
Code M o t i o n and C ode P lacement :
Just Synonyms?*

Jens Knoop 1.*, Oliver Riithing 2, and Bernhard Steffen 2

1Universi t~tPassau, D-94030 Passau, Germany
e-mail :knoop~fmi.uni-passau.de

2 Universit~t Dortmund, D-44221 Dortmund, Germany
e-maih {rueth•

A b s t r a c t . We prove that there is no difference between code motion
(CM) and code placement (CP) in the traditional syntactic setting, how-
ever, a dramatic difference in the semantic setting. We demonstrate this
by re-investigating semantic CM under the perspective of the recent
development of syntactic CM. Besides clarifying and highlighting the
analogies and essential differences between the syntactic and the seman-
tic approach, this leads as a side-effect to a drastical reduction of the con-
ceptual complexity of the value-flow based procedure for semantic CM
of [20], as the original bidirectional analysis is decomposed into purely
unidirectional components. On the theoretical side, this establishes a
natural semantical understanding in terms of the Herbrand interpreta-
tion (transparent equivalence), and thus eases the proof of correctness;
moreover, it shows the frontier of semantic CM, and gives reason for the
lack of algorithms going beyond. On the practical side, it simplifies the
implementation and increases the efficiency, which, like for its syntactic
counterpart, can be the catalyst for its migration from academia into
industrial practice.

K e y w o r d s : Program optimization, data-flow analysis, code motion, code
placement, partial redundancy elimination, transparent equivalence, Her-
brand interpretation.

1 Motivation

Code motion (CM) is a classical opt imizat ion technique for el iminating partial
redundancies (PRE). 1 Living in an ideal world a PRE-a lgo r i t hm would yield
the p rogram of Figure l (b) when applied to the p rogram of Figure l (a) . A t ru ly
opt imal result; free of any redundancies.

* An extended version is available as [14].
** The work of the author was funded in part by the Leibniz Programme of the German

Research Council (DFG) under grant O1 98/1-1.
1 CM and PRE are often identified. To be precise, however, CM is a specific technique

for PRE. As we are going to show here, identifying them is inadequate in general,
and thus, we axe precise on this distinction.

155

a)

1

2 5

3 s

4 7

8 13

9 14

1

The Original Program

b)

1 h i = a + b

h 2 = c+b

3

4 7

$ 13

z : = h l z = h 2 1~

lo z = 4 2 p = b 15

12 17
1

i r

D e s i r e d Optimization: A T r u l y Optimal Program -

N o Redundancies at a l l !

Fig. 1. Living in an Ideal World: The Effect of Partial Redundancy Elimination

Unfortunately, the world is not that ideal. Up to now, there is no algorithm
achieving the result of Figure l(b). In reality, PRE is characterized by two dif-
ferent approaches for CM: a syntactic and a semantic one. Figure 2 illustrates
their effects on the example of Figure l(a). The point of syntactic CM is to treat
all term patterns independently and to regard each assignment as destructive
to any term pattern containing the left-hand side variable. In the example of
Figure l(a) it succeeds in eliminating the redundancy of a + b in the left loop,
but fails on the redundancy of c + p in the right loop, which, because of the
assignment to p, is not redundant in the "syntactic" sense inside the loop. In
contrast, semantic CM fully models the effect of assignments, usually by means
of a kind of symbolic execution (value numbering) or by backward substitution:
by exploiting the equality of p and b after the assignment p := b, it succeeds
in eliminating the redundant computation of c + p inside the right loop as well.
However, neither syntactic nor semantic CM succeeds in eliminating the partial
redundancies at the edges 8 and 13. This article is concerned with answering
why: we will prove that redundancies like in this example are out of the scope of
any "motion"-based PRE-technique. Eliminating them requires to switch from
motion-based to "placement"-based techniques. This fact, and more generally,
the analogies and differences between syntactic and semantic CM and CP as
illustrated in Figures 2(a) and (b), and Figure l(b), respectively, are elucidated
for the first time in this article.

156

Fig. 2. Back to Reality: Syntactic Code Motion vs. Semantic Code Motion

History and Current Situation: Syntactic CM (cf. [2, 5-8, 12, 13, 15, 18]) is
well-understood and integrated in many commercial compilers. 2 In contrast, the
much more powerful and aggressive semantic CM has currently a very limited
practical impact. In fact, only the "local" value numbering for basic blocks
[4] is widely used. Globalizations of this technique can be classified into two
categories: limited globalizations, where code can only be moved to dominators
[3, 16], and aggressive globalizations, where code can be moved more liberally [17,
20, 21]. The limited approaches are quite efficient, however, at the price of losing
significant parts of the optimization power: they even fail in eliminating some
of the redundancies covered by syntactic methods. In contrast, the aggressive
approaches are rather complex, both conceptually and computationally, and are
therefore considered impractical. This judgement is supported by the state-of-
the-art here, which is still based on bidirectional analyses and heuristics making
the proposed algorithms almost incomprehensible.

In this article we re-investigate (aggressive) semantic CM under the perspec-
tive of the very successful recent development of syntactic CM. This investigation
highlights the conceptual analogies and differences between the syntactic and the
semantic approach. In particular, it allows us to show that:

2 E.g., based on [12, 13] in the Sun SPARCompiler language systems (SPARCompiler
is a registered trademark of SPARC International, Inc., and is licensed exclusively
to Sun Microsystems, Inc.).

157

- the decomposition technique into unidirectional analyses developed in [12,
13] can be transferred to the semantic setting. Besides establishing a natural
connection between the Herbrand interpretation (transparent equivalence)
and the algorithm, which eases the proof of its correctness, 3 this decompo-
sition leads to a more efficient and easier implementation. In fact, due to
this simplification, we are optimistic that semantic CM will find its way into
industrial practice.

- there is a significant difference between motion and placement techniques
(see Figures 1 and 2), which only shows up in the semantic setting. The
point of this example is that the computations of a + b and c + b cannot
safely be "moved" to their computation points in Figure l(b), but they can
safely be "placed" there (see Figure 3 for an illustration of the essentials of
this example).

The major contributions of this article are thus as follows. On the conceptual
side: (1) Uncovering that CM and CP are no synomyms in the semantic setting
(but in the syntactic one), (2) showing the frontier of semantic CM, and (3)
giving theoretical and practical reasons for the lack of algorithms going beyond!
On the technical side, though almost as a side-effect yet equally important,
presenting a new algorithm for computationally optimal semantic CM, which is
conceptually and technically much simpler as its predecessor of [20].

Whereas the difference between motion and placement techniques will pri-
marily be discussed on a conceptual level, the other points will be treated in
detail.

Fig. 3. Illustrating the Difference: Sem. Code Placement vs. Sem. Code Motion

Sa fe ty - T h e B a c k b o n e of C o d e M o t i o n : Key towards the understanding
of the conceptual difference between syntactic and semantic CM is the notion of

3 Previously (cf. [20, 21]), this connection, which is essential for the conceptual under-
standing, had to be established in a very complicated indirect fashion.

158

safety of a program point for some computation: intuitively, a program point is
safe for a given computation, if the execution of the computation at this point
results in a value that is guaranteed to be computed by every program execution
passing the point. Similarly, up-safety (down-safety) is defined by requiring that
the computation of the value is guaranteed before meeting the program point
for the first time (after meeting the program point for the last time).4

As properties like these are undecidable in the standard interpretation (cf.
[16]), decidable approximations have been considered. Prominent are the ab-
stractions leading to the syntactic and semantic approach considered in this
article. Concerning the safety notions established above the following result is
responsible for the simplicity and elegance of the syntactic CM-algorithms (cf.
[13]):

T h e o r e m 1 (Syn tac t i c Safe ty) . Safe = Up-safe V Down-safe

It is the failure of this equality in the semantic setting, which causes most of
the problems of semantic CM, because the decomposition of safety in up-safety
and down-safety is essential for the elegant syntactic algorithms.

Figure 4 illustrates this failure
as follows: placing the computation
of a + b at the boldface join-node
is (semantically) safe, though it is
neither up-safe nor down-safe. As
a consequence, simply transferring
the algorithmic idea of the syntac-
tic case to the semantic setting with-
out caring about this equivalence
results in an algorithm for CM with
second-order effects (cf. [17]). 5
These can be avoided by defining
a motion-oriented notion of safety,
which allows to reestablish the
equality for a hierarchically defined
notion of up-safety: the algorithm
resulting from the use of these no-
tions captures all the second-order Fig. 4. Safe though neither Up-Safe nor
effects of the "straightforwardly Down-Safe
transferred" algorithm as well as the results of the original bidirectional ver-
sion for semantic CM of [20].

M o t i o n versus P l a c e m e n t : The step from the motion-oriented notion of safety
to "full safety" can be regarded as the step from motion-based algorithms to
placement-based algorithms: in contrast to CM, CP is characterized by allowing
arbitrary (safe) placements of computations with subsequent (total) redundancy

4 Up-safety and down-safety are traditionally called "availability" and very busyness",
which, however, does not reflect the "semantical" essence and the duality of the two
properties as precise as up-safety and down-safety.

5 Intuitively, this means the transformation is not idempotent (cf. [17].

159

elimination (TRE). As illustrated in Figure 3, not all placements can be realized
via motion techniques, which are characterized by allowing the code movement
only within areas where the placement would be correct. The power of arbitrary
placement leads to a number of theoretic and algorithmic complications and
anomalies (cf. Section 5), which we conjecture, can only be solved by changing
the graph structure of the argument program, e.g. along the lines of [19].

Retrospectively, the fact that all CM-algorithms arise from notions of safety,
which collapse in the syntactic setting, suffices to explain that the syntactic
algorithm does not have any second-order effects, and that there is no difference
between "motion" and "placement" algorithms in the syntactic setting.

Theorem 2 (Syntactic CM and Syntactic CP).
In the syntactic setting, CM is as powerful as CP (and vice versa).

2 P r e l i m i n a r i e s

We consider procedures of imperative programs, which we represent by means of
directed edge-labeled flow graphs G = (N, E, s, e) with node set N, edge set E,
a unique start node s and end node e, which are assumed to have no incoming
and outgoing edges, respectively. The edges of G represent both the statements
and the nondeterministic control flow of the underlying procedure, while the
nodes represent program points only. Statements are parallel assignments of the
form (x l , . . . , X r) : = (t l , . . . , t r) , where xi are pairwise disjoint variables, and
t~ terms of the set T, which as usual are inductively composed of variables,
constants, and operators. For r - - 0 , we obtain the empty statement "skip".
Unlabeled edges are assumed to represent "skip". Without loss of generality we
assume that edges starting in nodes with more than one successor are labeled
by "skip". 6

Source and destination node of a flow-graph edge corresponding to a node n
of a traditional node-labeled flow graph represent the usual distinction between
the entry and the exit point of n explicitly. This simplifies the formal devel-
opment of the theory significantly, particularly the definition of the value-flow
graph in Section 3.1 because the implicit t reatment of this distinction, which,
unfortunately is usually necessary for the traditional flow-graph representation,
is obsolete here; a point which is intensely discussed in [11].

For a flow graph G, let pred(n) and succ(n) denote the set of all immediate
predecessors and successors of a node n, and let source(e) and dest(e) denote
the source and the destination node of an edge e. A finite path in G is a sequence
(e l , . . . , ea) of edges such that dest(ej) = source(ej+l) for j E { 1 , . . . , q - 1}. It
is a path from m to n, if source(el)=m and dest(eq)=n. Additionally, p[i,j],
where 1 < i < j < q, denotes the subpath (e i , . . . , e j) of p. Finally, P[m,n]
denotes the set of all finite paths from m to n. Without loss of generality we
assume that every node n E N lies on a path from s to e.

6 Our approach is not limited to a setting with scalar variables. However, we do not
consider subscripted variables here in order to avoid burdening the development by
alias-analyses.

160

3 S e m a n t i c C o d e M o t i o n

In essence, the reason making semantic CM much more intricate than syntactic
CM is that in the semantic setting safety is not the sum of up-safety and down-
safety (i.e., does not coincide with their disjunction). In order to illustrate this in
more detail, we consider as in [17] transparent equivalence of terms, i.e., we fully
treat the effect of assignments, but we do not exploit any particular properties of
term operators. 7 Moreover, we essentially base our investigations on the semantic
CM-algorithm of [20] consisting of two major phases:

- Preprocess: a) Computing transparent equivalences (cf. Section 3.1).

b) Constructing the value-flow graph (cf. Section 3.1).
- Main Process: Eliminating semantic redundancies (cf. Section 4).

After computing the transparent equivalences of program terms for each program
point, the preprocess globalizes this information according to the value flow of the
program. The value-fiow graph is just the syntactic representation for storing the
global flow information. Based on this information the main process eliminates
semantically redundant computations by appropriately placing the computations
in the program. In the following section we sketch the preprocess as far as it is
necessary for the development here, while we investigate the main process in full
detail. In comparison to [20] it is completely redesigned.

3.1 The Preprocess: Constructing the Value-Flow Graph

The first step of the preprocess computes for every program point the set of all
transparently equivalent program terms. The corresponding algorithm is fairly
straightforward and matches the well-known pattern of Kildall's algorithm (cf.
[10]).

As r osu,t program point
annotated by a structured partition (SP) DAG (cp. [9]),
i.e., an ordered, directed, acyclic graph whose nodes are a c b,d
labeled with at most one operator or constant and a set
of variables. The SPDAG attached to a program point represents the set of all
terms being transparently equivalent at this point: two terms are transparently
equivalent iff they are represented by the same node of an SPDAG; e.g., the
SPDAG on the right represents the term equivalences [a I b, d I c I z, a + b, a + d I
y,c + b,c + a~.

Afterwards, the value-flow graph is constructed. Intuitively, it connects the
nodes, i.e., the term equivalence classes of the SPDAG-annotation :D computed
in the previous step according to the data flow. Thus, its nodes are the classes
of transparently equivalent terms, and its edges are the representations of the
data flow: if two nodes ~ and ~ /o f a value-flow graph are connected by a value-
flow graph edge (v, v~), then the terms represented by v ~ evaluate to the same
value after executing the flow-graph edge e corresponding to (v, v ~) as the terms
represented by v before executing e (cf. Figure 7). This is made precise by

7 In [20] transparent equivalence is therefore called Herbrand equivalence as it is in-
duced by the Herbrand interpretation.

161

means of the relation ~ ~ defined next. To this end, let F denote the set of
all nodes of the SPDAG-annotation 7). Moreover, let Terms(u) denote the set
of all terms represented by node u of F, and let Af(u) denote the flow-graph
node u is related to. Central is the definition of the backward substitution 5,
which is defined for each flow-graph edge e - (X l , . . . , xr) := (t l , . . . , tr) by 5e :
W --~ T, 5e (t) =d / t [t l , . . . , t r / x l , . . . , xr], where t [t l , . . . , t r / x l , . . . , xr] stands for
the simultaneous replacement of all occurrences of xi by ti in t, i E { 1 , . . . , r}. s

6
The relation ~ on F is now defined by:

V(u,u ') E F. u~ ~ u' .'. '.'dr (Af(u),Af(u')) E E A Terms(u) D_5~(Terms(u'))

The value-flow graph for a SPDAG-designation 7) is then as follows:

D e f i n i t i o n 1 (Va lue -F low G r a p h) . The value-flow graph with respect to 7)
is a pair VFG = (VFN, VFE) consisting of

- a set of nodes VFN=df F called abstract values and
6

- a set o/edges VFE C VFN• VFN with VFE=df

It is worth noting that the value-flow graph definition given above is technically
much simpler than its original version of [20]. This is simply a consequence of
representing procedures here by edge-labeled flow graphs instead of node-labeled
flow graphs as in [20]. Predecessors, successors and finite paths in the value-flow
graph are denoted by overloading the corresponding notions for flow graphs, e.
g., pred(u) addresses the predecessors of u E F.

V F G - R e d u n d a n e i e s : In order to define the notion of (partial) redundancies
with respect to a value-flow graph VFG, we need to extend the local predicate
Comp for terms known from syntactic CM to the abstract values represented by
value-flow graph nodes. In the syntactic setting Comp~ expresses that a given
term t under consideration is computed at edge e, i.e., t is a sub-term of some
right-hand side term of the statement associated with e. Analogously, for ev-
ery abstract value u E VFN the local predicate Comp, expresses that the
statements of the corresponding outgoing flow-graph edges compute a term rep-
resented by u: 9

Comp~ r (r e E E. source(e)=Af(u) ~ Terms(u) n Terms(e) ~ ~)

Here Terms(e) denotes the set of all terms occurring on the right-hand side of
the statement of edge e.

In addition, we need the notion of correspondence between value-flow graph
paths and flow-graph paths. Let p = (e l , . . . ,eq) E P[m,n] be a path in the flow

s Note, for edges labeled by "skip" the function 5e equals the identity on terms Idw.
9 Recall that edges starting in nodes with more than one successor are la-

beled by "skip". Thus, we have: Yn e N. I {e]source(e)=n} l>l =~
Terms({ e I source(e) = n })----0. Hence, the truth value of the predicate Comp~
depends actually on a single flow-graph edge only.

162

graph G, and let p' = (s~,... ,~r) E P[~,, #] be a path in a value-flow graph VFG
of G. Then pl is a corresponding VFG-prefix of p, if for all i E {1,. . . ,r} holds:
Af (source(Ei)) = source(e~) and Af (dest(si)) = dest(e~). Analogously, the notion
of a corresponding VFG-postfix pl of p is defined. We can now define:

Definition 2 (V/G-Redundancy) . Let VFG be a value-flow graph, let n be
anode o] G, and t be a term of T . Then t is

1. partially V/G-redundant at n, if there is a path p = (e~,. . . , %) E P[s,n]
with a corresponding VFG-postfix p ' = (c l , . . . , ~ r) E P[v,#] such that
Compv and t E Terms(it) holds.

2. (totally) V/G-redundant at n, if t is partially V/G-redundant along each
path p E P[s, n].

4 The Main Process: El iminat ing Semantic Redundanc ie s

The nodes of a value-flow graph represent semantic equivalences of terms syn-
tactically. In the main process of eliminating semantic redundancies, they play
the same role as the lexical term patterns in the elimination of syntactic redun-
dancies by syntactic CM. We demonstrate this analogy in the following section.

4.1 The Straightforward Approach

In this section we extend the analyses underlying the syntactic CM-procedure to
the semantic situation in a straightforward fashion. To this end let us recall the
equation system characterizing up-safety in the syntactic setting first: up-safety
of a term pattern t at a program point n means that t is computed on every
program path reaching n without an intervening modification of some of its
operands.l~

Equation Sys tem 3 (Syntact ic Up-Safety for a Term Pattern t)

Syn-US n = (n # s). H (Syn-USm + C~ Transp(m, n)
mCpred(n)

The corresponding equation system for VFG-up-safety is given next. Note
that there is no predicate like "VFG-Transp" corresponding to the predicate
Transp. In the syntactic setting, the transparency predicate Transpe is required
for checking that the value of the term t under consideration is maintained along
a flow-graph edge e, i.e., that none of its operands is modified. The essence of the
value-flow graph is that transparency is modeled by the edges: two value-flow
graph nodes are connected by a value-flow graph edge iff the value they represent
is maintained along the corresponding flow-graph edge.

10 As convenient, we use -, + and overlining for logical conjunction, disjunction and
negation, respectively.

163

Equation System 4 (V_fiG-Up-Safety)

VFG-US~ = (v ~ YEN,). H (VFG-US~ + Comps)
~6pred(v)

The roles of the start node and end node of the flow graph are here played by
the "start nodes" and "end nodes" of the value-flow graph defined by:

VFN, =dr { 12] N(wed(v)) # pred(N(u)) V N(v) = s}

VFYe =dy { v I N(suee()) # suce(N()) vN(.) = e}

Down-safety is the dual counterpart of up-safety. However, the equation sys-
tem for the VFG-version of this property is technically more complicated, as we
have two graph structures, the flow graph and the value-flow graph, which must
both be taken separately into account: as in the syntactic setting (or for up-
safety), we need safety universally along all flow-graph edges, which is reflected
by a value-flow graph node v being down-safe at the program point N(v), if a
term represented by v is computed on all flow-graph edges leaving N(v), or if it
is down-safe at all successor points. However, we may justify safety along a flow-
graph edge e by means of the VFG in various ways, as, in contrast to up-safety
concerning the forward flow (or the syntactic setting), a value-flow graph node
may have several successors corresponding to e (cf. Figure 7), and it suffices to
have safety only along one of them. This is formally described by:

Equation System 5 (VFG-Motion-Down-Safety)

VFG-MDSv = (v ~ VFge)" (Compv + H ~ VFG-MDS~)
mesucc(Af (v)) ~ (~) ~(~) = m

The Transformation (of the Straightforward Approach) Let VFG-US*
and VFG-MDS* denote the greatest solutions of the Equation Systems 4 and
5. The analogy with the syntactic setting is continued by the specification of
the semantic CM-transformation, called Sem-CMstrght. It is essentially given by
the set of insertion and replacement points. Insertion of an abstract value v
means to initialize a fresh temporary with a minimal representative t' of v, i.e.,
containing a minimal number of operators, on the flow-graph edges leaving node
H(v). Replacement means to replace an original computation by a reference to
the temporary storing its value.

Insertv r VFG-MDS: �9 ((v 6 VFNs) + ~ VFG-MDS~ + VFG-US~)
~Epred(v)

Replace v r Compv

Managing and reinitializing temporaries: In the syntactic setting, there is for
every term pattern a unique temporary, and these temporaries are not interact-
ing with each other: the values computed at their initialization sites are thus

164

propagated to all their use sites, i.e., the program points containing an original
occurrence of the corresponding term pattern, without requiring special care.
In the semantic setting propagating these values requires usually to reset them
at certain points to values of other temporaries as illustrated in Figure 2(b).
The complete process including managing temporary names is accomplished by
a straightforward analysis starting at the original computation sites and follow-
ing the value-graph edges in the opposite direction to the insertion points. The
details of this procedure are not recalled here as they are not essential for the
point of this article. They can be found in [20, 21].

Second-Order Effects: In contrast to the syntactic setting, the straightforward
semantic counterpart Sem-CMstrght has second-order effects. This is illustrated
in Figure 5: applying Sem-CMstrght to the program of Figure 5(a) results in
the program of Figure 5(b). Repeating the transformation again, results in the
optimal program of Figure 5(c).

Fig. 5. Iliustrating Second-Order Effects

Intuitively, the reason that Sem-CMstrght has second-order effects is that
safety is no longer the sum of up-safety and down-safety. Above, up-safety is
only computed with respect to original computations. While this is sufficient
in the syntactic case, it is not in the semantic one as it does not take into
account that the placement of computations as a result of the transformation
may make "new" values available, e.g. in the program of Figure 5(b) the value
of a + b becomes available at the end of the program fragment displayed. As a
consequence, total redundancies like the one in Figure 5(b) can remain in the

165

program. Eliminating them (TRE) as illustrated in Figure 5(c) is sufficient to
capture the second-order effects completely. We have:

Theorem 3 (Sem-CMstrgh~).

1. Sem-CMstrght relies on only two uni-directional analyses.
2. Sem-CMs~rght has second-order effects.
3. Sem-CMs~rgh~ /ollowed by TRE achieves computationally motion-optimal

results wrt the Herbrand interpretation like its bidirectional precursor o/
[20].

4.2 Avoiding Second-Order Effects: The Hierarchical Approach

The point of this section is to reestablish as a footing for the algorithm a notion
of safety which can be characterized as the sum of up-safety and down-safety.
The central result here is that a notion of safety tailored to capture the idea
of "motion" (in contrast to "placement") can be characterized by down-safety
together with the following hierarchical notion of up-safety:

Equation System 6 ("Hierarchical" VFG-Up-Safety)

VFG-MUSv = VFG-MDS~ + (u ~ VFN,) . H VFG-MUS.
#6pred(v)

In fact, the phenomenon of second-order effects can now completely and elegantly
be overcome by the following hierarchical procedure: m

1. Compute down-safety (cf. Equation System 5).
2. Compute the modified up-safety property on the basis of the down-safety

computation (cf. Equation System 6).

The transformation Sem-CMHi~r of the Hierarchical Approach is now defined as
before except that VFG-MUS* is used instead of VFG-US*. Its results coincide with
those of an exhaustive application of the CM-procedure proposed in Subsection
4.1, as well as of the original (bidirectional) CM-procedure of [20]. However, in
contrast to the latter algorithm, which due to its bidirectionality required a com-
plicated correctness argument, the transformation of the hierarchical approach
allows a rather straightforward link to the Herbrand semantics, which drastically
simplifies the correctness proof. Besides this conceptual improvement, the new
algorithm is also easier to comprehend and to implement as it does not require
any bidirectional analysis. We have:

Theorem 4 (Sem-CMHier).

1. Sem-CMHier relies on only two uni-directional analyses sequentially ordered.
2. Sem-CMHier is free of second-order effects.
3. Sem-CMHier achieves computationally motion-optimal results wrt the Her-

brand interpretation like its bidirectional precursor of [20].

11 The "down-safety/earliest" characterization of [12] was also already hierarchical.
However, in the syntactic setting this is not relevant as it was shown in [13].

166

5 S e m a n t i c C o d e P l a c e m e n t

In this section we are concerned with crossing the frontier marked by semantic
CM towards to semantic CP, and giving theoretical and practical reasons for the
fact that no algorithm has gone beyond this frontier so far. On the theoretical
side (I), we prove that computational optimality is impossible for semantic CP in
general. On the practical side (II), we demonstrate that down-safety, the handle
for correctly and profitably placing computations by syntactic and semantic CM,
is inadequate for semantic CP.

(I) No Opt ima l i ty in General : Semantic CP cannot be done "computation-
ally placement-optimal" in general. This is a significant difference in comparison
to syntactic and semantic CM, which have a least element with respect to the
relation "computationally better" (cf. [13, 20]). In semantic CP, however, we are
faced with the phenomenon of incomparable minima. This is illustrated in the
example of Figure 6 showing a slight modification of the program of Figure 3.
Both programs of Figure 6 are of incomparable quality, since the "right-most"
path is improved by impairing the "left-most" one.

a) b)

: = : =

I I

Fig. 6. No Optimality in General: An Incomparable Result due to CP

(II) Inadequa teness of Down-safe ty : For syntactic and semantic CM, down-
safe program points are always legal insertion points. Inserting a computation at
a down-safe point guarantees that it can be used on every program continuation.
This, however, does not hold for semantic CP. Before showing this in detail, we
illustrate the difference between "placable" V_fiG-down-safety (VFG-DownSafe)
and "movable" V/~-down-safety (VFG-M-DownSafe) by means of Figure 7
which shows the difference by means of the value-flow graph corresponding to
the example of Figure 3.

We remark that the predicate VFG-DownSa/e is decidable. However, the
point to be demonstrated here is that this property is insufficient anyhow in

167

Fig. 7. The Corresponding Value-Flow Graph

order to (straightforwardly) arrive at an algorithm for semantic CP. This is
illustrated by Figure 8 showing a slight modification of the program of Figure
6. Though the placement of h := a + b is perfectly down-safe, it cannot be used
at all. Thus, impairing the program.

a) b)

:=

Fig. 8. Inadequateness of Down-Safety: Degradation through Naive CP

S u m m a r y : The examples of Figure 3 and of this section commonly share that
they are invariant under semantic CM, since a + b cannot safely be moved to
(and hence not across) the join node in the mid part. However, a+b can safely be
placed in the left branch of the upper branch statement. In the example of Fig-
ure 3 this suffices to show that semantic CP is in general strictly more powerful

168

than semantic CM. On the other hand, Figure 6 demonstrates that "compu-
tational optimality" for semantic CP is impossible in general. While this rules
out the possibility of an algorithm for semantic CP being uniformly superior to
every other semantic CP-algorithm, the inadequateness of down-safety revealed
by the second example of this section gives reason for the lack even of heuristics
for semantic CP: this is because down-safety, the magic wand of syntactic and
semantic CM, loses its magic for semantic CP. In fact, straightforward adap-
tions of the semantic CM-procedure to semantic CP would be burdened with
the placing anomalies of Figures 6 and 8. We conjecture that a satisfactory so-
lution to these problems requires structural changes of the argument program.
Summarizing, we have:

T h e o r e m 5 (Semantic Code P lacement) .

1. Semantic CP is strictly more powerful than semantic CM.
2. Computational placement-optimality is impossible in general.
3. Down-safety is inadeqate for semantic CP.

6 C o n c l u s i o n

We have re-investigated semantic CM under the perspective of the recent de-
velopment of syntactic CM, which has clarified the essential difference between
the syntactic and the semantic approach, and uncovered the difference of CM
and CP in the semantic setting. Central for the understanding of this difference
is the role of the notion of safety of a program point for some computation.
Modification of the considered notion of safety is the key for obtaining a trans-
fer of the syntactic algorithm to the semantic setting which captures the full
potential of motion algorithms. However, in contrast to the syntactic setting,
motion algorithms do not capture the full potential of code placement. Actually,
we conjecture that there does not exist a satisfactory solution to the code place-
ment problem, unless one is prepared to change the structure of the argument
program.

R e f e r e n c e s

1. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in
programs. In Conf. Ree. 15th Syrup. Principles of Prog. Lang. (POPL'88), pages
1 - 11. ACM, NY, 1988.

2. F. Chow. A Portable Machine Independent Optimizer - Design and Measurements.
PhD thesis, Stanford Univ., Dept. of Electrical Eng., Stanford, CA, 1983. Pubh
as Tech. Rep. 83-254, Comp. Syst. Lab., Stanford Univ.

3. C. Click. Global code motion/global value numbering. In Proc. ACM SIGPLAN
Conf. Prog. Lan 9. Design and Impl. (PLDFg5), volume 30,6 of ACM SIGPLAN
Not., pages 246-257, 1995.

4. J. Cocke and J. T. Schwartz. Programming languages and their compilers. Courant
Inst. Math. Sciences, NY, 1970.

169

5. D. M. Dhamdhere. A fast algorithm for code movement optimization. A CM
SIGPLAN Not., 23(10):172 - 180, 1988.

6. D. M. Dhamdhere. Practical adaptat ion of the global optimization algorithm of
Morel and Renvoise. ACM Trans. Prog. Lang. Syst., 13(2):291 - 294, 1991. Tech.
Corr.

7. D. M. Dhamdhere, B. K. Rosen, and F. K. Zadeck. How to analyze large programs
efficiently and informatively. In Proc. ACM SIGPLAN Conf. Prog. Lang. Design
and Impl. (PLDI'92), volume 27,7 of ACM SIGPLAN Not., pages 212 - 223, 1992.

8. K.-H. Drechsler and M. P. Stadel. A solution to a problem with Morel and Ren-
voise's "Global optimization by suppression of part ial redundancies". ACM Trans.
Prog. Lang. Syst., 10(4):635 - 6 4 0 , 1988. Tech. Corr.

9. A. Fong, J. B. Kam, and J. D. Ullman. Application of latt ice algebra to loop
optimization. In Conf. Rec. 2nd Syrup. Principles of Prog. Lang. (POPL'75),
pages 1 - 9. ACM, NY, 1975.

10. G. A. Kildall. A unified approach to global program optimization. In Conf. Rec.
1st Syrup. Principles of Prog. Lang. (POPL '73), pages 194 - 206. ACM, NY, 1973.

11. J. Knoop, D. Koschiitzki, and B. Steffen. Basic-block graphs: Living dinosaurs?
In Proe. 7th Int. Conf. on Compiler Constr. (CC'98), LNCS, Springer-V, 1998.

12. J. Knoop, O. Rfithing, and B. Steffen. Lazy code motion. In Proc. ACMSIGPLAN
Conf. Prog. Lang. Design and Impl. (PLDI'92), volume 27,7 of ACM SIGPLAN
Not., pages 224 - 234, 1992.

13. J. Knoop, O. Riithing, and B. Steffen. Opt imal code motion: Theory and practice.
ACM Trans. Prog. Lang. Syst., 16(4):1117-1155, 1994.

14. J. Knoop, O. Rfithing, and B. Steffen. Code Motion and Code Placement: Just
Synonyms? Technical Report MIP-9716, Fakultii t fiir Mathemat ik und Informatik,
Universit~t Passau, Germany, 1997.

15. E. Morel and C. Renvoise. Global optimization by suppression of part ial redun-
dancies. Comm. ACM, 22(2):96 - 103, 1979.

16. J. H. Reif and R. Lewis. Symbolic evaluation and the global value graph. In Conf.
Rec. ~th Syrup. Principles of Prog. Lang. (POPL'77), pages 104 - 118. ACM, NY,
1977.

17. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redun-
dant computations. In Conf. Ree. 15th Syrup. Principles of Prog. Lang. (POPL '88),
pages 2 - 27. ACM, NY, 1988.

18. A. Sorkin. Some comments on a solution to a problem with Morel and Renvoise's
"Global optimization by suppression of part ial redundancies". A CM Trans. Prog.
Lang. Syst., 11(4):666 - 668, 1989. Tech. Corr.

19. B. Steffen. Property-oriented expansion. In Proc. 3rd Stat. Analysis Symp.
(SAS'96), LNCS 1145, pages 22 - 41. Springer-V, 1996.

20. B. Steffen, J. Knoop, and O. Riithing. The value flow graph: A program representa-
tion for optimal program transformations. In Proc. 3rd Europ. Syrup. Programming
(ESOP'90), LNCS 432, pages 389 - 405. Springer-V., 1990.

21. B. Steffen, J. Knoop, and O. Riithing. Efficient code motion and an adapt ion
to strength reduction. In Proc. ~th Int. Conf. Theory and Practice o/Software
Development (TAPSOFT'91), LNCS 494, pages 394 - 415. Springer-V., 1991.

