representations by short anti-chains.

14 Practical Experiments

We have adapted the fastest general-purpose equation solver from [12], namely W D F S
(for a distinction called W D F S Eq~ here), to constraint systems giving general-purpose
constraint solver W D F S Co~. Solver W D F S c~ is similar to solver W i t , but addition-
ally maintains priorities on variables and, before return from an update of a for variable
x, evaluates all constraints y _] t from the worklist where y has higher priority as the
variable below x (cf. [12]). To solver W D F S c~ we added propagation of differences
(the "A") in the same way as we added propagation of differences to solver W i t in
section 9. All fixpoint algorithms have been integrated into GENA [10, 11]. GENA is
a generator for Prolog program analyzers writ ten in SML. We generated analyzers for
abstract 0LDT-resolution for PS+POS-I-LIN which is S0ndergaard's pair sharing domain
enhanced with POS for inferring groundness [27, 7]. Its abstract substi tutions are pairs
of bdd ' s and graphs over variables. Thus, we maintain anti-chains of such elements.
The generated analyzers were run on large real-world programs, aqua-c (about 560KB)
is the source code of an early version of Peter van Roy's Aquarius Prolog compiler.
cha t (about 170KB) is David H.D. Warren's chat-80 system. The numbers reported
in table 1, are the absolute runtimes in seconds (including system time) obtained for
SML-NJ, version 109.29, on a Sun 20 with 64 MB main memory.

Comparing the three algorithms for 0LDT-resolution, we find that all of these have
still quite acceptable runtimes (perhaps with exeption of aqua-c) where algorithm
W D F S ~ ~ almost always outperforms the others. Compared with equation solver
W D F S Equ, algorithm W D F S ~ ~ saves approximately 40% of the runtime where usu-
ally less than half of the gain is obtained by maintaining constraints. The maximal
relative gain of 48% could be observed for program readq where no advantage at all
could be drawn out of constraints. Opposed to that , for Stefan Diehl's interpreter for
action semantics ac t ion , propagation of differences did not give (significantly) bet ter
numbers than considering constraints alone - program ann even showed a (moderate)
decrease in efficiency (factor 3.32). Also opposed to the general picture, constraints
for aqua-c resulted in an improvement of 25% only - of which 9% was lost through
propagation of differences! This slowdown is even more surprising, since it could not be
confirmed with analyzer runs on aqua-c for other abstract domains. Table 2 reports the
runtimes found for aqua-c on domain CompCon. Abstract domain CompCon analyzes
whether variables are bound to atoms or are composite. For CompCon, constraints in-
t roduced a slowdown of 18% whereas propagation of differences resulted in a gain of
efficiency by 38% over W D F S ~qu.

103

WDFSB'~ ~ WDFS~'O,~ W D F S , ~ ~
19.35

program
action.pl 32.97 19.37
ann.pl 1.36 1.62 4.52
aqua-c.pl 1618.0(1209.00 1361.00
b2.pl 2.41 2.14 1.82
chat.pl 77.7: 67.94 53.14
chat-parser.pl 29.62 27.72 17.28
chess.pl 0.4(0.38 0.37
flatten.pl 0.36 0.34 0.26
nand.pl 0.47 0.38 0.32
readq.pl 14.96 15.09 7.85
sdda.pl 0.59 0.73 0.50

Table 1. Comparison of WDFSEqU, W D F S Con, and W D F S ~ ~ with PS+ POS+LIN.

program WDFS~q~ WDFSC~ I WDFS'~~
aqua-c.pl 214.67 252.43 133.61

Table 2. Comparison of W D F S Eq~, W D F S c~ and W D F S ~ ~ with CompCom

15 C o n c l u s i o n

We succeeded to give an application independent exposition of two further improve-
ments to worklist-based local fixpoint algorithms. This allowed us not only to exhibit
a common algorithmic idea in seemingly different fast special purpose algorithms like
the one of Horwitz et al. for interprocedural framework IDE [17] of Heintze's algorithm
for control-flow analysis [13]. Our exposition furthermore explains how such algorithms
can be practically improved - namely by incorporating recursive descent into variables
as well as timestamps [12]. Finally, our approach allowed to develop completely new
efficient algorithms for abstract 0LDT-resolution.

R e f e r e n c e s

1. M. Alt and F. Martin. Generation of Efficient Interprocedural Analyzers with
PAG. In 2nd SAS, 33-50. LNCS 983, 1995.

2. I. Balbin and K. Ramamohanarao. A Generalization of the Differential Approach
to Recursive Query Evaluation. JLP, 4(3):259-262, 1987.

3. F. Bancilhon and R. Ramakrishnan. An Amateur's Introduction to Recursive
Query Processing Strategies. In ACM SIGMOD Conference 1986, 16-52, 1986.

4. F. Bancilhon and R. Ramakrishnan. Performance Evaluation of Data Intensive
Logic Programs. In Jack Minker, editor, Foundations of Deductive Databases and
Logic Programming, chapter 12, 439-517. Morgan Kaufmann Publishers, 1988.

5. B. Le Charlier and P. Van Hentenryck. A Universal Top-Down Fixpoint Algorithm.
Technical Report CS-92-25, Brown University, Providence, RI 02912, 1992.

6. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. A CM TOPLAS, ~ 16(1):35-101, 1994.

7. M. Codish, D. Dams, and E. Yardeni. Derivation of an Abstract Unification Algo-
rithm for groundnes and Aliasing Analysis. In ICLP, 79-93, 1991.

104

8. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Recursive
Programs. In E.J. Neuhold, editor, Formal Descriptions of Programming Concepts,
237-277. North-Holland Publishing Company, 1977.

9. V. Englebert, B. Le Charlier, D. Roland, and P. Van Hentenryck. Generic Ab-
stract Interpretation Algorithms for Prolog: Two Optimization Techniques and
their Experimental Evaluation. SPE, 23(4):419-459, 1993.

10. C. Fecht. GENA - A Tool for Generating Prolog Analyzers from Specifications.
2nd SAS, 418-419. LNCS 983, 1995.

11. C. Fecht. Abstrakte Interpretation logischer Programme: Theorie, Implemen-
tierung, Generierung. PhD thesis, Universit~t des Saarlandes, Saarbriicken, 1997.

12. C. Fecht and H. Seidl. An Even Faster Solver for General Systems of Equations.
3rd SAS, 189-204. LNCS 1145, 1996. Extended version to appear in SCP'99.

13. N. Heintze. Set-Based Analysis of ML Programs. ACM Conf. LFP, 306-317, 1994.
14. N. Heintze and D.A. McAllester. On the Cubic Bottleneck in Subtyping and Flow

Analysis. IEEE Symp. LICS, 342-351, 1997.
15. P. Van Hentenryck, O. Degimbe, B. Le Charlier, and L. Michel. Abstract Interpre-

tation of Prolog Based on OLDT Resolution. Technical Report CS-93-05, Brown
University, Providence, RI 02912, 1993.

16. P. Van Hentenryck, O. Degimbe, B. Le Charlier, and L. Michel. The Impact of
Granularity in Abstract Interpretation of Prolog. 3rd WSA, 1-14. LNCS 724, 1993.

17. S. Horwitz, T.W. Reps, and M. Sagiv. Precise Interprocedural Dataflow Analysis
with Applications to Constant Propagation. 6th TAPSOFT, 651-665. LNCS 915,
1995.

18. S. Horwitz, T.W. Reps, and M. Sagiv. Precise Interprocedural Dataflow Analysis
via Graph Reachability. 22nd POPL, 49-61, 1995.

19. D. Melski and T.W. Reps. Interconvertability of Set Constraints and Context-Free
Language Reachability. ACM SIGPLAN Symp. PEPM, 74-89, 1997.

20. K. Muthukumar and M. V. Hermenegildo. Compile-Time Derivation of Variable
Dependency Using Abstract Interpretation. JLP, 13(2&3):315-347, 1992.

21. H. Riis Nielson and F. Nielson. Infinitary Control Flow Analysis: A Collecting
Semantics for Closure Analysis. 2~th POPL, 332-345, 1997.

22. R. Paige. Symbolic Finite Differencing - Part I. 3rd ESOP, 36-56. LNCS 432,
1990.

23. J. Palsberg. Closure Analysis in Constraint Form. ACM TOPLAS, 17:47-82, 1995.
24. J. Palsberg and P. O'Keefe. A Type System Equivalent to Flow Analysis. ACM

TOPLAS, 17:576-599, 1995.
25. H. Seidl and C. Fecht. Interprocedural Analysis Based on PDAs. Technical Report

97-06, University Trier, 1997. Extended Abstract in: Verification, Model Checking
and Abstract Interpretation. A Workshop in Assiciation with ILPS'97.

26. H. Seidl and M.H. Serensen. Constraints to Stop Higher-Order Deforestation. 2~th
POPL, 400-413, 1997.

27. H. Sendergaard. An Application of Abstract Interpretation of Logic Programs:
Occur Check Reduction. 1st ESOP, 327-338. LNCS 213, 1986.

