
Recursive Object Types
in a Logic of Object-Oriented Programs

K. Rustan M. Leino

Digital Equipment Corporation Systems Research Center
130 Lytton Ave., Palo Alto, CA 94301, U.S.A.

http://www.research.digital.com/SRC/people/Rustan_ Leino

Abstract. This paper formalizes a small object-oriented programming notation.
The notation features imperative commands where objects can be shared (aliased),
and is rich enough to allow subtypes and recursive object types. The syntax, type
checking rules, axiomatic semantics, and operational semantics of the notation
are given. A soundness theorem showing the consistency between the axiomatic
and operational semantics is also given. A simple corollary of the soundness the-
orem demonstrates the soundness of the type system. Because of the way types,
fields, and methods are declared, no extra effort is required to handle recursive
object types.

0 Introduction

It is well known that C.A.R. Hoare's logic of the basic commands of imperative, pro-
cedural languages [9] has been useful in understanding imperative languages. Object-
oriented programming languages being all the rage, one is surprised that the literature
has not produced a corresponding logic for modern object-oriented programs. The con-
trol structures of object-oriented programs are similar to those treated by Hoare, but
the data structures of object-oriented programs are more complicated, mainly because
objects are (possibly shared) references to data fields.

This paper presents a logic for an object-oriented programming notation. In an early
attempt at such a logic, Leavens gave an axiomatic semantics for an object-oriented
language [11]. However, the language he used differs from popular object-oriented lan-
guages in that it is functional rather than imperative, so the values of the fields of objects
cannot be changed. America and de Boer have given a logic for the parallel language
POOL [4]. This logic applies to imperative programs with object sharing (sometimes
called aliasing), but without subtyping and method overriding. In a logic that I will refer
to as logic AL, Abadi and I defined an axiomatic semantics for an imperative, object-
oriented language with object sharing [2], but it does not permit recursive object types.
Poetzsch-Heffter and Mtiller have defined (but not proved sound) a Hoare-style logic
for object-oriented programs that remove many of the previous limitations [18]. How-
ever, instead of following the standard methodological discipline of letting the designer
of a method define its specification and then checking that implementations meet the
specification, the specification of a method in the Poetzsch-Heffter and Miiller logic is
derived from the method's known implementations. The present logic deals with im-
perative features, subtyping, and recursive object types.

171

The literature has paid much attention to the type systems of object-oriented lan-
guages. Such papers tend to define some notion of types, the commands of some lan-
guage, the type rules and operational semantics for the commands, and a soundness
theorem linking the type system with the operational semantics. (Several examples of
this are found in Abadi and Cardelli's book on objects [1].) But after all that effort,
one still doesn't know how to reason about the programs that can be written with the
provided commands, since no axiomatic semantics is given. In addition to giving a pro-
gramming notation and its axiomatic semantics, this paper, like the paper describing
logic AL, gives an operational semantics and a soundness theorem that links the opera-
tional semantics with the axiomatic semantics. The soundness theorem directly implies
the soundness of the type system.

A complication with type systems is that types can be recursive, that is, an object
type T may contain a field of type T or a method whose return type is T. The literature
commonly treats recursive data types by introducing some sort of fix-point operator
into the type system, good examples of which are a paper by Amadio and Cardelli
on recursive types and subtypes [3] and the book by Abadi and Cardelli. By treating
types in a dramatically different way, the present logic supports recursive object types
without the need for any special mechanism like fix-points. The inclusion of recursive
object types is one main advantage of the present logic over logic AL, which does
not allow them. (The other main advantage over logic AL is that the present logic can
be used with any first-order theory.) Because the given soundness theorem implies the
soundness of the type system, the present work contributes also to the world of type
systems.

In difference to the paper by Amadio and Cardelli, which considers unrestricted
recursive types, the type system in the present paper uses a restriction along the lines
of name matching. In particular, types are simply identifiers, and the subtype relation
is simply a given partial order among those identifiers. This is much like the classes
in Java [8] or the branded object types in Modula-3 [17]. But in contrast to languages
like Java or Modula-3, fields and methods are declared separately from types in the
language considered in this paper. (This is also done in Cecil [5] and Ecstatic [13].) Not
only does this simplify the treatment without loss of applicability to languages like Java
and Modula-3, but it also makes explicit the separation of concerns. For example, as the
logic shows, having to know all the fields of a particular object type is necessary only
for the allocation of a new object.

Furthermore, when a field or method is declared at some type T, each Subtype of
T automatically acquires, or inherits, that field or method. Consequently, one gets be-
havioral subtyping for free, something that can also be achieved by the inheritance dis-
cipline considered by Dhara and Leavens [6]. In contrast, subtype relations frequently
found in the literature (including the subtype relation used in logic AL), involves the
fields and methods of types. In such treatments of types, one often encounters words
like "co-variant"; there will be no further occurrence of such words in this paper.

The rest of this paper is organized as follows. Section 1 relates the present logic to
some work that has influenced it. Section 2 describes the declarations that can be used in
program environments, and Section 3 describes the commands: their syntax, axiomatic
semantics, and operational semantics. Section 4 discusses an example program. Then,

172

Section 5 states the soundness theorem. Section 6 discusses some limitations of the
logic, and the paper concludes with a brief summary.

1 Sources of Influence

My work with Abadi has inculcated the present logic with its style and machinery.
The present logic also draws from other sources with which I am quite familiar: my
thesis [12], my work on an object logic with Nelson [15], and the Ecstatic language [13].
This section compares the features of these sources of influence with the features of the
present logic.

My thesis includes a translation of common object-oriented language constructs into
Dijkstra's guarded commands, an imperative language whose well-known axiomatic
semantics is given in terms of weakest preconditions [7]. My attempt at an object
logic with Nelson is also based on guarded commands, and Ecstatic is a richer object-
oriented programming language defined directly in terms of weakest preconditions.
Types, fields, and methods in these three sources are declared in roughly the same
way as in the present logic. While these sources do provide a way to reason about
object-oriented programs, they take for granted the existence of an operational seman-
tics that implements the axiomatic semantics. The present paper includes an operational
semantics for the given commands, and establishes the correctness of the operational
semantics with respect to the axiomatic semantics by proving a soundness theorem.

Like logic AL, the present logic has few and simple commands. Each command in
logic AL operates on an object store and produces a value placed in a special register
called r . In the present logic, commands are allowed to refer to the initial value of
that register, which simplifies many of the rules. (It also makes the commands "cute".)
Another difference is that the present logic splits logic AL's let command into two
commands: sequential composition and binding. The separation works well because
the initial value of register r can be used. Perhaps surprisingly, another consequence
of using the initial value of r is that the present logic manages fine without Abadi and
Cardelli's ff binder that appears in logic AL to bind a method's self parameter.

2 Environments

This section starts defining the logic by describing program environments and the dec-
larations that a program environment can contain.

A program environment is a list of declarations. A declaration introduces a type, a
field, or a method.

An identifier is said to be declared in an environment if it is introduced by a type,
field, or method declaration in the environment, or if it is one of the built-in types. I
write x r E to denote that identifier x is not declared in environment E .

The judgement E ~ <> says that E is a well-formed environment. The empty list,
written 0 , is a valid environment.

Empty Environment

01-<>

173

The next three subsections describe types, fields, and methods, and give the remaining
rules for well-formed environments.

2.0 Types

A type is an identifier. There are two built-in types, Boolean and Object. (Other types,
like integers, can easily be added, but I omit them for brevity.) Types other than Boolean
are called object types. A new object type is introduced by a subtyping pair, which has
the form T<:U, where T is identifier that names the new type, and U is an object
type. Like in Java, Object denotes the root of the class hierarchy. The analogue of
a subtyping pair T<:U in Java is a class T declared as a subclass of a class U:
class T extends U { . . . }.

A type is said to be declared in an environment if it is Boolean, Object, or if it oc-
curs as the first component of a subtyping pair. To express this formally, the judgement
E l-type T says that T is a type in environment E , and the judgement E l-obj T says
that T is an object type in E . The rules for these judgements are as follows. Here and
throughout this paper, I use T and U , possibly subscripted, to denote types.

Types in Environments Declared Types

E l-obj U T q[E E l- o

(E, T < : U) l- o E l-obj Object

(l-type, l-obj)

(E, T< :U , E ~) l- o

(E, T< :U, EO l-obj T

E l - o E l-obj T

E]'type Boolean E l-type T

The reflexive, transitive closure of the subtyping pairs forms a partial order called
the subtyping order. The judgement E l- T <: U says that T and U are types in E
that are ordered by the subtyping order. Type T is then said to be a subtype of U. The
rules are:

Sub typ ing O r d e r (b- <:)

E t-type T (E, T<:U, E') l- o

E l - T <: T (E ,T<:U,E ') I - T <: U

E F To <: T1 E I- T1<: T2

E I- To < : T2

2.1 Fields

A field is a map from an object type to another type. A field f is introduced by afield
triple, written I: T ~ U, where f is the identifier that names the field, T is an object
type called the index type of f, and U is a type called the range type of t . The analogue
of a field triple f: T ~ U in Java is an instance variable f of type U declared in a
class T: classT{ . . . Uf; . . . }.

An environment can contain field triples. A field i is said to be declared in an
environment E if it occurs in some field triple f: T ~ U in E . This is expressed by
the judgement E l-fieta f: T ~ U . The rules for these judgements are as follows. Here
and throughout, I use I , possibly subscripted, to denote field names.

174

Fields in Environments Declared Fields ([-field)

E [-obj T E [-type U f ~[E (E, f: T --~ U, E') [- <>

(E, f: T--> U)[-<> (E , f :T - -> U,E')[-y~eldf:T-+ U

For a type To declared in an environment E , the set offields of To in E , written
Fields(To, E) , is the set of all field triples f: T -+ U such that E [-fi~ld f: T ---> U and
E [- To < : T.

2.2 Methods

A method quadruple has the form m: T --~ U : R, where m is an identifier denoting
a method, T is an object type, U is a type, and R is a relation. The analogue of a
method quadruple m: T -+ U : R in Java is a method m with return type U declared
in a class T and given a specification R: class T { . . . U m () {...} . . . }. Note that
the Java language does not have a place to write down the specification of a method.
In the present language, the declaration of a method includes a specification, which
specifies the effect of the method as a relation on the pre- and post-state of each method
invocation. Note also that methods take no parameters (other than the object on which
the method is invoked, an object commonly referred to as self). This simplifies the
logic without losing theoretical expressiveness, since parameters can be passed through
fields.

An environment can contain method quadruples. A method m is said to be declared
in an environment E if it occurs in some method quadruple m: T ~ U : R in E . This
is expressed by the judgement E [-method m: T ---> U : R. Formally, the rules are as
follows. I use m , possibly subscripted, to denote methods.

Methods in Environments

E [-obj T E [-tyv~ U
E, 0 [-~eZ R m r E

(E, m: T - + U:R)[-<>

Declared Methods ([-method)

(E, m: T ---~ U:R,E')[-<>

(E, m: T ~ U : R, E I) [-method m: T ---r U : R

The judgement E, 0 [-rel R, which will be described in more detail in Section 3.1,
essentially says that R is a relation that may mention fields declared in E but doesn' t
mention any local program variables.

For a type To declared in an environment E , the set of methods of To in E ,
written Methods(To, E), is the set of all method quadruples m: T ~ U : R such that
E [-method m : T ---> U : R and E [- To <: T .

2.3 Relat ions

Methods are specified using relations. A relation is an untyped first-order predicate on
a pre-state and a post-state. In order to make relations expressive, the present logic can
be used with an underlying logic, which provides a set of function symbols and a set of
first-order axioms about those function symbols. The example in Section 4 shows how
an underlying logic may be used.

Syntactically, relations are made up only of:

175

- the constants f a l s e , t rue , and nil ;
- constants for field names, and the special field a l lo t ;
- the special variables ~', #, &, 6 ;
- other variables (I will write v to denote a typical variable);
- equality between terms;
- applications of the functions select and store ;
- applications of the functions of the underlying logic;
- the usual logical connectives -1, /x , and u

The grammars for relations (R) and terms (e) are thus:

R : : = e o = e l I ~R I RoAR1 I (Vx :: R)
e : := fa l se J true I nil J f I r J i" I & I 6 I v

I select(eo, el, e2) I store(eo, el, e2, e3)
I pa(eo e ~ - l) I "'" I pz(eo e~z-1) ,

where pa p z denote the function symbols of the underlying logic with arities
ka k z , respectively. It will be convenient to also allow 5 , v , =~ , r ,

- : , and 3 as the usual abbreviations of the operators above.
The semantics of a command (program statement) is defined in terms of a relation

on a register and a (data) store, together called a state. The variables ~" and ~ denote
the register in the pre- and post-states of the command, respectively, and & and 6
denote the store in those respective states. The value of a field f of an object e in
a store a is denoted select(a, e, f) . The expression store(a, eo, f, el) represents the
store that results from setting the f field of object eo in store a to the value el �9 The
relationship between select and store is defined as follows.

(u eo, el, f0, fl, e ::
select(s tore(a, eo, f0, e), e0, fo) = e A (o)
(e o # e l v f o # f l

select(s tore(a, eo, fo, e), el, fl) = select(a, el, fl)))

The special field alloc is used to record which objects in the data store have been
allocated; the alloc field of an object is fa l se until the object is allocated, and is true
from there on.

As we shall see, the logic allows relations to be rewritten. A rewriting uses the rules
of logic and some axioms. In particular, a rewriting may use as axioms the definition of
select and store (0), the distinctness of the boolean values and the distinctness of field
name constants:

f a l se ~ true (1)
all field name constants (including al lot) are distinct (2)

and the axioms of the underlying logic.

3 Commands

This section describes commands: their syntax, their axiomatic semantics, and their
operational semantics.

176

3 .0 S y n t a x

A command has a form dictated by the following grammar.

a : : =

C : : :

c constant
v local variable
ao ~ al conditional
a t ; al composition
with v: T do a binding
[T: fi = ci i~I, mj = aj J~J] object construction
f field selection
f := v field update
m method invocation
false l true I nil

Informally, the semantics of the language is as follows. (Recall from the previous
section that commands operate on a register and a store.)

- The constants fa lse , true, and nil evaluate to themselves. That is, they have the
effect of setting the register to themselves.

- A local variable is an identifier introduced via a binding command. Every local
variable is immutable: once bound (using with, see below), the value of a local
variable cannot be changed. A local variable evaluates to its value.

- The conditional command evaluates a0 if the register is initially fa lse , and evalu-
ates al if the register is initially true. Note that the guard of the conditional is not
shown explicitly in the command; rather, the initial value of the register is used as
the guard.

- The sequential composition of a0 and al first evaluates a0 and then evaluates
al �9 The final values of the register and store in the evaluation of a0 are used as
the initial values of the register and store in the evaluation of a l . Composition
is usually written a t ; a l , but to keep the language looking like popular object-
oriented languages, I also allow the alternative syntax a0. al (see examples below).

- The binding command with v: T do a introduces a local variable v for use in a . Its
evaluation consists in evaluating a with v bound to the initial value of the register.

- The command [T: fi = ci iet, mj = ~ Je]] constructs a new object of type T ,
and sets the register to (a reference to the fields and methods of) the object. The
command must list every field f, from the set of fields of T . The initial value
for field fi is the given constant ci. The command must also list every method
mj from the set of methods of T . The implementation of method mj for the new
object is given as the command 4 , which receives self as the initial value of the
register and returns the method result value as the final value of the register. The
command aj cannot reference local variables other than those it declares.

- A field can be selected (f) and updated (f := v). Both operate on the object ref-
erenced by the initial value of the register. Selection sets the register to the f field
of the object. Update sets the f field of the object to the value of v , leaving the
register unchanged.

177

- The method invocation m finds the implementation of method m for the object
referenced by the initial value of the register, and then proceeds to evaluate that im-
plementation. The evaluation of the implementation begins with the initial register
and store values of the invocation, and the invocation ends with the final register
and store values of the evaluation of the implementation. Other than the initial and
final register values (which encode self and the result value, respectively), a method
does not have explicit parameters; instead, parameters can be passed via the fields
of the object.

Here are some examples that compare the present commands with programs written
in other languages. The Modula-3 program statement i f b then S else T end is writ-
ten as the command b ; (T <t> S) . The Modula-3 expression new(T, f :----- true).f ,
where T is an object type with one field f and no methods, is written as the com-
mand [T : f = true] ; f , or with the alternative syntax for composition, the com-
mand is written [T : f = true].f. The Modula-3 program x.f := true is written
true ; with v: Boolean do x.f := v .

As an example of object sharing, the command

[T: f = c] ; with v: T do with w: T do (v.f := y ; w.f)

allocates a new T object whose f field is set to c , creates two references to the object
(v and w), updates the object 's f field via v , and reads f back via w, returning y .

The following example shows the construction of a T object whose method or
computes the disjunction of fields x and y :

[T: x =fa l se , y =fa l se , or = with self: T do (x ; (self .y <> true))]

Note that although primitive, the programming notation is expressive enough to
admit common object-oriented languages features like object construction, method in-
vocation, and object sharing. The programming notation is kept minimal in order to
simplify the associated rules.

3.1 Axiomatic Semantics

This subsection gives the axiomatic semantics of the commands. The judgement

E, V t - a : T - - - ~ U : R

says that command a in command environment (E, V) can be started in a state where
the register contents has type T, and terminates in a state where the register contents
has type U. The execution of a is such that its pre- and post-states satisfy the relation
R. The rules of the axiomatic semantics double as type checking rules, because with a
trivial R (such as ~" = ~"), the judgement expresses what it means for command a to
be well-typed.

Before giving the axiomatic semantics, some other definitions and rules pertaining
to constants, local variables, and command environments are in order.

There are three constants: fa l se , true, and nil . The judgement E ~-const c: T ex-
presses that constant c has type T .

178

Type of Constants (t-to,st)

Et-<> El-<> E t -ob jT

E I--const false: Boolean E t-const true: Boolean E t-const nil: T

A local variable declaration has the form v: T, where v is an identifier denoting a
local variable and T is a type. A command environment is a pair (E, V), where E is
a program environment and V is a list of local variable declarations. A local variable
v is said to be declared in a command environment (E, V) if it occurs in some local
variable declaration v: T in V. This is expressed by the judgement E, V t-vat V: T .
Thus, in a command environment (E, V), E contains declarations of types, fields, and
methods, whereas V contains declarations of local variables. This separation allows a
simple characterization of a command environment without local variable declarations:
(E, 0) . We saw this in the "Methods in Environments" rule in Section 2.2, and we will
see it in the "Object Construction" rule below and in Theorems 0, 1, and 2 in Section 5.

The judgement

E, V t-rel R

says that R is a relation whose free variables are fields or local variables declared in
(E, V), or are among the special fields and variables a l lo t , ~, ~, &, and 6 . The
obvious formal rules for this judgement are omitted. Thus, the judgement E, 0 t-rel R
used in the hypothesis of the "Methods in Environments" rule in Section 2.2 implies
that R does not mention local variables.

I write x r (E, V) to denote that identifier x is not declared in command environ-
ment (E, V). The formal rules of the above are then:

Well-formed C o m m a n d Environment Declared Local Variables (t-var)

E t- <> E, V t- <> v f[(E, V) E t-type T E, (V, v: T, V') t- <>

E, 0 t- <> E, (V, v: T) t- <> E, (V, v: T, V') t-vat v: T

Now for the rules of the axiomatic semantics. There is one rule for each command,
and one subsurnption rule.

Subsumption E, V t- a : 7'1 --+ T2 : R

E t- To < : T! E t- T2 < : T3 t-fol R =#. R' E, V t-ret R'

E, V t- a : To ---> T3 : R'

The judgement t-for P represents provability in first-order logic, under axioms (0), (1),
and (2) from Section 2.3 and the axioms of the underlying logic.

Constant Local Variable

E, V t- <> E t-const C: T E t-type U E, V t-var V: T E ['-type U

E, V t - c : U - + T : i ' = c A & = 6

Condit ional

E, V t- at : Boolean --+ T : Ro

E, V t - v : U - + T : / ' = v A 6 = 6

E, V t- al : Boolean --~ T : RI

E, V t- ao ,r al : Boolean --+ T : (~ = fa l s e ~ Ro) A (~ = true =~ RI)

179

Composi t ion

E, V [- ao : To --> TI : Ro E, V [- al : T1---+ T2 : R1
~" and 6" do not occur free in R0 or RI

E, V [- a o ; al : To ~ T 2 : (3~ ' , o" :: Ro[[' ,6 :---- r , o'] m RI[~', & : = ~ ,6])

Binding E, (V, v: T) [- a : T -+ U : R

E, V [- with v: T do a : T --~ U : R[v := ~]

Object Construction

E, V [- <> E [--type U E [-oh: T
fi: Ti ~ Ui l~l are the elements of Fields(T, E) E [-const Ci: Ui i~l
mj:Tj--+ Uj : RjJ~S a r e t h e e l e m e n t s o f M e t h o d s (T , E) E ,O [- aj : T---~ Uj : Rj j~J

E, V [- [T: fi = ci i~I, mj : aj je l l : U --~ T : : ~ nil m
select (b , :, al lot) = f a l s e A 6 = s tore(. . . (s tore(b, k, alloc, true), :, fi, ci) i~l

F i d d Selection Field Update

E, V [- <> E [-'field f: T --~ U E [-'field f: To ~ Uo
E, V [- f : T - + U : E, V [-var v: U1

VA nil ~ ~ = select(&, ~, 1) A b = 6

Method Invocation

E [- T1 <:To
E [- UI < : U o

E, V [- f := v : TI -+ TI :
~" ~ nil ~ ? =/" A 6 = store(&, ~, f, v)

E, V [- <> E [-method m: T ~ U : R

E, V [- m : T ---r U : ? v~ nil =:~ R

3.2 Operational Semantics

The operational semantics is defined by the judgement

r, ~r, tz, S [- a r', crt, tz '

It says that given an initial operat ionalstate (r, or,/z) and stack S , executing command
a terminates in operational state (r ' , or ' , /z ') . Operational states are triples whose first
two components correspond to the register and data store components of states, as de-
fined above. The third component is a method store. Let 7-/ denote a set of given object
names. A stack is a partial function from local variables to 7-/U {false, true, nil}. A
me thod store is a partial function /~ from 7 / , such that

- /z(h)(type) is the allocated type of object h , and
- /z (h) (m) , if defined, is the implementation of method m of object h .

A store pa i r is a pair (~r,/z) where cr is a data store and /z is a method store.
In addition to keeping the method implementations of objects, the method store

keeps the allocated type of objects. The operational semantics records this information
as it allocates a new object, but doesn ' t use it subsequently. The information is used only

180

to state and prove the soundness theorem. By conveniently recording this information
in the operational semantics, where it causes no harm, one avoids the use of a store type
(cf [2]). The result is a simpler statement and proof of soundness.

To save space, I omit the rules for the operational semantics. They can be found in
a SRC Technical Note [14].

4 Example

In this section, I show an example of a program that can be proved in the logic.
Let us consider a linked-list type with a method that appends a list to another. Rea-

soning about a program with such a type requires reasoning about reachability among
linked-list nodes. To this end, we assume the underlying logic to contain a function
symbol Reach (adapted from Greg Nelson's reachability predicate [16]). Informally,
Reach(eo, el, a, f, e2) is true whenever it is possible to reach from object e0 to object
el via applications of f in a , never going through object e2.

The example in this section assumes that the underlying logic contains the following
two axioms, which relate Reach to select and store, respectively.

(u el, a, f, e2 :: Reach(eo, el, a, f, e2) = true --
eo = el v (eo ~ e2/x Reach(select(g, eo, f), el, a , f, e2) = true)) (3)

(Ve0, el, a, f0, e2, fl, e3, e4 :: f0 ~ fl =~
Reach(eo, el, a, f0, e2) = Reach(eo, el, store(g, e3, fl, e4), f0, e2)) (4)

Axiom (3) resembles Nelson's axiom A1 and says that every object reaches itself, and
that eo reaches el if eo is not e2 and e0.f reaches el �9 Axiom (4) says that whether
or not e0 reaches el via f0 is independent of the values of another field fl �9

The example uses the following environment, which I shall refer to as E :

Node < : Object next: Node --~ Node
appendArg: Node --~ Node append: Node --* Node : R

where R is the relation

? r nil Reach(h, ~, b, next, nil)/x select(b, k, next) = nil/x
select(b, i', next) = select(b, ~, appendArg) A
(u o, f :: select(&, o, f) = select(6, o, f) v

(o = k ^ f = next) v f = a p p e n d A r g)

Informally, this relation specifies that the method store its argument (which is passed in
via the appendArg field) at the end of the list linked via field nex t . More precisely,
the relation specifies that the method find an object k reachable from ~" (self) via the
next field such that k.next is nil. The method is to set k.next to the given argument
node. The method can modify ~.next and can modify the a p p e n d A r g field of any
object (since this field is used only as a way to pass a parameter to append anyway),
but it is not allowed to modify the store in any other way.

To present the example code, I introduce a new command, isnil, which tests whether
or not the register is nil.

181

Nil Test E, V F- <> E ~obj T

E, V ~- isnil : T --* Boolean :
(~ : nil ~ ~ = true) A (~ ~ nil ~ ~ = false) /x & = 6

(Section 6 discusses expression commands such as nil tests.) To write the program
text, I assume the following binding powers, from highest to lowest: := ; <t>
with . . . do. Now, consider the following command.

[Node: next = nil, appendArg = nil,
append = with self: Node do appendArg ; with n: Node do

sel f .next ; isnil ; (5)
(self.next.appendArg := n ; append
<> self.next := n ; self)]

This command allocates and returns a Node object whose next and appendArg
fields are initially nil . The implementation of append starts by giving names to
the self object and the method's argument. Then it either calls append recursively
on se l f .next or sets sel f .next to the given argument, depending on whether or not
se l f .nex t is nil.

With axioms (3) and (4) in the underlying logic, one can prove the following judge-
ment about the given allocation command.

E, 0 ~- (5) : Object ~ Node : ~" = ~" (6)

Though the relation in this judgement (~ = ?) is trivial, establishing the judgement
requires showing that the given implementation of append satisfies its declared spec-
ification. I omit the proof, which is straightforward.

I conclude the example with three remarks. First, remember that to reason about a
call to a method, in particular the recursive call to append, one uses the specification
of the method being called, not its implementation. This makes the reasoning indepen-
dent of the actual implementation of the callee, which may in fact even be a different
implementation than the one shown.

Second, remember that only partial correctness is proved. That is, judgement (6)
says that i f the method terminates, its pre- and post-states will satisfy the specified
relation. Indeed, an invocation of method append on an object in a cyclic structure of
Node objects will not terminate.

Third, the static type of the field sel f .next and the argument self.appendArg is
Node , but the dynamic types of these objects in an execution may be any subtype of
Node. Note, however, that judgement (6) is independent of the dynamic types of these
objects. Indeed, having established judgement (6) means that the method works in every
execution. This is because the logic is sound, as is shown in the next section.

5 Soundness

This section states a soundness theorem, which proves the correctness of the operational
semantics with respect to the axiomatic semantics. I first motivate the soundness the-
orem, and then state it together with an informal explanation. Some additional formal
definitions and the proof itself are found in a SRC Technical Note [14].

182

As a gentle step in presenting the full soundness theorem, consider the following
theorem.

Theorem 0. If one can derive both E, 0 k- a : Object ~ Boolean : ~ = true and

nil, go, 0, 0 F- a ..~ r, g, Iz , then r = t rue .

Here and in the next two theorems, g0 denotes a data store that satisfies (Vh e
7-t :: select(go, h, alloc) -- f a l se) , and 0 denotes the partial function whose do-
main is empty. The theorem says that if in an environment E one can prove that a
command a satisfies the transition relation ~ ---- t rue , then any terminating execution
of command a from a "reset" state ends with a register value of t rue .

A simple theorem about the result type of a command is the following.

Theorem 1. If one can derive E, 0 t- a : Object -+ T : R and E f-obj T and
nil, go, 0, 0 t- a -,-* r, g, I z , then the value r has type T , that is, either r = ni l or
E t - /z (r) (type) <: T .

This theorem says that if one can prove, using the axiomatic semantics, that a command
a has final type T, where T is an object type, and one can show that, operationally,
the program terminates with a register value of r , then r is a value of type T (that is,
it is nil or its allocated type is a subtype of T). This theorem shows the soundness of
the type system's treatment of object types.

An interesting theorem that says something about the final object store of a program
is the following.

Theorem 2. If one can derive both E, 0 t- a : Object ~ T : R and nil, tro, 0, 0 t-
a ---* r, g , / z , then R[~', &, k, 6 := nil, g0, r, tr] holds as a first-order predicate.

This theorem says that if one can prove the two judgements about a , then relation R
actually describes the relation between the initial and final states.

To prove the theorems above, one needs to prove something stronger. I call the
stronger theorem, of which the theorems above are corollaries, the main theorem. The
theorem is stated as follows.

Main Theorem. If (7) E, V ~- a : T -+ U : R, (8) r, cr,/z, S ~- a -,~ r', g ' , / x ' ,
(9) E, cr,/z IF r : T , (10) E I k g , / z , and (11) E , V , g , / z Ik S; then (12)
r, g, r', r S IF R , (13) (g,/z) -< ((r ' , /~ ') , (14) E, g ' , / z ' IF r' : U, and (15)
E I~- g ' , / z ' .

In the antecedent of this theorem, (7) and (8) express the judgements that have been
derived for some command a . One can hope to say something interesting in the con-
clusion of the theorem only if the execution under consideration is from a "reasonable"
state (r, g, lZ) and uses a "reasonable" stack S. Therefore, judgement (9) states that r
is a value of type T , judgement (10) says that store pair (g,/z) matches the environ-
ment E , and judgement (11) says that S is a wel l - typed stack.

In the conclusion of the theorem, (12) expresses that R does indeed describe the
relation between the initial and final states of the execution, and (14) expresses that r '
has type U. In addition, to use the theorem as a sufficiently strong induction hypothesis
in the proof, (13) says that (g,/x) is cont inued by (g ' , Iz ') . This property expresses a

183

kind of monotonicity that holds between two store pairs, the first of which precedes the
other in some execution. Also, judgement (15) says that (a ' , / z ') , like the initial store
pair, matches the environment.

By removing (12) from the conclusion of the main theorem, one gets a corollary that
expresses that the type system is sound with respect to the operational semantics. Such
a corollary follows directly from the main theorem, but could also be proved directly in
the same way the main theorem is.

6 Limitations of the Logic

The object construction command is rather awkward. Because it lists method imple-
mentations, a method cannot directly construct objects whose type and method imple-
mentations are the same as for self. Instead, one can declare object types representing
classes, as is done, for example, by Abadi and Cardelli [1] (see SRC TN 1997-025 for
an example [14]). One can consider modifying the present logic to remove the lim-
itation from the object construction command. For example, like in common class-
based object-oriented languages, one can extend the program environment to include
method implementations. One must then have a "link-time" check that ensures that ev-
ery method that may be called by the program at run-time has an implementation. Or,
like in common object-based languages, one can add a construct for cloning objects or
their method implementations.

Another omission from the present logic is the ability to compare objects for equal-
ity. Just like one would expect to add primitive types like integers to the present logic,
one would expect to add more general expressions, including comparison expressions.

A logic of programs provides a connection between programs and their specifica-
tions. In the present logic, method declarations contain specifications that are given
simply as transition relations. Transition relations are not practically suited for writing
down method specifications, because they are painfully explicit. Specification features
like modifies clauses and abstract fields would remedy the situation, but lie outside the
scope of this paper. To mention some work in this area, Lano and Haughton [10] have
surveyed object-oriented specifications, and my thesis [12] shows how to deal with
modifies clauses and data abstraction in modular, object-oriented programs. The logic
for POOL [4] includes some specification features that can be used to state properties
of recursive data structures.

7 Summary

I have presented a sound logic for object-oriented programs whose commands are im-
perative and whose objects are references to data fields. The programming notation
requires that types, fields, and methods be declared in the environment before they can
be used in a program. The main contributions of the paper are the logic itself, the sound-
ness theorem, and the way that types are handled, which makes the subtype relation and
the admission of recursive object types trivial.

184

Acknowledgements. I am grateful to Martin Abadi, Luca Cardelli, Greg Nelson, and
Raymie Stata for helpful comments on the logic and the presentation thereof.

References

h Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. Martin Abadi and K. Rustan M. Leino. A logic of object-oriented programs. In Theory

and Practice of Software Development: Proceedings/TAPSOFT '97, 7th International Joint
Conference CAAP/FASE, volume 1214 of Lecture Notes in Computer Science, pages 682-
696. Springer, April 1997.

3. Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on
Programming Languages and Systems, 15(4):575-631, September 1993.

4. Pierre America and Frank de Boer. Reasoning about dynamically evolving process struc-
tures. FormaI Aspects of Computing, 6(3):269-316, 1994.

5. Craig Chambers. The Cecil language: Specification & rationale, version 2.1, March 7, 1997.
Available from http : //www. cs. washington, edu/research/proj ects/ce
cil/www/Papers/cecil-spec, html, 1997.

6. Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through spec-
ification inheritance. Technical Report TR #95-20c, Iowa State University, Department of
Computer Science, 1997.

7. Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ,
1976.

8. James Gosling, Bill Joy, and Guy Steele. The Java T M Language Specification. Addison-
Wesley, 1996.

9. C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576-580,583, October 1969.

10. Kevin Lano and Howard Haughton. Object-Oriented Specification Case Studies. Prentice
Hail, New York, 1994.

11. Gary Todd Leavens. Verifying Object-Oriented Programs that Use Subtypes. PhD the-
sis, MIT Laboratory for Computer Science, February 1989. Available as Technical Report
MIT/LCS/TR-439.

12. K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute
of Technology, January 1995. Available as Technical Report Caltech-CS-TR-95-03.

13. K. Rustan M. Leino. Ecstatic: An object-oriented programming language with an axiomatic
semantics. In The Fourth International Workshop on Foundations of Object-Oriented Lan-
guages, January 1997. Proceedings available from h t t p : //www. c s . i n d i a n a , edu /
hyplan/pierce/fool/.

14. K. Rustan M. Leino. Recursive object types in a logic of oject-oriented programs. Technical
Note 1997-025a, Digital Equipment Corporation Systems Research Center, January 1998.

15. K. Rustan M. Leino and Greg Nelson. Object-oriented guarded commands. Internal
manuscript KRML 50, Digital Equipment Corporation Systems Research Center, March
1995.

16. Greg Nelson. Verifying teachability invariants of linked structures. Conference Record of
the Tenth Annual A CM Symposium on Principles of Programming Languages, pages 38-47,
January 1983.

17. Greg Nelson, editor. Systems Programming with Modula-3. Series in Innovative Technology.
Prentice-Hall, Englewood Cliffs, N J, 1991.

18. Amd Poetzsch-Heffter and Peter Mtiller. A logic for the verification of object-oriented pro-
grams. In R. Berghammer and E Simon, editors, Programming Languages and Fundamen-
tals of Programming. Christian Albrechts-Universit~it Kiel, 1997.

