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A b s t r a c t .  We prove that there is no difference between code motion 
(CM) and code placement (CP) in the traditional syntactic setting, how- 
ever, a dramatic difference in the semantic setting. We demonstrate this 
by re-investigating semantic CM under the perspective of the recent 
development of syntactic CM. Besides clarifying and highlighting the 
analogies and essential differences between the syntactic and the seman- 
tic approach, this leads as a side-effect to a drastical reduction of the con- 
ceptual complexity of the value-flow based procedure for semantic CM 
of [20], as the original bidirectional analysis is decomposed into purely 
unidirectional components. On the theoretical side, this establishes a 
natural semantical understanding in terms of the Herbrand interpreta- 
tion (transparent equivalence), and thus eases the proof of correctness; 
moreover, it shows the frontier of semantic CM, and gives reason for the 
lack of algorithms going beyond. On the practical side, it simplifies the 
implementation and increases the efficiency, which, like for its syntactic 
counterpart, can be the catalyst for its migration from academia into 
industrial practice. 

K e y w o r d s :  Program optimization, data-flow analysis, code motion, code 
placement, partial redundancy elimination, transparent equivalence, Her- 
brand interpretation. 

1 Motivation 

Code motion (CM) is a classical opt imizat ion technique for el iminating partial 
redundancies (PRE). 1 Living in an ideal world a PRE-a lgo r i t hm would yield 
the  p rogram of Figure l (b)  when applied to  the  p rogram of Figure l (a) .  A t ru ly  
opt imal  result; free of  any redundancies.  

* An extended version is available as [14]. 
** The work of the author was funded in part by the Leibniz Programme of the German 

Research Council (DFG) under grant O1 98/1-1. 
1 CM and PRE are often identified. To be precise, however, CM is a specific technique 

for PRE. As we are going to show here, identifying them is inadequate in general, 
and thus, we axe precise on this distinction. 
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D e s i r e d  Optimization: A T r u l y  Optimal Program - 

N o  Redundancies at a l l !  

Fig. 1. Living in an Ideal World: The Effect of Partial Redundancy Elimination 

Unfortunately, the world is not that ideal. Up to now, there is no algorithm 
achieving the result of Figure l(b). In reality, PRE is characterized by two dif- 
ferent approaches for CM: a syntactic and a semantic one. Figure 2 illustrates 
their effects on the example of Figure l(a). The point of syntactic CM is to treat 
all term patterns independently and to regard each assignment as destructive 
to any term pattern containing the left-hand side variable. In the example of 
Figure l(a) it succeeds in eliminating the redundancy of a + b in the left loop, 
but fails on the redundancy of c + p in the right loop, which, because of the 
assignment to p, is not redundant in the "syntactic" sense inside the loop. In 
contrast, semantic CM fully models the effect of assignments, usually by means 
of a kind of symbolic execution (value numbering) or by backward substitution: 
by exploiting the equality of p and b after the assignment p := b, it succeeds 
in eliminating the redundant computation of c + p inside the right loop as well. 
However, neither syntactic nor semantic CM succeeds in eliminating the partial 
redundancies at the edges 8 and 13. This article is concerned with answering 
why: we will prove that redundancies like in this example are out of the scope of 
any "motion"-based PRE-technique. Eliminating them requires to switch from 
motion-based to "placement"-based techniques. This fact, and more generally, 
the analogies and differences between syntactic and semantic CM and CP as 
illustrated in Figures 2(a) and (b), and Figure l(b), respectively, are elucidated 
for the first time in this article. 
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Fig. 2. Back to Reality: Syntactic Code Motion vs. Semantic Code Motion 

History  and Current  Situation: Syntactic CM (cf. [2, 5-8, 12, 13, 15, 18]) is 
well-understood and integrated in many commercial compilers. 2 In contrast, the 
much more powerful and aggressive semantic CM has currently a very limited 
practical impact. In fact, only the "local" value numbering for basic blocks 
[4] is widely used. Globalizations of this technique can be classified into two 
categories: limited globalizations, where code can only be moved to dominators 
[3, 16], and aggressive globalizations, where code can be moved more liberally [17, 
20, 21]. The limited approaches are quite efficient, however, at the price of losing 
significant parts of the optimization power: they even fail in eliminating some 
of the redundancies covered by syntactic methods. In contrast, the aggressive 
approaches are rather complex, both conceptually and computationally, and are 
therefore considered impractical. This judgement is supported by the state-of- 
the-art here, which is still based on bidirectional analyses and heuristics making 
the proposed algorithms almost incomprehensible. 

In this article we re-investigate (aggressive) semantic CM under the perspec- 
tive of the very successful recent development of syntactic CM. This investigation 
highlights the conceptual analogies and differences between the syntactic and the 
semantic approach. In particular, it allows us to show that: 

2 E.g., based on [12, 13] in the Sun SPARCompiler language systems (SPARCompiler 
is a registered trademark of SPARC International, Inc., and is licensed exclusively 
to Sun Microsystems, Inc.). 
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- the decomposition technique into unidirectional analyses developed in [12, 
13] can be transferred to the semantic setting. Besides establishing a natural 
connection between the Herbrand interpretation (transparent equivalence) 
and the algorithm, which eases the proof of its correctness, 3 this decompo- 
sition leads to a more efficient and easier implementation. In fact, due to 
this simplification, we are optimistic that  semantic CM will find its way into 
industrial practice. 

- there is a significant difference between motion and placement techniques 
(see Figures 1 and 2), which only shows up in the semantic setting. The 
point of this example is that  the computations of a + b and c + b cannot 
safely be "moved" to their computation points in Figure l(b), but they can 
safely be "placed" there (see Figure 3 for an illustration of the essentials of 
this example). 

The major contributions of this article are thus as follows. On the conceptual 
side: (1) Uncovering that  CM and CP are no synomyms in the semantic setting 
(but in the syntactic one), (2) showing the frontier of semantic CM, and (3) 
giving theoretical and practical reasons for the lack of algorithms going beyond! 
On the technical side, though almost as a side-effect yet equally important, 
presenting a new algorithm for computationally optimal semantic CM, which is 
conceptually and technically much simpler as its predecessor of [20]. 

Whereas the difference between motion and placement techniques will pri- 
marily be discussed on a conceptual level, the other points will be treated in 
detail. 

Fig. 3. Illustrating the Difference: Sem. Code Placement vs. Sem. Code Motion 

Sa fe ty  - T h e  B a c k b o n e  of  C o d e  M o t i o n :  Key towards the understanding 
of the conceptual difference between syntactic and semantic CM is the notion of 

3 Previously (cf. [20, 21]), this connection, which is essential for the conceptual under- 
standing, had to be established in a very complicated indirect fashion. 
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safety of a program point for some computation: intuitively, a program point is 
safe for a given computation, if the execution of the computation at this point 
results in a value that  is guaranteed to be computed by every program execution 
passing the point. Similarly, up-safety (down-safety) is defined by requiring that  
the computation of the value is guaranteed before meeting the program point 
for the first time (after meeting the program point for the last time).4 

As properties like these are undecidable in the standard interpretation (cf. 
[16]), decidable approximations have been considered. Prominent are the ab- 
stractions leading to the syntactic and semantic approach considered in this 
article. Concerning the safety notions established above the following result is 
responsible for the simplicity and elegance of the syntactic CM-algorithms (cf. 
[13]): 

T h e o r e m  1 (Syn tac t i c  Safe ty) .  Safe = Up-safe V Down-safe 

It is the failure of this equality in the semantic setting, which causes most of 
the problems of semantic CM, because the decomposition of safety in up-safety 
and down-safety is essential for the elegant syntactic algorithms. 

Figure 4 illustrates this failure 
as follows: placing the computation 
of a + b at the boldface join-node 
is (semantically) safe, though it is 
neither up-safe nor down-safe. As 
a consequence, simply transferring 
the algorithmic idea of the syntac- 
tic case to the semantic setting with- 
out caring about this equivalence 
results in an algorithm for CM with 
second-order effects (cf. [17]). 5 
These can be avoided by defining 
a motion-oriented notion of safety, 
which allows to reestablish the 
equality for a hierarchically defined 
notion of up-safety: the algorithm 
resulting from the use of these no- 
tions captures all the second-order Fig.  4. Safe though neither Up-Safe nor 
effects of the "straightforwardly Down-Safe 
transferred" algorithm as well as the results of the original bidirectional ver- 
sion for semantic CM of [20]. 

M o t i o n  versus  P l a c e m e n t :  The step from the motion-oriented notion of safety 
to "full safety" can be regarded as the step from motion-based algorithms to 
placement-based algorithms: in contrast to CM, CP is characterized by allowing 
arbitrary (safe) placements of computations with subsequent (total) redundancy 

4 Up-safety and down-safety are traditionally called "availability" and very busyness", 
which, however, does not reflect the "semantical" essence and the duality of the two 
properties as precise as up-safety and down-safety. 

5 Intuitively, this means the transformation is not idempotent (cf. [17]. 
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elimination (TRE). As illustrated in Figure 3, not all placements can be realized 
via motion techniques, which are characterized by allowing the code movement 
only within areas where the placement would be correct. The power of arbitrary 
placement leads to a number of theoretic and algorithmic complications and 
anomalies (cf. Section 5), which we conjecture, can only be solved by changing 
the graph structure of the argument program, e.g. along the lines of [19]. 

Retrospectively, the fact that  all CM-algorithms arise from notions of safety, 
which collapse in the syntactic setting, suffices to explain that  the syntactic 
algorithm does not have any second-order effects, and that  there is no difference 
between "motion" and "placement" algorithms in the syntactic setting. 

Theorem 2 (Syntactic CM and Syntactic CP).  
In the syntactic setting, CM is as powerful as CP (and vice versa). 

2 P r e l i m i n a r i e s  

We consider procedures of imperative programs, which we represent by means of 
directed edge-labeled flow graphs G = (N, E,  s, e) with node set N,  edge set E,  
a unique start node s and end node e, which are assumed to have no incoming 
and outgoing edges, respectively. The edges of G represent both the statements 
and the nondeterministic control flow of the underlying procedure, while the 
nodes represent program points only. Statements are parallel assignments of the 
form ( x l , . . . , X r ) : =  ( t l , . . . , t r ) ,  where xi are pairwise disjoint variables, and 
t~ terms of the set T,  which as usual are inductively composed of variables, 
constants, and operators. For r - - 0 ,  we obtain the empty statement "skip". 
Unlabeled edges are assumed to represent "skip". Without  loss of generality we 
assume that  edges starting in nodes with more than one successor are labeled 
by "skip". 6 

Source and destination node of a flow-graph edge corresponding to a node n 
of a traditional node-labeled flow graph represent the usual distinction between 
the entry and the exit point of n explicitly. This simplifies the formal devel- 
opment of the theory significantly, particularly the definition of the value-flow 
graph in Section 3.1 because the implicit t reatment  of this distinction, which, 
unfortunately is usually necessary for the traditional flow-graph representation, 
is obsolete here; a point which is intensely discussed in [11]. 

For a flow graph G, let pred(n) and succ(n) denote the set of all immediate 
predecessors and successors of a node n, and let source(e) and dest(e) denote 
the source and the destination node of an edge e. A finite path in G is a sequence 
( e l , . . . ,  ea) of edges such that  dest(ej) = source(ej+l) for j E { 1 , . . . ,  q - 1}. It 
is a path from m to n, if source(el)=m and dest(eq)=n. Additionally, p[i,j], 
where 1 < i < j < q, denotes the subpath ( e i , . . . , e j )  of p. Finally, P[m,n]  
denotes the set of all finite paths from m to n. Without loss of generality we 
assume that  every node n E N lies on a path from s to e. 

6 Our approach is not limited to a setting with scalar variables. However, we do not 
consider subscripted variables here in order to avoid burdening the development by 
alias-analyses. 
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3 S e m a n t i c  C o d e  M o t i o n  

In essence, the reason making semantic CM much more intricate than syntactic 
CM is that  in the semantic setting safety is not the sum of up-safety and down- 
safety (i.e., does not coincide with their disjunction). In order to illustrate this in 
more detail, we consider as in [17] transparent equivalence of terms, i.e., we fully 
treat the effect of assignments, but we do not exploit any particular properties of 
term operators. 7 Moreover, we essentially base our investigations on the semantic 
CM-algorithm of [20] consisting of two major phases: 

- Preprocess: a) Computing transparent equivalences (cf. Section 3.1). 

b) Constructing the value-flow graph (cf. Section 3.1). 
- Main Process: Eliminating semantic redundancies (cf. Section 4). 

After computing the transparent equivalences of program terms for each program 
point, the preprocess globalizes this information according to the value flow of the 
program. The value-fiow graph is just the syntactic representation for storing the 
global flow information. Based on this information the main process eliminates 
semantically redundant computations by appropriately placing the computations 
in the program. In the following section we sketch the preprocess as far as it is 
necessary for the development here, while we investigate the main process in full 
detail. In comparison to [20] it is completely redesigned. 

3.1 The Preprocess: Constructing the Value-Flow Graph 

The first step of the preprocess computes for every program point the set of all 
transparently equivalent program terms. The corresponding algorithm is fairly 
straightforward and matches the well-known pattern of Kildall's algorithm (cf. 
[10]). 

As r osu,t program point 
annotated by a structured partition (SP) DAG (cp. [9]), 
i.e., an ordered, directed, acyclic graph whose nodes are a c b,d 
labeled with at most one operator or constant and a set 
of variables. The SPDAG attached to a program point represents the set of all 
terms being transparently equivalent at this point: two terms are transparently 
equivalent iff they are represented by the same node of an SPDAG; e.g., the 
SPDAG on the right represents the term equivalences [a I b, d I c I z, a + b, a + d I 
y,c + b,c + a~. 

Afterwards, the value-flow graph is constructed. Intuitively, it connects the 
nodes, i.e., the term equivalence classes of the SPDAG-annotation :D computed 
in the previous step according to the data  flow. Thus, its nodes are the classes 
of transparently equivalent terms, and its edges are the representations of the 
data  flow: if two nodes ~ and ~ /o f  a value-flow graph are connected by a value- 
flow graph edge (v, v~), then the terms represented by v ~ evaluate to the same 
value after executing the flow-graph edge e corresponding to (v, v ~) as the terms 
represented by v before executing e (cf. Figure 7). This is made precise by 

7 In [20] transparent equivalence is therefore called Herbrand equivalence as it is in- 
duced by the Herbrand interpretation. 
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means of the relation ~ ~ defined next. To this end, let F denote the set of 
all nodes of the SPDAG-annotation 7). Moreover, let Terms(u) denote the set 
of all terms represented by node u of F,  and let Af(u) denote the flow-graph 
node u is related to. Central is the definition of the backward substitution 5, 
which is defined for each flow-graph edge e - (X l , . . . ,  xr) := ( t l , . . . ,  tr) by 5e : 
W --~ T,  5e ( t ) =d / t [ t l , . . . ,  t r / x l , . . . ,  xr], where t [ t l , . . . ,  t r / x l , . . . ,  xr] stands for 
the simultaneous replacement of all occurrences of xi by ti in t, i E { 1 , . . . ,  r}. s 

6 
The relation ~ on F is now defined by: 

V(u,u ' )  E F. u~ ~ u' .'. '.'dr (Af(u),Af(u')) E E A Terms(u) D_5~(Terms(u')) 

The value-flow graph for a SPDAG-designation 7) is then as follows: 

D e f i n i t i o n  1 (Va lue -F low G r a p h ) .  The value-flow graph with respect to 7) 
is a pair VFG = ( VFN, VFE) consisting of 

- a set of nodes VFN=df F called abstract values and 
6 

- a set o/edges VFE C VFN• VFN with VFE=df 

It is worth noting that  the value-flow graph definition given above is technically 
much simpler than its original version of [20]. This is simply a consequence of 
representing procedures here by edge-labeled flow graphs instead of node-labeled 
flow graphs as in [20]. Predecessors, successors and finite paths in the value-flow 
graph are denoted by overloading the corresponding notions for flow graphs, e. 
g., pred(u) addresses the predecessors of u E F. 

V F G - R e d u n d a n e i e s :  In order to define the notion of (partial) redundancies 
with respect to a value-flow graph VFG, we need to extend the local predicate 
Comp for terms known from syntactic CM to the abstract values represented by 
value-flow graph nodes. In the syntactic setting Comp~ expresses that  a given 
term t under consideration is computed at edge e, i.e., t is a sub-term of some 
right-hand side term of the statement associated with e. Analogously, for ev- 
ery abstract value u E VFN the local predicate Comp, expresses that  the 
statements of the corresponding outgoing flow-graph edges compute a term rep- 
resented by u: 9 

Comp~ r ( r e  E E. source(e)=Af(u)  ~ Terms(u) n Terms(e) ~ ~) 

Here Terms(e) denotes the set of all terms occurring on the right-hand side of 
the statement of edge e. 

In addition, we need the notion of correspondence between value-flow graph 
paths and flow-graph paths. Let p =  (e l , . . .  ,eq) E P[m,n]  be a path in the flow 

s Note, for edges labeled by "skip" the function 5e equals the identity on terms Idw. 
9 Recall that edges starting in nodes with more than one successor are la- 

beled by "skip". Thus, we have: Yn e N. I {e]source(e )=n} l>l  =~ 
Terms({ e I source(e) = n })----0. Hence, the truth value of the predicate Comp~ 
depends actually on a single flow-graph edge only. 



162 

graph G, and let p' = (s~,... ,~r) E P[~,, #] be a path in a value-flow graph VFG 
of G. Then pl is a corresponding VFG-prefix of p, if for all i E {1,. . .  ,r} holds: 
Af ( source(Ei) ) = source(e~) and Af ( dest(si) ) = dest(e~). Analogously, the notion 
of a corresponding VFG-postfix pl of p is defined. We can now define: 

Definition 2 (V/G-Redundancy) .  Let VFG be a value-flow graph, let n be 
anode o] G, and t be a term of T .  Then t is 

1. partially V/G-redundant at n, if there is a path p = (e~,. . . ,  %) E P[s,n] 
with a corresponding VFG-postfix p ' = ( c l , . . . , ~ r )  E P[v,#] such that 
Compv and t E Terms(it)  holds. 

2. (totally) V/G-redundant at n, if t is partially V/G-redundant  along each 
path p E P[s, n]. 

4 The  Main Process:  El iminat ing  Semantic  Redundanc ie s  

The nodes of a value-flow graph represent semantic equivalences of terms syn- 
tactically. In the main process of eliminating semantic redundancies, they play 
the same role as the lexical term patterns in the elimination of syntactic redun- 
dancies by syntactic CM. We demonstrate this analogy in the following section. 

4.1 The Straightforward Approach 

In this section we extend the analyses underlying the syntactic CM-procedure to 
the semantic situation in a straightforward fashion. To this end let us recall the 
equation system characterizing up-safety in the syntactic setting first: up-safety 
of a term pattern t at a program point n means that t is computed on every 
program path reaching n without an intervening modification of some of its 
operands.l~ 

Equation Sys tem 3 (Syntact ic  Up-Safety for a Term Pattern t) 

Syn-US n = (n # s). H (Syn-USm + C~ Transp(m, n) 
mCpred(n) 

The corresponding equation system for VFG-up-safety is given next. Note 
that there is no predicate like "VFG-Transp" corresponding to the predicate 
Transp. In the syntactic setting, the transparency predicate Transpe is required 
for checking that the value of the term t under consideration is maintained along 
a flow-graph edge e, i.e., that none of its operands is modified. The essence of the 
value-flow graph is that transparency is modeled by the edges: two value-flow 
graph nodes are connected by a value-flow graph edge iff the value they represent 
is maintained along the corresponding flow-graph edge. 

10 As convenient, we use -, + and overlining for logical conjunction, disjunction and 
negation, respectively. 
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Equation System 4 (V_fiG-Up-Safety) 

VFG-US~ = (v ~ YEN,). H (VFG-US~ + Comps) 
~6pred(v)  

The roles of the start node and end node of the flow graph are here played by 
the "start nodes" and "end nodes" of the value-flow graph defined by: 

VFN, =dr { 12 ] N(wed(v) ) # pred( N(u) ) V N(v) = s} 

VFYe =dy { v I N(suee( ) ) # suce(N( ) ) vN( . )  = e} 

Down-safety is the dual counterpart of up-safety. However, the equation sys- 
tem for the VFG-version of this property is technically more complicated, as we 
have two graph structures, the flow graph and the value-flow graph, which must 
both be taken separately into account: as in the syntactic setting (or for up- 
safety), we need safety universally along all flow-graph edges, which is reflected 
by a value-flow graph node v being down-safe at the program point N(v), if a 
term represented by v is computed on all flow-graph edges leaving N(v), or if it 
is down-safe at all successor points. However, we may justify safety along a flow- 
graph edge e by means of the VFG in various ways, as, in contrast to up-safety 
concerning the forward flow (or the syntactic setting), a value-flow graph node 
may have several successors corresponding to e (cf. Figure 7), and it suffices to 
have safety only along one of them. This is formally described by: 

Equation System 5 (VFG-Motion-Down-Safety) 

VFG-MDSv = (v ~ VFge)" (Compv + H ~ VFG-MDS~) 
mesucc(Af (v ) )  ~ . . . .  (~) ~(~) = m  

The Transformation (of the Straightforward Approach) Let VFG-US* 
and VFG-MDS* denote the greatest solutions of the Equation Systems 4 and 
5. The analogy with the syntactic setting is continued by the specification of 
the semantic CM-transformation, called Sem-CMstrght. It is essentially given by 
the set of insertion and replacement points. Insertion of an abstract value v 
means to initialize a fresh temporary with a minimal representative t' of v, i.e., 
containing a minimal number of operators, on the flow-graph edges leaving node 
H(v). Replacement means to replace an original computation by a reference to 
the temporary storing its value. 

Insertv r VFG-MDS: �9 ((v 6 VFNs) + ~ VFG-MDS~ + VFG-US~) 
~Epred(v)  

Replace v r Compv 

Managing and reinitializing temporaries: In the syntactic setting, there is for 
every term pattern a unique temporary, and these temporaries are not interact- 
ing with each other: the values computed at their initialization sites are thus 
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propagated to all their use sites, i.e., the program points containing an original 
occurrence of the corresponding term pattern, without requiring special care. 
In the semantic setting propagating these values requires usually to reset them 
at certain points to values of other temporaries as illustrated in Figure 2(b). 
The complete process including managing temporary names is accomplished by 
a straightforward analysis starting at the original computation sites and follow- 
ing the value-graph edges in the opposite direction to the insertion points. The 
details of this procedure are not recalled here as they are not essential for the 
point of this article. They can be found in [20, 21]. 

Second-Order  Effects: In contrast to the syntactic setting, the straightforward 
semantic counterpart Sem-CMstrght has second-order effects. This is illustrated 
in Figure 5: applying Sem-CMstrght to the program of Figure 5(a) results in 
the program of Figure 5(b). Repeating the transformation again, results in the 
optimal program of Figure 5(c). 

Fig. 5. Iliustrating Second-Order Effects 

Intuitively, the reason that Sem-CMstrght has second-order effects is that 
safety is no longer the sum of up-safety and down-safety. Above, up-safety is 
only computed with respect to original computations. While this is sufficient 
in the syntactic case, it is not in the semantic one as it does not take into 
account that the placement of computations as a result of the transformation 
may make "new" values available, e.g. in the program of Figure 5(b) the value 
of a + b becomes available at the end of the program fragment displayed. As a 
consequence, total redundancies like the one in Figure 5(b) can remain in the 
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program. Eliminating them (TRE) as illustrated in Figure 5(c) is sufficient to 
capture the second-order effects completely. We have: 

Theorem 3 (Sem-CMstrgh~). 

1. Sem-CMstrght relies on only two uni-directional analyses. 
2. Sem-CMs~rght has second-order effects. 
3. Sem-CMs~rgh~ /ollowed by TRE achieves computationally motion-optimal 

results wrt the Herbrand interpretation like its bidirectional precursor o/ 
[20]. 

4.2 Avoiding Second-Order Effects: The Hierarchical Approach 

The point of this section is to reestablish as a footing for the algorithm a notion 
of safety which can be characterized as the sum of up-safety and down-safety. 
The central result here is that  a notion of safety tailored to capture the idea 
of "motion" (in contrast to "placement") can be characterized by down-safety 
together with the following hierarchical notion of up-safety: 

Equation System 6 ("Hierarchical" VFG-Up-Safety) 

VFG-MUSv = VFG-MDS~ + (u ~ VFN,) . H VFG-MUS. 
#6pred(v) 

In fact, the phenomenon of second-order effects can now completely and elegantly 
be overcome by the following hierarchical procedure: m 

1. Compute down-safety (cf. Equation System 5). 
2. Compute the modified up-safety property on the basis of the down-safety 

computation (cf. Equation System 6). 

The transformation Sem-CMHi~r of the Hierarchical Approach is now defined as 
before except that  VFG-MUS* is used instead of VFG-US*. Its results coincide with 
those of an exhaustive application of the CM-procedure proposed in Subsection 
4.1, as well as of the original (bidirectional) CM-procedure of [20]. However, in 
contrast to the latter algorithm, which due to its bidirectionality required a com- 
plicated correctness argument, the transformation of the hierarchical approach 
allows a rather straightforward link to the Herbrand semantics, which drastically 
simplifies the correctness proof. Besides this conceptual improvement, the new 
algorithm is also easier to comprehend and to implement as it does not require 
any bidirectional analysis. We have: 

Theorem 4 (Sem-CMHier). 

1. Sem-CMHier relies on only two uni-directional analyses sequentially ordered. 
2. Sem-CMHier is free of second-order effects. 
3. Sem-CMHier achieves computationally motion-optimal results wrt the Her- 

brand interpretation like its bidirectional precursor of [20]. 

11 The "down-safety/earliest" characterization of [12] was also already hierarchical. 
However, in the syntactic setting this is not relevant as it was shown in [13]. 
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5 S e m a n t i c  C o d e  P l a c e m e n t  

In this section we are concerned with crossing the frontier marked by semantic 
CM towards to semantic CP, and giving theoretical and practical reasons for the 
fact that no algorithm has gone beyond this frontier so far. On the theoretical 
side (I), we prove that computational optimality is impossible for semantic CP in 
general. On the practical side (II), we demonstrate that down-safety, the handle 
for correctly and profitably placing computations by syntactic and semantic CM, 
is inadequate for semantic CP. 

(I) No Opt ima l i ty  in General :  Semantic CP cannot be done "computation- 
ally placement-optimal" in general. This is a significant difference in comparison 
to syntactic and semantic CM, which have a least element with respect to the 
relation "computationally better" (cf. [13, 20]). In semantic CP, however, we are 
faced with the phenomenon of incomparable minima. This is illustrated in the 
example of Figure 6 showing a slight modification of the program of Figure 3. 
Both programs of Figure 6 are of incomparable quality, since the "right-most" 
path is improved by impairing the "left-most" one. 

a) b) 

: =  : =  

I I 

Fig. 6. No Optimality in General: An Incomparable Result due to CP 

(II) Inadequa teness  of  Down-safe ty :  For syntactic and semantic CM, down- 
safe program points are always legal insertion points. Inserting a computation at 
a down-safe point guarantees that it can be used on every program continuation. 
This, however, does not hold for semantic CP. Before showing this in detail, we 
illustrate the difference between "placable" V_fiG-down-safety (VFG-DownSafe) 
and "movable" V/~-down-safety (VFG-M-DownSafe) by means of Figure 7 
which shows the difference by means of the value-flow graph corresponding to 
the example of Figure 3. 

We remark that the predicate VFG-DownSa/e is decidable. However, the 
point to be demonstrated here is that this property is insufficient anyhow in 
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Fig. 7. The Corresponding Value-Flow Graph 

order to (straightforwardly) arrive at an algorithm for semantic CP. This is 
illustrated by Figure 8 showing a slight modification of the program of Figure 
6. Though the placement of h := a + b is perfectly down-safe, it cannot be used 
at all. Thus, impairing the program. 

a) b) 

:= 

Fig. 8. Inadequateness of Down-Safety: Degradation through Naive CP 

S u m m a r y :  The examples of Figure 3 and of this section commonly share that 
they are invariant under semantic CM, since a + b cannot safely be moved to 
(and hence not across) the join node in the mid part. However, a+b can safely be 
placed in the left branch of the upper branch statement. In the example of Fig- 
ure 3 this suffices to show that semantic CP is in general strictly more powerful 
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than semantic CM. On the other hand, Figure 6 demonstrates that "compu- 
tational optimality" for semantic CP is impossible in general. While this rules 
out the possibility of an algorithm for semantic CP being uniformly superior to 
every other semantic CP-algorithm, the inadequateness of down-safety revealed 
by the second example of this section gives reason for the lack even of heuristics 
for semantic CP: this is because down-safety, the magic wand of syntactic and 
semantic CM, loses its magic for semantic CP. In fact, straightforward adap- 
tions of the semantic CM-procedure to semantic CP would be burdened with 
the placing anomalies of Figures 6 and 8. We conjecture that a satisfactory so- 
lution to these problems requires structural changes of the argument program. 
Summarizing, we have: 

T h e o r e m  5 (Semantic  Code P lacement ) .  

1. Semantic CP is strictly more powerful than semantic CM. 
2. Computational placement-optimality is impossible in general. 
3. Down-safety is inadeqate for semantic CP. 

6 C o n c l u s i o n  

We have re-investigated semantic CM under the perspective of the recent de- 
velopment of syntactic CM, which has clarified the essential difference between 
the syntactic and the semantic approach, and uncovered the difference of CM 
and CP in the semantic setting. Central for the understanding of this difference 
is the role of the notion of safety of a program point for some computation. 
Modification of the considered notion of safety is the key for obtaining a trans- 
fer of the syntactic algorithm to the semantic setting which captures the full 
potential of motion algorithms. However, in contrast to the syntactic setting, 
motion algorithms do not capture the full potential of code placement. Actually, 
we conjecture that there does not exist a satisfactory solution to the code place- 
ment problem, unless one is prepared to change the structure of the argument 
program. 
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