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Abstract. This paper formalizes a small object-oriented programming notation. 
The notation features imperative commands where objects can be shared (aliased), 
and is rich enough to allow subtypes and recursive object types. The syntax, type 
checking rules, axiomatic semantics, and operational semantics of the notation 
are given. A soundness theorem showing the consistency between the axiomatic 
and operational semantics is also given. A simple corollary of the soundness the- 
orem demonstrates the soundness of the type system. Because of the way types, 
fields, and methods are declared, no extra effort is required to handle recursive 
object types. 

0 Introduction 

It is well known that C.A.R. Hoare's logic of the basic commands of imperative, pro- 
cedural languages [9] has been useful in understanding imperative languages. Object- 
oriented programming languages being all the rage, one is surprised that the literature 
has not produced a corresponding logic for modern object-oriented programs. The con- 
trol structures of object-oriented programs are similar to those treated by Hoare, but 
the data structures of object-oriented programs are more complicated, mainly because 
objects are (possibly shared) references to data fields. 

This paper presents a logic for an object-oriented programming notation. In an early 
attempt at such a logic, Leavens gave an axiomatic semantics for an object-oriented 
language [ 11]. However, the language he used differs from popular object-oriented lan- 
guages in that it is functional rather than imperative, so the values of the fields of objects 
cannot be changed. America and de Boer have given a logic for the parallel language 
POOL [4]. This logic applies to imperative programs with object sharing (sometimes 
called aliasing), but without subtyping and method overriding. In a logic that I will refer 
to as logic AL, Abadi and I defined an axiomatic semantics for an imperative, object- 
oriented language with object sharing [2], but it does not permit recursive object types. 
Poetzsch-Heffter and Mtiller have defined (but not proved sound) a Hoare-style logic 
for object-oriented programs that remove many of the previous limitations [18]. How- 
ever, instead of following the standard methodological discipline of letting the designer 
of a method define its specification and then checking that implementations meet the 
specification, the specification of a method in the Poetzsch-Heffter and Miiller logic is 
derived from the method's known implementations. The present logic deals with im- 
perative features, subtyping, and recursive object types. 
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The literature has paid much attention to the type systems of object-oriented lan- 
guages. Such papers tend to define some notion of types, the commands of some lan- 
guage, the type rules and operational semantics for the commands, and a soundness 
theorem linking the type system with the operational semantics. (Several examples of 
this are found in Abadi and Cardelli's book on objects [1].) But after all that effort, 
one still doesn't know how to reason about the programs that can be written with the 
provided commands, since no axiomatic semantics is given. In addition to giving a pro- 
gramming notation and its axiomatic semantics, this paper, like the paper describing 
logic AL, gives an operational semantics and a soundness theorem that links the opera- 
tional semantics with the axiomatic semantics. The soundness theorem directly implies 
the soundness of the type system. 

A complication with type systems is that types can be recursive, that is, an object 
type T may contain a field of type T or a method whose return type is T.  The literature 
commonly treats recursive data types by introducing some sort of fix-point operator 
into the type system, good examples of which are a paper by Amadio and Cardelli 
on recursive types and subtypes [3] and the book by Abadi and Cardelli. By treating 
types in a dramatically different way, the present logic supports recursive object types 
without the need for any special mechanism like fix-points. The inclusion of recursive 
object types is one main advantage of the present logic over logic AL, which does 
not allow them. (The other main advantage over logic AL is that the present logic can 
be used with any first-order theory.) Because the given soundness theorem implies the 
soundness of the type system, the present work contributes also to the world of type 
systems. 

In difference to the paper by Amadio and Cardelli, which considers unrestricted 
recursive types, the type system in the present paper uses a restriction along the lines 
of name matching. In particular, types are simply identifiers, and the subtype relation 
is simply a given partial order among those identifiers. This is much like the classes 
in Java [8] or the branded object types in Modula-3 [17]. But in contrast to languages 
like Java or Modula-3, fields and methods are declared separately from types in the 
language considered in this paper. (This is also done in Cecil [5] and Ecstatic [13].) Not 
only does this simplify the treatment without loss of applicability to languages like Java 
and Modula-3, but it also makes explicit the separation of concerns. For example, as the 
logic shows, having to know all the fields of a particular object type is necessary only 
for the allocation of a new object. 

Furthermore, when a field or method is declared at some type T,  each Subtype of 
T automatically acquires, or inherits, that field or method. Consequently, one gets be- 
havioral subtyping for free, something that can also be achieved by the inheritance dis- 
cipline considered by Dhara and Leavens [6]. In contrast, subtype relations frequently 
found in the literature (including the subtype relation used in logic AL), involves the 
fields and methods of types. In such treatments of types, one often encounters words 
like "co-variant"; there will be no further occurrence of such words in this paper. 

The rest of this paper is organized as follows. Section 1 relates the present logic to 
some work that has influenced it. Section 2 describes the declarations that can be used in 
program environments, and Section 3 describes the commands: their syntax, axiomatic 
semantics, and operational semantics. Section 4 discusses an example program. Then, 
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Section 5 states the soundness theorem. Section 6 discusses some limitations of the 
logic, and the paper concludes with a brief summary. 

1 Sources of  Influence 

My work with Abadi has inculcated the present logic with its style and machinery. 
The present logic also draws from other sources with which I am quite familiar: my 
thesis [ 12], my work on an object logic with Nelson [ 15], and the Ecstatic language [13]. 
This section compares the features of these sources of influence with the features of the 
present logic. 

My thesis includes a translation of common object-oriented language constructs into 
Dijkstra's guarded commands, an imperative language whose well-known axiomatic 
semantics is given in terms of weakest preconditions [7]. My attempt at an object 
logic with Nelson is also based on guarded commands, and Ecstatic is a richer object- 
oriented programming language defined directly in terms of weakest preconditions. 
Types, fields, and methods in these three sources are declared in roughly the same 
way as in the present logic. While these sources do provide a way to reason about 
object-oriented programs, they take for granted the existence of an operational seman- 
tics that implements the axiomatic semantics. The present paper includes an operational 
semantics for the given commands, and establishes the correctness of the operational 
semantics with respect to the axiomatic semantics by proving a soundness theorem. 

Like logic AL, the present logic has few and simple commands. Each command in 
logic AL operates on an object store and produces a value placed in a special register 
called r .  In the present logic, commands are allowed to refer to the initial value of 
that register, which simplifies many of the rules. (It also makes the commands "cute".) 
Another difference is that the present logic splits logic AL's let command into two 
commands: sequential composition and binding. The separation works well because 
the initial value of register r can be used. Perhaps surprisingly, another consequence 
of using the initial value of r is that the present logic manages fine without Abadi and 
Cardelli's ff binder that appears in logic AL to bind a method's self parameter. 

2 Environments 

This section starts defining the logic by describing program environments and the dec- 
larations that a program environment can contain. 

A program environment is a list of declarations. A declaration introduces a type, a 
field, or a method. 

An identifier is said to be declared in an environment if  it is introduced by a type, 
field, or method declaration in the environment, or if it is one of the built-in types. I 
write x r E to denote that identifier x is not declared in environment E .  

The judgement E ~ <> says that E is a well-formed environment. The empty list, 
written 0 ,  is a valid environment. 

Empty Environment 

01-<> 
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The next three subsections describe types, fields, and methods, and give the remaining 
rules for well-formed environments. 

2.0 Types 

A type is an identifier. There are two built-in types, Boolean and Object. (Other types, 
like integers, can easily be added, but I omit  them for brevity.) Types other than Boolean 
are called object types. A new object type is introduced by a subtyping pair, which has 
the form T<:U,  where T is identifier that names the new type, and U is an object 
type. Like in Java, Object denotes the root of  the class hierarchy. The analogue of 
a subtyping pair T<:U in Java is a class T declared as a subclass of  a class U:  
class T extends U { . . .  }. 

A type is said to be declared in an environment if  it is Boolean, Object, or if  it oc- 
curs as the first component  of  a subtyping pair. To express this formally, the judgement  
E l-type T says that T is a type in environment E ,  and the judgement E l-obj T says 
that T is an object type in E .  The rules for these judgements are as follows. Here and 
throughout this paper, I use T and U ,  possibly subscripted, to denote types. 

Types in Environments Declared Types 

E l-obj U T q[ E E l- o 

(E, T < : U )  l- o E l-obj Object 

( l-type, l-obj ) 

(E, T< :U ,  E ~) l- o 

(E, T< :U,  EO l-obj T 

E l -  o E l-obj T 

E ]'type Boolean E l-type T 

The reflexive, transitive closure of  the subtyping pairs forms a partial order called 
the subtyping order. The judgement E l- T <: U says that T and U are types in E 
that are ordered by the subtyping order. Type T is then said to be a subtype of U.  The 
rules are: 

Sub typ ing  O r d e r  ( b- <: ) 

E t-type T (E, T<:U, E') l- o 

E l -  T <: T (E ,T<:U,E ' ) I -  T <: U 

E F To <: T1 E I- T1<: T2 

E I- To < : T2 

2.1 Fields 

A field is a map from an object type to another type. A field f is introduced by afield 
triple, written I: T ~ U,  where f is the identifier that names the field, T is an object 
type called the index type of  f,  and U is a type called the range type of t .  The analogue 
of  a field triple f: T ~ U in Java is an instance variable f of  type U declared in a 
class T:  classT{ . . .  Uf; . . .  }. 

An environment can contain field triples. A field i is said to be declared in an 
environment E if it occurs in some field triple f: T ~ U in E .  This is expressed by 
the judgement E l-fieta f: T ~ U .  The rules for these judgements are as follows. Here 
and throughout, I use I ,  possibly subscripted, to denote field names. 
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Fields in Environments  Declared Fields ( [-field ) 

E [-obj T E [-type U f ~[ E (E, f: T --~ U, E') [- <> 

(E, f: T--> U)[-<> (E , f :T - ->  U,E')[-y~eldf:T-+ U 

For a type To declared in an environment E ,  the set offields of To in E ,  written 
Fields(To, E) ,  is the set of  all field triples f: T -+ U such that E [-fi~ld f: T ---> U and 
E [- To < : T.  

2.2 Methods  

A method quadruple has the form m: T --~ U : R,  where m is an identifier denoting 
a method, T is an object type, U is a type, and R is a relation. The analogue of  a 
method quadruple m: T -+ U : R in Java is a method m with return type U declared 
in a class T and given a specification R:  class T { . . .  U m ( )  {...} . . .  }. Note that 
the Java language does not have a place to write down the specification of  a method. 
In the present language, the declaration of  a method includes a specification, which 
specifies the effect of  the method as a relation on the pre- and post-state of  each method 
invocation. Note also that methods take no parameters (other than the object on which 
the method is invoked, an object commonly referred to as self). This simplifies the 
logic without losing theoretical expressiveness, since parameters can be passed through 
fields. 

An environment can contain method quadruples. A method m is said to be declared 
in an environment E if it occurs in some method quadruple m: T ~ U : R in E .  This 
is expressed by the judgement E [-method m: T ---> U : R.  Formally, the rules are as 
follows. I use m ,  possibly subscripted, to denote methods. 

Methods  in Environments  

E [-obj T E [-tyv~ U 
E, 0 [-~eZ R m r E 

(E, m: T - +  U:R)[-<> 

Declared Methods  ( [-method ) 

(E, m: T ---~ U:R,E')[-<> 

(E, m: T ~ U : R, E I) [-method m:  T ---r U : R 

The judgement E, 0 [-rel R, which will be described in more detail in Section 3.1, 
essentially says that R is a relation that may mention fields declared in E but doesn' t  
mention any local program variables. 

For a type To declared in an environment E ,  the set of methods of To in E ,  
written Methods(To, E),  is the set of  all method quadruples m: T ~ U : R such that 
E [-method m :  T ---> U : R and E [- To <:  T .  

2.3 Relat ions  

Methods are specified using relations. A relation is an untyped first-order predicate on 
a pre-state and a post-state. In order to make relations expressive, the present logic can 
be used with an underlying logic, which provides a set of  function symbols and a set of  
first-order axioms about those function symbols. The example in Section 4 shows how 
an underlying logic may be used. 

Syntactically, relations are made up only of: 
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- the constants f a l s e ,  t rue ,  and nil ; 
- constants for field names, and the special field a l lo t  ; 
- the special variables ~', #, &,  6 ;  
- other variables (I will write v to denote a typical variable); 
- equality between terms; 
- applications of  the functions select  and store ; 
- applications of  the functions of  the underlying logic; 
- the usual logical connectives -1, /x , and u  

The grammars for relations ( R )  and terms ( e ) are thus: 

R : : = e o = e l  I ~R  I RoAR1  I (Vx :: R )  
e : := fa l se  J true I nil J f I r J i" I & I 6 I v 

I select(eo, el, e2) I store(eo, el, e2, e3) 
I pa(eo . . . . .  e ~ - l )  I "'" I pz(eo . . . . .  e~z-1) , 

where pa  . . . . .  p z  denote the function symbols of  the underlying logic with arities 
ka . . . . .  k z ,  respectively. It will be convenient to also allow 5 ,  v , =~ , r , 

- :  , and 3 as the usual abbreviations of  the operators above. 
The semantics of  a command (program statement) is defined in terms of a relation 

on a register and a (data) store, together called a state. The  variables ~" and ~ denote 
the register in the pre- and post-states of  the command, respectively, and & and 6 
denote the store in those respective states. The value of  a field f of  an object e in 
a store a is denoted select(a,  e, f ) .  The expression store(a,  eo, f, el) represents the 
store that results from setting the f field of  object eo in store a to the value el �9 The 
relationship between select  and store is defined as follows. 

( u  eo, el, f0, fl, e :: 
select(s tore(a,  eo, f0, e), e0, fo) = e A (o) 
( e o # e l v f o # f l  

select(s tore(a,  eo, fo, e), el, fl) = select(a,  el, fl)) ) 

The special field alloc is used to record which objects in the data store have been 
allocated; the alloc field of  an object is fa l se  until the object is allocated, and is true 
from there on. 

As we shall see, the logic allows relations to be rewritten. A rewriting uses the rules 
of  logic and some axioms. In particular, a rewriting may use as axioms the definition of 
select  and store (0), the distinctness of  the boolean values and the distinctness of  field 
name constants: 

f a l se  ~ true (1) 
all field name constants (including al lot)  are distinct (2) 

and the axioms of the underlying logic. 

3 Commands 

This section describes commands: their syntax, their axiomatic semantics, and their 
operational semantics. 
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3 .0  S y n t a x  

A command has a form dictated by the following grammar. 

a : : =  

C : : :  

c constant 
v local variable 
ao ~ al conditional 
a t  ; al composition 
with v: T do a binding 
[T: fi = ci i~I, mj = aj J~J] object construction 
f field selection 
f :=  v field update 
m method invocation 
false l true I nil 

Informally, the semantics of  the language is as follows. (Recall from the previous 
section that commands operate on a register and a store.) 

- The constants fa lse ,  true, and nil evaluate to themselves. That is, they have the 
effect of  setting the register to themselves. 

- A local variable is an identifier introduced via a binding command. Every local 
variable is immutable: once bound (using with,  see below), the value of a local 
variable cannot be changed. A local variable evaluates to its value. 

- The conditional command evaluates a0 if the register is initially fa lse ,  and evalu- 
ates al if the register is initially true. Note that the guard of the conditional is not 
shown explicitly in the command; rather, the initial value of  the register is used as 
the guard. 

- The sequential composition of  a0 and al first evaluates a0 and then evaluates 
al �9 The final values of  the register and store in the evaluation of  a0 are used as 
the initial values of  the register and store in the evaluation of  a l .  Composition 
is usually written a t  ; a l ,  but to keep the language looking like popular object- 
oriented languages, I also allow the alternative syntax a0. al (see examples below). 

- The binding command with v: T do a introduces a local variable v for use in a .  Its 
evaluation consists in evaluating a with v bound to the initial value of the register. 

- The command [T: fi = ci iet, mj = ~ Je]] constructs a new object of  type T ,  
and sets the register to (a reference to the fields and methods of) the object. The 
command must list every field f, from the set of fields of  T .  The initial value 
for field fi is the given constant ci. The command must also list every method 
mj from the set of  methods of T .  The implementation of method mj for the new 
object is given as the command 4 ,  which receives self as the initial value of  the 
register and returns the method result value as the final value of the register. The 
command aj cannot reference local variables other than those it declares. 

- A field can be selected ( f ) and updated ( f :=  v ). Both operate on the object ref- 
erenced by the initial value of the register. Selection sets the register to the f field 
of  the object. Update sets the f field of  the object to the value of  v ,  leaving the 
register unchanged. 
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- The method invocation m finds the implementation of method m for the object 
referenced by the initial value of the register, and then proceeds to evaluate that im- 
plementation. The evaluation of the implementation begins with the initial register 
and store values of  the invocation, and the invocation ends with the final register 
and store values of  the evaluation of  the implementation. Other than the initial and 
final register values (which encode self and the result value, respectively), a method 
does not have explicit parameters; instead, parameters can be passed via the fields 
of  the object. 

Here are some examples that compare the present commands with programs written 
in other languages. The Modula-3 program statement i f  b then S else T end is writ- 
ten as the command b ; (T <t> S) .  The Modula-3 expression new(T, f :----- true).f ,  
where T is an object type with one field f and no methods, is written as the com- 
mand [T : f = true] ; f ,  or with the alternative syntax for composition, the com- 
mand is written [T : f = true].f. The Modula-3 program x.f :=  true is written 
true ; with v: Boolean do x.f :=  v .  

As an example of  object sharing, the command 

[T: f = c] ; with v: T do with w: T do (v.f :=  y ; w.f) 

allocates a new T object whose f field is set to c ,  creates two references to the object 
( v and w ), updates the object 's f field via v ,  and reads f back via w,  returning y .  

The following example shows the construction of a T object whose method or 
computes the disjunction of fields x and y : 

[T: x =fa l se ,  y =fa l se ,  or = with self: T do (x ;  (self  .y <> true))] 

Note that although primitive, the programming notation is expressive enough to 
admit common object-oriented languages features like object construction, method in- 
vocation, and object sharing. The programming notation is kept minimal in order to 
simplify the associated rules. 

3.1 Axiomatic Semantics 

This subsection gives the axiomatic semantics of  the commands. The judgement  

E, V t - a : T - - - ~  U : R  

says that command a in command environment (E, V) can be started in a state where 
the register contents has type T,  and terminates in a state where the register contents 
has type U.  The execution of a is such that its pre- and post-states satisfy the relation 
R.  The rules of  the axiomatic semantics double as type checking rules, because with a 
trivial R (such as ~" = ~" ), the judgement  expresses what it means for command a to 
be well-typed. 

Before giving the axiomatic semantics, some other definitions and rules pertaining 
to constants, local variables, and command environments are in order. 

There are three constants: fa l se ,  true,  and nil .  The judgement E ~-const c: T ex- 
presses that constant c has type T .  
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Type of  Constants ( t-to,st ) 

Et-<> El-<> E t -ob jT  

E I--const false: Boolean E t-const true: Boolean E t-const nil: T 

A local variable declaration has the form v: T,  where v is an identifier denoting a 
local variable and T is a type. A command environment is a pair (E, V), where E is 
a program environment and V is a list of local variable declarations. A local variable 
v is said to be declared in a command environment (E, V) if it occurs in some local 
variable declaration v: T in V. This is expressed by the judgement E, V t-vat V: T .  
Thus, in a command environment (E, V), E contains declarations of types, fields, and 
methods, whereas V contains declarations of local variables. This separation allows a 
simple characterization of a command environment without local variable declarations: 
(E, 0) .  We saw this in the "Methods in Environments" rule in Section 2.2, and we will 
see it in the "Object Construction" rule below and in Theorems 0, 1, and 2 in Section 5. 

The judgement 

E, V t-rel R 

says that R is a relation whose free variables are fields or local variables declared in 
(E, V), or are among the special fields and variables a l lo t ,  ~, ~, &, and 6 .  The 
obvious formal rules for this judgement are omitted. Thus, the judgement E, 0 t-rel R 
used in the hypothesis of the "Methods in Environments" rule in Section 2.2 implies 
that R does not mention local variables. 

I write x r (E, V) to denote that identifier x is not declared in command environ- 
ment (E, V). The formal rules of the above are then: 

Well-formed C o m m a n d  Environment Declared Local Variables ( t-var ) 

E t- <> E, V t- <> v f[ (E, V) E t-type T E, (V, v: T, V') t- <> 

E, 0 t- <> E, (V, v: T) t- <> E, (V, v: T, V') t-vat v: T 

Now for the rules of the axiomatic semantics. There is one rule for each command, 
and one subsurnption rule. 

Subsumption E, V t- a : 7'1 --+ T2 : R 

E t- To < : T! E t- T2 < : T3 t-fol R =#. R' E, V t-ret R' 

E, V t- a : To ---> T3 : R' 

The judgement t-for P represents provability in first-order logic, under axioms (0), (1), 
and (2) from Section 2.3 and the axioms of the underlying logic. 

Constant  Local  Variable 

E, V t- <> E t-const C: T E t-type U E, V t-var V: T E ['-type U 

E, V t - c :  U - +  T : i ' = c  A & = 6  

Condit ional  

E, V t- at  : Boolean --+ T : Ro 

E, V t - v : U - +  T : / ' = v  A 6 = 6  

E, V t- al : Boolean --~ T : RI 

E, V t- ao ,r al : Boolean --+ T : (~ = fa l s e  ~ Ro) A (~ = true =~ RI) 
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Composi t ion 

E, V [- ao : To --> TI : Ro E, V [- al : T1---+ T2 : R1 
~" and 6" do not occur free in R0 or RI 

E, V [ - a o ;  al : To ~ T 2 :  (3~ ' ,  o" :: Ro[[' ,6 :---- r ,  o'] m RI[~', & : =  ~ ,6 ]  ) 

Binding E, (V, v: T) [- a : T -+ U : R 

E, V [- with v: T do a : T --~ U : R[v := ~] 

Object Construction 

E, V [- <> E [--type U E [-oh: T 
fi: Ti ~ Ui l~l are the elements of  Fields(T, E) E [-const Ci: Ui i~l 
mj:Tj--+ Uj : RjJ~S a r e t h e e l e m e n t s  o f M e t h o d s ( T , E )  E ,O  [- aj : T---~ Uj : Rj j~J 

E, V [- [T: fi = ci i~I, mj : aj je l l  : U --~ T : : ~ nil m 
select (b ,  :, al lot)  = f a l s e  A 6 = s tore( . . .  (s tore(b,  k, alloc, true), :, fi, ci) i~l 

F i d d  Selection Field Update  

E, V [- <> E [-'field f: T --~ U E [-'field f: To ~ Uo 
E, V [- f : T - +  U :  E, V [-var v: U1 

VA nil ~ ~ = select(&, ~, 1) A b = 6 

Method Invocation 

E [- T1 <:To  
E [- UI < : U o  

E, V [- f := v : TI -+ TI : 
~" ~ nil ~ ? =/"  A 6 = store(&, ~, f, v) 

E, V [- <> E [-method m: T ~ U : R 

E, V [- m : T ---r U : ? v~ nil =:~ R 

3.2 Operational Semantics 

The operational semantics is defined by the judgement 

r, ~r, tz, S [- a .... r', crt, tz ' 

It says that given an initial operat ionalstate  (r, or,/z) and stack S ,  executing command 
a terminates in operational state (r ' ,  or ' , /z ' ) .  Operational states are triples whose first 
two components correspond to the register and data store components of  states, as de- 
fined above. The third component is a method store. Let 7-/ denote a set of  given object 
names. A stack is a partial function from local variables to 7-/U {false, true, nil}.  A 
me thod  store is a partial function /~ from 7 / ,  such that 

- /z(h)(type) is the allocated type of object h ,  and 
- /z (h) (m) ,  if defined, is the implementation of method m of object h .  

A store pa i r  is a pair (~r,/z) where cr is a data store and /z is a method store. 
In addition to keeping the method implementations of  objects, the method store 

keeps the allocated type of objects. The operational semantics records this information 
as it allocates a new object, but doesn ' t  use it subsequently. The information is used only 
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to state and prove the soundness theorem. By conveniently recording this information 
in the operational semantics, where it causes no harm, one avoids the use of  a store type 
(cf [2]). The result is a simpler statement and proof  of soundness. 

To save space, I omit the rules for the operational semantics. They can be found in 
a SRC Technical Note [14]. 

4 Example 

In this section, I show an example of  a program that can be proved in the logic. 
Let us consider a linked-list type with a method that appends a list to another. Rea- 

soning about a program with such a type requires reasoning about reachability among 
linked-list nodes. To this end, we assume the underlying logic to contain a function 
symbol Reach (adapted from Greg Nelson's reachability predicate [16]). Informally, 
Reach(eo, el, a,  f, e2) is true whenever it is possible to reach from object e0 to object 
el via applications of  f in a ,  never going through object e2. 

The example in this section assumes that the underlying logic contains the following 
two axioms, which relate Reach to select and store, respectively. 

(u  el, a,  f, e2 :: Reach(eo, el, a,  f, e2) = true -- 
eo = el v (eo ~ e2/x Reach(select(g, eo, f), el, a ,  f, e2) = true) ) (3) 

(Ve0, el,  a,  f0, e2, fl, e3, e4 :: f0 ~ fl =~ 
Reach(eo, el, a, f0, e2) = Reach(eo, el, store(g, e3, fl, e4), f0, e2) ) (4) 

Axiom (3) resembles Nelson's  axiom A1 and says that every object reaches itself, and 
that eo reaches el if  eo is not e2 and e0.f reaches el �9 Axiom (4) says that whether 
or not e0 reaches el via f0 is independent of  the values of  another field fl �9 

The example uses the following environment, which I shall refer to as E : 

Node < : Object next: Node --~ Node 
appendArg: Node --~ Node append: Node --* Node : R 

where R is the relation 

? r nil Reach(h, ~, b, next, nil)/x select(b, k, next) = nil/x 
select(b, i', next) = select(b, ~, appendArg) A 
( u  o, f :: select(&, o, f) = select(6, o, f) v 

(o = k ^ f = next) v f = a p p e n d A r g  ) 

Informally, this relation specifies that the method store its argument (which is passed in 
via the appendArg field) at the end of the list linked via field nex t .  More precisely, 
the relation specifies that the method find an object k reachable from ~" (self) via the 
next  field such that k.next is nil. The method is to set k.next to the given argument 
node. The method can modify ~.next and can modify the a p p e n d A r g  field of  any 
object (since this field is used only as a way to pass a parameter to append anyway), 
but it is not allowed to modify the store in any other way. 

To present the example code, I introduce a new command, isnil, which tests whether 
or not the register is nil. 
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Nil Test E, V F- <> E ~obj T 

E, V ~- isnil : T --* Boolean : 
(~ : nil ~ ~ =  true) A (~ ~ nil ~ ~ = false) /x & = 6 

(Section 6 discusses expression commands such as nil tests.) To write the program 
text, I assume the following binding powers, from highest to lowest: := ; <t> 
with . . .  do.  Now, consider the following command. 

[Node: next = nil, appendArg = nil, 
append  = with self: Node do appendArg ; with n: Node do 

sel f .next  ; isnil ; (5) 
( self.next.appendArg :=  n ; append 
<> self.next :=  n ; self ) ] 

This command allocates and returns a Node object whose next and appendArg 
fields are initially nil .  The implementation of append starts by giving names to 
the self object and the method's argument. Then it either calls append  recursively 
on se l f .next  or sets sel f .next  to the given argument, depending on whether or not 
se l f .nex t  is nil.  

With axioms (3) and (4) in the underlying logic, one can prove the following judge- 
ment about the given allocation command. 

E, 0 ~- (5) : Object ~ Node : ~" = ~" (6) 

Though the relation in this judgement ( ~ = ?) is trivial, establishing the judgement 
requires showing that the given implementation of append satisfies its declared spec- 
ification. I omit the proof, which is straightforward. 

I conclude the example with three remarks. First, remember that to reason about a 
call to a method, in particular the recursive call to append, one uses the specification 
of the method being called, not its implementation. This makes the reasoning indepen- 
dent of the actual implementation of the callee, which may in fact even be a different 
implementation than the one shown. 

Second, remember that only partial correctness is proved. That is, judgement (6) 
says that i f  the method terminates, its pre- and post-states will satisfy the specified 
relation. Indeed, an invocation of method append on an object in a cyclic structure of 
Node objects will not terminate. 

Third, the static type of the field sel f .next  and the argument self.appendArg is 
Node ,  but the dynamic types of these objects in an execution may be any subtype of 
Node.  Note, however, that judgement (6) is independent of the dynamic types of these 
objects. Indeed, having established judgement (6) means that the method works in every 
execution. This is because the logic is sound, as is shown in the next section. 

5 Soundness 

This section states a soundness theorem, which proves the correctness of the operational 
semantics with respect to the axiomatic semantics. I first motivate the soundness the- 
orem, and then state it together with an informal explanation. Some additional formal 
definitions and the proof itself are found in a SRC Technical Note [14]. 
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As a gentle step in presenting the full soundness theorem, consider the following 
theorem. 

Theorem 0. If  one can derive both E, 0 k- a : Object  ~ Boolean  : ~ = true and 

nil, go, 0,  0 F- a ..~ r, g,  Iz , then r = t rue .  

Here and in the next two theorems, g0 denotes a data store that satisfies (Vh e 
7-t :: select(go,  h, alloc) -- f a l se  ) ,  and 0 denotes the partial function whose do- 
main is empty. The theorem says that if in an environment E one can prove that a 
command a satisfies the transition relation ~ ---- t rue ,  then any terminating execution 
of  command a from a "reset" state ends with a register value of  t rue .  

A simple theorem about the result type of  a command is the following. 

Theorem 1. If  one can derive E, 0 t- a : Object  -+ T : R and E f-obj T and 
nil, go, 0, 0 t- a -,-* r, g, I z ,  then the value r has type T ,  that is, either r = ni l  or 
E t - /z ( r ) ( type)  <:  T .  

This theorem says that if one can prove, using the axiomatic semantics, that a command 
a has final type T,  where T is an object type, and one can show that, operationally, 
the program terminates with a register value of  r ,  then r is a value of  type T (that is, 
it is nil  or its allocated type is a subtype of  T ). This theorem shows the soundness of  
the type system's treatment of  object types. 

An interesting theorem that says something about the final object store of  a program 
is the following. 

Theorem 2. If  one can derive both E, 0 t- a : Object  ~ T : R and nil, tro, 0, 0 t- 
a ---* r, g , / z ,  then R[~', &, k, 6 :=  nil, g0, r, tr] holds as a first-order predicate. 

This theorem says that if one can prove the two judgements about a ,  then relation R 
actually describes the relation between the initial and final states. 

To prove the theorems above, one needs to prove something stronger. I call the 
stronger theorem, of  which the theorems above are corollaries, the main theorem. The 
theorem is stated as follows. 

Main  Theorem.  If  (7) E, V ~- a : T -+ U : R,  (8) r, cr,/z, S ~- a -,~ r', g ' , / x ' ,  
(9) E, cr,/z IF r : T ,  (10) E I k  g , / z ,  and (11) E , V , g , / z  Ik S;  then (12) 
r, g, r', r S IF R ,  (13) (g,/z) -< ((r ' , /~ ') ,  (14) E, g ' , / z '  IF r' : U,  and (15) 
E I~- g ' , / z ' .  

In the antecedent of  this theorem, (7) and (8) express the judgements that have been 
derived for some command a .  One can hope to say something interesting in the con- 
clusion of  the theorem only if the execution under consideration is from a "reasonable" 
state (r, g, lZ) and uses a "reasonable" stack S.  Therefore, judgement (9) states that r 
is a value of  type T ,  judgement (10) says that store pair (g,/z) matches  the environ- 
ment E ,  and judgement (11) says that S is a wel l - typed  stack. 

In the conclusion of  the theorem, (12) expresses that R does indeed describe the 
relation between the initial and final states of  the execution, and (14) expresses that r '  
has type U.  In addition, to use the theorem as a sufficiently strong induction hypothesis 
in the proof, (13) says that (g,/x) is cont inued by (g ' ,  Iz ' ) .  This property expresses a 
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kind of monotonicity that holds between two store pairs, the first of which precedes the 
other in some execution. Also, judgement (15) says that ( a ' , / z ' ) ,  like the initial store 
pair, matches the environment. 

By removing (12) from the conclusion of the main theorem, one gets a corollary that 
expresses that the type system is sound with respect to the operational semantics. Such 
a corollary follows directly from the main theorem, but could also be proved directly in 
the same way the main theorem is. 

6 Limitations of the Logic 

The object construction command is rather awkward. Because it lists method imple- 
mentations, a method cannot directly construct objects whose type and method imple- 
mentations are the same as for self. Instead, one can declare object types representing 
classes, as is done, for example, by Abadi and Cardelli [1] (see SRC TN 1997-025 for 
an example [14]). One can consider modifying the present logic to remove the lim- 
itation from the object construction command. For example, like in common class- 
based object-oriented languages, one can extend the program environment to include 
method implementations. One must then have a "link-time" check that ensures that ev- 
ery method that may be called by the program at run-time has an implementation. Or, 
like in common object-based languages, one can add a construct for cloning objects or 
their method implementations. 

Another omission from the present logic is the ability to compare objects for equal- 
ity. Just like one would expect to add primitive types like integers to the present logic, 
one would expect to add more general expressions, including comparison expressions. 

A logic of programs provides a connection between programs and their specifica- 
tions. In the present logic, method declarations contain specifications that are given 
simply as transition relations. Transition relations are not practically suited for writing 
down method specifications, because they are painfully explicit. Specification features 
like modifies clauses and abstract fields would remedy the situation, but lie outside the 
scope of this paper. To mention some work in this area, Lano and Haughton [10] have 
surveyed object-oriented specifications, and my thesis [12] shows how to deal with 
modifies clauses and data abstraction in modular, object-oriented programs. The logic 
for POOL [4] includes some specification features that can be used to state properties 
of recursive data structures. 

7 Summary 

I have presented a sound logic for object-oriented programs whose commands are im- 
perative and whose objects are references to data fields. The programming notation 
requires that types, fields, and methods be declared in the environment before they can 
be used in a program. The main contributions of the paper are the logic itself, the sound- 
ness theorem, and the way that types are handled, which makes the subtype relation and 
the admission of recursive object types trivial. 
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