
Systematic Change of Data Representation:
Program Manipulations and a Case Study

William L. Scherlis *

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Abs t rac t . We present a set of semantics-based program manipulation
techniques to assist in restructuring software encapsulation boundaries
and making systematic changes to data representations. These tech-
niques adapt abstraction structure and data representations without al-
tering program functionality. The techniques are intended to be embod-
ied in source-level analysis and manipulation tools used interactively by
programmers, rather than in fully automatic tools and compilers.
The approach involves combining techniques for adapting and special-
izing encapsulated data types (classes) and for eliminating redundant
operations that are distributed among multiple methods in a class (func-
tions in a data type) with techniques for cloning classes to facilitate
specialization and for moving computation across class boundaries. The
combined set of techniques is intended to facilitate revision of structural
design decisions such as the design of a class hierarchy or an internal
component interface.
The paper introduces new techniques, provides soundness proofs, and
gives details of case study involving production Java code.

1 I n t r o d u c t i o n

Semantics-based program manipulation techniques can be used to support the
evolution of configurations of program components and associated internal in-
terfaces. Revision of these abstraction boundaries is a principal challenge in
software reengineering. While structural decisions usually must be made early
in the software development process, the consequences of these decisions are not
fully appreciated until later, when it is costly and risky to revise them. Program

* This material is based upon work supported by the National Science Foundation
under Grant No. CCR-9504339 and by the Defense Advanced Research Projects
Agency and Rome Laboratory, Air Force Materiel Command, USAF, under agree-
ment number F30602-97-2-0241. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory, the National Science Foundation, or the U.S.
Government. Author email: scherli-~@cB.cmu.edu.

253

manipulation techniques can potentially support the evolution of internal inter-
face and encapsulation structure, offering greater flexibility in the management
of encapsulation structure.

This paper focuses on data representation optimizations that are enabled
by structural manipulations. It presents three new results: First, it introduces
two new program manipulation techniques, idempotency and projection. Sec-
ond, it provides proofs for the two techniques and for a related third technique,
shift, that was previously described without proof [$86,$94]. Finally, a scenario
of software evolution involving production Java code is presented to illustrate
how the techniques combine with related structural manipulations to accom-
plish representation change. The case study is an account of how the classes
java. lang. Str ing, for immutable strings, and java . lang. S t r ingBuffer , for
mutable strings, could have been derived through a series of structural manip-
ulations starting with a single class implementing C-style strings. The intent
of this research is to make the evolution of data representations a more sys-
tematic and, from a software engineering point of view, low-risk activity that
can be supported by interactive source-level program analysis and manipulation
tools. Source-level program manipulation presents challenges unlike those for
automatic systems such as compilers and partial evaluators. The sections below
introduce the program manipulation techniques, sketch their proofs, and give an
account of the evolutionary case study.

2 P r o g r a m M a n i p u l a t i o n

Most modern programming languages support information-hiding encapsula-
tions such as Java classes, Standard ML structures and functors, Ada packages,
and Modula-3 modules. In this paper, we use a simplified form of encapsulation
based on Java classes but with no inheritance (all classes are final), full static
typing, and only private non-static fields (i.e., the data components, or instance
variables, of abstract objects).

The internal representation of an abstract object thus corresponds to a record
containing the instance variables. In Standard ML terminology, these classes
correspond to abstypes or simplified s t ruc tures . We use the term abstraction
boundary to refer informally to the interface between the class and its clients (the
s igna tu re in Standard ML), including any associated abstract specifications.
When the scope of access by clients to a class is bounded and its contents can be
fully analyzed, then adjustment and specialization of the class interface (and its
clients) becomes possible. For larger systems and libraries, this scope is effectively
unbounded, however, and other techniques, such as cloning of classes (described
below), may need to be used to artifically limit access scopes.

Language. We describe the manipulation techniques in a language-inde-
pendent manner, though we adapt them for use on Java classes in the case
study. We can think of an object being "unwrapped" as it passes into the inter-
nal scope of its controlling class, and "wrapped" as it passes out of the scope.
It is convenient in this presentation to follow the example of the early Edin-

254

burgh ML and make this transit of the abstraction boundary explicit through
functions Abs and Rep, which wrap and unwrap respectively. Tha t is, Rep trans-
lates an encapsulated abstract object into an object of its data representation
type, which in Java is a record containing the object 's instance variables. For
example, if an abstract P i x e l consists of a 2-D coordinate pair together with
some abstract intensity information, then Rep : Pixel --+ Int * Int * In t ens i t y and
Abs : Int * Int * In t ens i t y -~ Pixel. Here "*" denotes product of types. The two
key restrictions are that l~ep and Abs (which are implicitly indexed on type
names) can be called only within the internal scope of the controlling class and
they are the only functions that can directly construct and deconstruct abstract
values.

M a n i p u l a t i o n s . Manipulation of class boundaries and exploitation of spe-
cialized contexts of use are common operations at all stages of program devel-
opment. We employ two general collections of meaning-preserving techniques to
support this. The first collection, called class manipulations, is the focus of this
paper. Class manipulations make systematic changes to data representations in
classes. They can alter performance and other attributes but, with respect to
overall class functionality (barring covert channels), the changes are invisible
to clients. That is, class manipulations do not alter signatures (and external
invariants), but they do change computation and representation.

The second class of manipulations are the boundary manipulations, which
alter signatures, but do not change computation and representation. Boundary
manipulations move computation into or out of classes, and they merge, clone,
and split classes. The simplest boundary manipulations are operation migration
manipulations, which move methods into and out of classes. Preconditions for
these manipulation rules are mostly related to names, scopes, and types. A
more interesting set of boundary manipulations are the cloning manipulations,
which separate a class into distinct copies, without a need to fully parti t ion
the data space. Cloning manipulations introduce a type distinction and require
analyses of types and use of object identity to assure that the client space can be
part i t ioned--potent ial ly with the introduction of explicit "conversion" points.

Boundary (and class) manipulations are used to juxtapose pertinent program
elements, so they can be further manipulated as an aggregate, either mechani-
cally or manually. Boundary manipulations are briefly introduced in [$94] and
are not detailed here. It is worth noting, however, that many classical source-level
transformation techniques [BD77] can be understood as techniques to juxtapose
related program elements so simplifications can be made. Two familiar trivial
examples illustrate: The derivation of a linear-space list reversal function from
the quadratic form relies on transformation steps whose sole purpose is to jux-
tapose the two calls to list append, enabling them to be associated to the right,
rather than the left association that is tacit in the recursion structure of the ini-
tial program. The derivation of the linear Fibonacci from exponential relies on
juxtaposing two separate calls to F(x - 2) from separate recursive invocations.
Various strategies for achieving this juxtaposit ion have been developed such as
tupling, composition, and deforestation [P84,S80,W88].

255

Class m a n i p u l a t i o n s . The class manipulat ions adjust representations and
their associated invariants while preserving the overall meaning of a class. Details
of these techniques and proofs are in the next two sections.

The shift t ransformation, in object-oriented terms, systematical ly moves com-
putat ion among the method definitions within a class definition while preserving
the abstract semantics presented to clients of a class. Shift operates by transfer-
ring a common computat ion fragment uniformly from all wrapping sites to all
unwrapping sites (or vice versa). In the case s tudy later in this paper, shift is
used several t imes to make changes to the string representations. Shifts enable
frequency reduction and localizing computat ion for later optimization. For exam-
ple, in database design, the relative execution frequencies, use of space, and other
considerations determine which computat ions are done when da ta is stored and
which are done when da ta is retrieved. Shifts are also useful to accomplish repre-
sentation change. For example, suppose a function Magnitude : In t * In t --~ Real
calculates the distance from a point to the origin. If magnitudes are calculated
when pixels are accessed, shzft can be used to move these calls to wrapping sites.
The representation of pixels thus changes from In t * In t to In t * In t * Real, with
distances being calculated only when pixels are created or changed, not every
t ime they are accessed.

The project t ransformation enables "lossy" specialization of representations,
eliminating instance variables and associated computat ion. For example, in a
specialized case where intensity information is calculated and maintained but
not ul t imately used by class clients, project could be used to simplify pixels
from Rep : Pixel -+ In t * In t * I n t e n s i t y to Rep' : Pixel --+ In t * In t and eliminate
intensity-related calculations.

The idempoteucy t ransformation eliminates subcomputat ions tha t are idem-
potent and redundant across method definitions in a class. Idempotency is a sur-
prisingly common property among program operations. Most integrity checks,
cache building operations, and invariant maintaining operations such as tree
balancing are idempotent .

3 Class manipulation techniques

Class manipulat ions exploit the information hiding associated with instance vari-
ables in a class (in Standard ML, variables of types whose da ta constructors are
hidden in a s t r u c t u r e or abs type) . Significant changes can be made to the
internal structure of a class, including introduction and elimination of instance
variables, without effect on client-level semantics. Class manipulat ions are based
on Hoare 's venerable idea of relating abstraction and representation in da ta
types.

Sh i f t . The shift rule has two symmetrical variants. As noted above, the
Rep and t b s functions are used to manage access to the da ta representation.
A requirement on all instances of Rep or t b s (which are easy to find, since
they are all within the syntactic scope of the class) thus has the effect of a
universal requirement on all instances where an encapsulated da ta object is

256

constructed or selected. Let T be the class (abstract) type of encapsulated objects
and V be the type of their representations. In the steps below, a portion of the
internal computat ion of all methods that operate on T objects is identified and
abstracted into a function called Span that operates on V objects. Note, in a
Java class definition V would be an aggregate of the instance variables (non-
static fields) of the class. For our presentation purposes, we adapt the usual
object-oriented notational convention to make the aggregate of instance variables
an explicit value of type V. In the case study we make a similar adaptation for
Java. This means we can require the fragment of shifted computation, abstracted
as Span, can be a simple function, allowing a more natural functional style in
the presentation of the technique. The effect of Shift is to move a common
computat ion from all program points in a class where objects are unwrapped to
program points where objects are wrapped (and vice-versa):

1. By other manipulations, local within each operation definition, establish that
all sites of Rep : T -4 V appear in the context of a call to Span,

SpanoRep : T - - + V I

where Span : V --4 W. That is, there is some common functional portion of
computation of every method that occurs at object unwrapping. If this is not
possible, the transformation cannot be carried out. Abstract all instances of
this computat ion into calls to Span.

2. Replace Abs and Rep as follows. All instances of

Abs: V - - + T become Abs ~oSpan : V - + T I

where Abs ~ : V ~ --4 T ~. All instances of Rep as

SpanoRep: T ~ V ~ become Rep ~: T ~--+V ~

3. It is now established that all sites of Abs ~ : V ~ --4 T ~ are in the context of a
call to Span,

Abs loSpan : V --~ T I

The shift rule, intuitively, advances computation from object unwrapping to
object wrapping. The variant of shift is to reverse these three steps and the
operations in them, thus delaying the Span computation from object wrapping
to subsequent object unwrapping.

Although the universal requirement of the first step may seem difficult to
achieve, but it can be accomplished trivially in those cases where Span is feasibly
invertible by inserting S_pan-t o Span in specific method definitions. The Span
operation is then relocated using the rule above. Later manipulations may then
be able to unfold and simplify away the calls to Span-1.

P r o j e c t . The project manipulation rule eliminates code and fields in a class
that has become dead, for example as a result of specialization of the class
interface. The rule can be used when the "death" of code can be deduced only
by analysis encompassing the entire class. Suppose the representation type V can

257

be written as V1 * V2 for some V1 and V2. This could correspond to a parti t ioning
of the instance variables (represented here as a composite type V) into two sets.
If the conditions below are met, then project can be used to eliminate the V2
portion of the representation type and associated computations. The rule is as
follows:

1. Define Rep as Rep : T ~ V1 * V2 and Abs as Abs : V1 * V2 ~ T.
2. Represent the concrete computat ion of each method op that operates on any

portion of the internal representation V as

o p : VI * V2 * U ~ VI * V2 * W

where U and W are other types (representing non-encapsulated inputs and
outputs). Then, by other manipulations, redefine op to calculate its result
using two separate operations that calculate separate portions of the result, 1

Opl : VI * U - + VI * W
op2 : VI * V2 * U --+ V~

Do this analogously for all operations op on internal representations V1 * V2.
If this cannot be done for all such operations involving V1 and V2, then the
rule cannot be applied.

3. Replace all operations op within the class by the new operations opl.
4. Simultaneously, replace all instances of t b s and Rep by new versions Rep ~ :

T --+ 1/1 and t b s ' : V1 -4 T.

The effect of project is to eliminate the V~ portion of the overall object rep-
resentation and all the computat ions associated with it. In Java, for example,
V2 would be a subset of the instance variables of a class. The project manipula-
tion generally becomes a candidate for application after boundary manipulat ions
have eliminated or separated all methods that depend on the particular instance
variables corresponding to V2. It is possible to think of shift and project as in-
troduction and elimination rules for instance variables in the specific sense that ,
among its uses, shift can be used to introduce new fields and computat ions that
could later be eliminated using project.

I d e m p o t e n c y . The idempotency rule is used to eliminate certain instances
of idempotent computat ions such as integrity checks, caching, or invariant-main-
taining operations. When an idempotent operation is executed multiple times
on the same data object, even as it is passed among different methods, then all
but one of the calls can be eliminated.

1. Define an idempotent Span function of type V --+ V.

Span o Span = Span

2. Establish that each call of Abs appears in context Abs o Span or, alternatively,
establish tha t each call to Rep appears in context Span oRep. (These variants
are analogous to the two variants of shift.)

1 op(vl ,~2 ,~) = [tet (,~ ,w) = op l (~ , ,~) and ~ = o p 2 (~ , , ~ , ~) in (~ , 4 , w) e .d]

258

3. For one or more particular operation (method) definitions, establish in each
that the call to Span can be commuted with the entire remaining portion of
the definition.

op = Span o op' --- op' o Span

4. In each of the cases satisfying this commutat ivi ty requirement, replace op
by op'. Tha t is, replace the calls to Span by the identity function.

Examples: Performance-oriented calculations (spread over multiple operations)
such as rebalancing search trees or rebuilding database indexes can be eliminated
or delayed when their results are not needed for the immediate operation. An
integrity check involving a proper subset of the instance variables can be elimi-
nated from operations that do not employ those variables (i.e., delayed until a
later operation that involves a variable in that subset). Note that this integrity
check example depends on a liberal t reatment of exceptions in the definition of
program equivalence.

4 C o r r e c t n e s s o f C l a s s M a n i p u l a t i o n s

The class manipulations alter data representations and method definitions in a
class. Establishing correctness of the manipulations amounts to proving behav-
ioral equivalence of the original and transformed class definitions. Since encap-
sulated objects are only unwrapped by methods within the class, the external
behavior of a class can be construed entirely in terms of sequences of incoming
and outgoing "exposed" values (to use Larch terminology) [G93]. This external
class behavior is usually related to the internal definition of the class (i.e., the
definitions of the instance variables and methods) through an explicit abstraction
mapping, as originally suggested by Hoare [H72].

In the proofs below (as in the descriptions of the manipulations above), we
employ a functional style in which methods are functional and objects are pure
values. The set of instance variables of a Java class, which can be thought of as
an implicit aggregate parameter and result, are made explicit in our rendering
as new parameters and results of type T. This simple translation is possible (in
our limited Java subset) because objects are pure values--i.e., there is no use of
"object identity." Suppose, for example, that T is the abstract type of a class,
U and W are other types, and there are four methods in the class, which are
functional and have the following signatures: opl : U --+ T, op~ : T , T --+ T,
op3 : T ~ U, and oP4 : T --+ T * W. Thus, for example, oPl is a constructor and
op3 does not alter or create T objects.

Properties of objects in a class are expressed using an invariant I(t, v) that
relates abstract values t (of type T above) to representation (instance variables)
v of type V. Behavioral correctness of a class is defined in terms of preconditions
on incoming exposed values, postconditions on outgoing exposed values, and a
predicate I that is an invariant and that relates abstract values with represen-
tations. If an abstract specification of the class is not needed, the proof can be
obtained without reference to the abstract values ~.

259

If opi is a method, let b-~p i be the implementation of the method, typed
accordingly. For example, if opi : U * T --+ T * W then b--~p i : U * V --~ V * W.
Let pre i be a precondition on values of the exposed inputs to opi and post i be a
postcondition on the values of the exposed outputs from opi. For the invariant
I to hold for the class above (opl through oP4), the following four properties of
I must hold:

prel(~t) ~ I(Opl(~t),o-ffl(~t))
I (t l , Vl) A I(t2, v2) ~ I(op2(tl,t2),-o-ff2(Vl , v2))

I(t , v) ~ post3(5-~p3(v))
I(t, v) I(op4(t), 4(v)) ^ post4(&))

B e h a v i o r a l c o r r e c t n e s s . Establishing behavioral correctness of a manipu-
lation rule operating on a class definition amounts to showing that the relation-
ships among pre i and postj values remain unchanged, even as the definition of
I changes in the course of transformation.

C o r r e c t n e s s o f shi f t . Let I(t , v) be an invariant that holds for all methods
in class T prior to carrying out the transformation. The effect of shift is to
create a new invariant It(t, v ~) that relates the new representation values v' to
the abstract values t. The proof proceeds by defining F, showing it is invariant
in the transformed class, and showing that it captures the same relationships
between preconditions and postconditions as does I. We prove the first variant
of shift; the proof for the second variant is essentially identical.

For a method op : T --+ T, for example, the Span precondition of the definition
of the shift manipulation guarantees for some residual computat ion r that

/(t, v)
=~ I(op(t), (r o Span)(v))

Define the post-manipulationinvariant It(t, v t) - I(t , v) A v' = Span(v). Now,

I '(t , v') =- I(t , v) A v' = Span(v) Definition of I '
:=~ I(op(t) , (r o Span)(v)) A v' = Span(v) Invariance property of I

I(op(t), r(vt))
:=~ I ' (op(t) , (Span o r)(v ')) Definition of I '
=~ I ' (op(t) , b-~p(v')) Definition of shift

This establishes that I t is invariant for the operation op in the class definition
after it has been subject to the manipulation.

To understand the effect on postconditions, we consider the case of op3.

I(t , v) ::~ post3(-O-~P3(v)) Assumed
I(t , v) ~ posta(r(Span(v)) Precondition of shift

It(t, Span(v)) ~ posta(r(Span(v)) Definition of I'
It(t, Span(v)) ~ posta(5-~p's(Span(v)) Definition of I '

(3v)(v' = Span(v)) A It(t, v') :=~ posta(b'-ffp~(v')

This is sufficient, since in the modified class definition, all outputs of methods
are in the codomain of Span. These arguments are easily generNized to methods
that include additional parameters and results.

260

C o r r e c t n e s s o f i d e m p o t e n c y . There are two variants of the ~dempotency
manipulation. We prove one, in which the second precondition (in the description
of the technique) assures that for any t, I(op(t), v) ::> (gv')(v -- (Span o §
for some residual function r. Consider the case op : T --~ T. Because of the
second precondition of the idempotency rule, op preserves the invariant,

I(t, ,) : . •
Z(op(t), (@an o W)(v))

For each method in which Span commutes (and in which Span can therefore
be eliminated by the transformation), we need to show that the invariant is
maintained, that is I(t , v) :=r I(op(t),-6-~(v)). Assume inductively that invari-
ant I (t , v) holds for all class operations on type T prior to carrying out the
t ransformation. We proceed as follows:

I(t , v) ::V (3v') I(t , v) A v = (Span o r)(v') idempotency precondition
(Sv') I (op(t) , (Span o 5-pp I o Span o r)(v')) Invariant for op
(2v') I (op(t) , (b--ffp' o Span o Span o r)(v')) Commuta t iv i ty

::~ (2v') I (op(t) , (b--~p ~ o Span o r)(v')) Idempotency of Span
I(op(t) , b-~(v)) Definition of v

C o r r e c t n e s s o f p r o j e c t . The proof for the project manipulat ion is similar,
and is omitted.

5 S t r i n g s i n J a v a

We now present a modest-scale case study, which is a hypothetical re-creation
of the evolution of early versions of the two Java classes used for strings, S t r i n g
and S t r i n g B u f f e r . 2 Java S t r i n g s are meant to be immutable and efficiently
represented with minimal copying. For example, substring operations on S t r i n g s
manipula te pointers and do not involve any copying. S t r i n g B u f f e r s , on the
other hand, are mutable and flexible, at a modest incremental performance cost.
The typical use scenario is that strings are created and altered as S t r i n g B u f f e r s
and then searched and shared as S t r i n g s , with conversion operations between

2 These two classes are part of an early version of the released Java Development Kit
1.0Beta from Sun Microsystems. Java is a trademark of Sun Microsystems. Since
fragments of the code (string 1.51 and stringbuffer 1.21) are quoted in this paper,
we include the following license text associated with the code: "Copyright (c) 1994
Sun Microsystems, Inc. All Rights Reserved. Permission to use, copy, modify, and
distribute this software and its documentation for non-commercial purposes and
without fee is hereby granted provided that this copyright notice appears in all copies.
Please refer to the file "copyright.html" for further important copyright and licensing
information. Sun makes no representations or warranties about the suitability of
the software, either express or implied, including but not limited to the implied
warranties of merchantability, fitness for a particular purpose, or non-infringement.
Sun shall not be liable for any damages suffered by licensee as a result of using,
modifying or distributing this software or its derivatives."

261

them. The data representations used in both classes facilitate this conversion
by delaying or minimizing copying of structure. In particular, conversions from
S t r i n g B u f f e r to S t r i n g do not always result in copying of the character array
data structure.

Both classes represent strings as character arrays called va lue . Both have
an integer field called count , which is the length of the string in the array. The
String class also maintains an additional integer field called offset, which is
the initial character position in the array. Since S t r i n g s are immutable, this
enables substrings to be represented by creating new S t r i n g objects that share
the character array and modify count and o f f s e t .

The S t r i n g B u f f e r class, which is used for mutable strings, has three fields.
In addition to va lue and count , there is a boolean shared that is used to help
delay or avoid array copy operations when S t r i n g B u f f e r objects are converted
into S t r ings . The method used for this conversion does not copy value , but
it does record the loss of exclusive access to the array v a lu e by setting the
sha red flag. If the flag is set, then a copy is done immediately prior to the next
mutation, at which point the flag is reset. If no mutat ion is done, no copy is
made. A simpler but less efficient scheme would always copy.

Selected steps of the evolutionary account are summarized below. The initial
steps, omitted here, establish the initial string class, called S t r , which manages
mutable strings represented as null-terminated arrays, as in C. S t r always copies
character arrays passed to and from operations. (All boundary and class manip-
ulation steps below have been manually carried out using our techniques, and
one of these is examined more closely in the following section.)

1. Introduce count . In the initial class S t r , trade space for t ime by using shift to
replace uses of the null character by adding the private instance variable count .
Simplifications following the shift eliminate all reference to and storage of null
terminating characters.

2. Separate S t r into S t r i n g and S t r i n g B u f f e r . Label all S t r variables in the
scope in which S t r is accessible as either S t r i n g or S t r i n g B u f f e r , and introduce
two methods to convert between them (both initially the identity function with
a type cast). Since copy operations are done at every step, object identity cannot
be relied upon, and this is a safe step. This process would normally be iterative,
using type analysis and programmer-guided selection of conversion points. Those
S t r variables that are subject to mutating operations, such as append, i n s e r t ,
and se tCharAt are typed as S t r i n g B u f f e r . Those S t r variables that are subject
to selection operations, such as s u b s t r i n g and reg ionMatches , are typed as
S t r i n g . Common operations such as l e n g t h and charAt are in both clones.
Because copying is done at every step, conversion operations can always do an
additional copy of mutable structures (i.e., va lue) . This approach to allocating
variables to the two clones enables use of boundary manipulations to remove
mutat ing operations such as se tCharAt , for example, from S t r i n g . At this point,
the two clones have different client variables, different sets of operations, but
identical representations and representation invariants.

262

3. Introduce o f f s e t . Since Str ings are immutable, subs t r ing does not need
to copy value. But elimination of copying requires changing the representation
to include offsets as well as length. Use shift to accomplish the representation
change preparatory to eliminating the copying. (This is the step that is detailed
below.)
4. Introduce shared. In St r ingBuffer , value is copied prior to passing it to the
S t r ing constructor. This is necessary because value would otherwise be aliased
and subject to subsequent mutation, which would violate the mutability invari-
ant of Str ing. In fact, the copying needs to be done only if value is subsequently
mutated, and could be delayed until then. Use shift to relocate the copying to
whatever S t r ingBuf fe r method immediately follows the conversion, adding the
shared flag. This delays the copy by "one step." Then use idempotency to delay
that copying "multiple steps" (by commuting it within all calls to non-mutating
access methods) until a S t r ingBuf fe r operation that actually does mutation.
5. Add specialized methods. Identify conversion functions from various other
common types to char []. For both string classes, use boundary shifts to com-
pose these conversion functions with the constructors and with commonly used
functions such as append and inse r t . Then use additional boundary shifts to re-
locate these composed functions as public methods, naming them appropriately
(mostly through overloading). Then, unfold (inline) the type conversion calls
contained in these methods and specialize accordingly. (This introduces many of
the large number of methods defined in the two classes.)
6 (hypothetical). Eliminate value. Suppose that in some context only the lengths
of S t r ingBuffers were needed, but not their contents. That is, after a series of
calls to methods such as i n se r t , append, setCharAt, reverse, and setLength,
the only accessor method called is length. Clone and project can be used to
create a specialized class for this case.

6 A Closer Look at Offsets in Class S t r i n g

We now consider more closely step 3 above, which introduces the offset in-
stance variable as an alternative to copying when substrings are calculated. This
step must include, for example, modification of all character access operations to
index from o f f s e t . This account illustrates how shift can be employed to intro-
duce offsets into the string representation. An initial Java version of subs t r ing
in class S t r ing could look like this:

public String substring (int b, int e) {
// b is first char position; e-i is last character position.
if ((b < 0) II (e > count) ~I (b > e))

{throw new IndexOutOfBoundsException (endi); }
int ncount = e - b;
char res[] = new char[ncount];
ArrayCopy (value, b, res, O, ncount);
return new String (res, ncount);

263

ArrayCopy copies ncount characters from va lue to r e s starting at offsets b and
0 respectively.

To facilitate presentation consistent with the manipulation rules, the code be-
low explicitly mentions in special brackets those (- instance var iab les -) that
are referenced or changed. This allows a more functional t reatment of methods.
We also usually abbreviate {- i n t e g r i t y checks -}. Thus the code above could
be rendered more succinctly as:

public String substring (int b, int e) (- value, count -) {
{-Check (b, e, count) -}
int ncount -- e - b;
char res[] = new char[ncount] ;
ArrayCopy (value, b, res, O, ncount);
return new String (res, ncount); }

The principal steps for shift, recall, are (1) defining a suitable Span function, (2)
adapting code so it appears in all the required places, and (3) carrying out the
shift transformation by relocating the Span calls. We then (4) simplify results.
(1) De f ine Span . The motivating observation is that the array copying is
unnecessary when a substring is extracted. We therefore abstract the instances
of array copy code into a new method definition and use that as Span. The
original code sites will be replaced by calls.

private (char[] ,int) Span (- char[] nvalue, int ncount, int noffset -) {
char res[] = new char[ncount];
ArrayCepy (nvalue, noffset, res, 0, nceunt);
return (res,ncount) ; }

(An additional notational liberty we take is to allow functions to return a tuple
of results. For this variant of shift, the parameters of Span are exactly the new
set of instance variables, and the results are the old instance variables.
(2) Cal l Span . The method abstraction step needs to be done in a way that
introduces Span calls into all methods that construct or mutate string values
(i.e., alter va lue or count) . Note that s u b s t r i n g does not mutate or construct
string values directly; it uses a S t r i n g constructor:

public String (nvalue, ncount) (- value, count -) {
value = new char[ncount] ;
count -- ncount;
ArrayCopy (nvalue, 0, value, 0 count); }

After Span is abstracted:

public String (nvalue, ncount) (- value, count -) {
(value, count) = Span (nvalue, ncount, 0); }

When Span has an easily computed inverse function, then Span can always be
introduced trivially into otherwise less tractable cases as part of a composition
with the inverse. But this will likely necessitate later code simplification.
(3) Do t h e Sh i f t . Once all the Span calls have been inserted, doing the shift
is a mechanical operation. The effect is as follows:

264

- The class now has three private instance variables, nvalue, ncount, and
no f f s e t , corresponding to the parameters of Span.

- All Span calls are replaced by (simultaneous) assignments to the new in-
stance variables of the actual parameters.

- In each method that accesses instance variables, the first operation becomes
a call to Span that computes value and count (now ordinary local variables)
in terms of the instance variables.

For example, here is the transformed definition of subst r ing:

public String substring (int b, int e) (- nvalue, ncount, noffset -) {
(char value[], int count) = Span (nvalue, ncount, noffset);
{-Check (b, e, count) -}
int c = e - b;
char res[] = new char[c];
ArrayCopy (value, b, res, O, c);
return new String (res, c) ; }

(4) Simplify. Unfolding Span and simplifying:

public String substring (int b, int e) (- nvalue, ncount, noffset -) {
{- Check (b, e, ncount) -}
intc = e - b;
char res[] = new char[c];
ArrayCopy (nvalue, noffset, res, O, c);
ArrayCopy (res, b, res, O, c);
return new String (res, c); }

This motivates our introducing a new string constructor that can take an offset,
pub1 ic S t r ing (nvalue, ncount, n o f f s e t) . This is done by abstracting the last
two lines of subs t r ing and exploiting the idempotency of array copying. After
simplifications-

public String substring (int b, int e) (- nvalue, ncount, noffset -) {

{- Check (b, e, ncount) -}
return new String (nvalue, e - b, b + noffset) ; }

In the case of the charAt method in String, we start with:

public char charAt(int i) (- value, count -) {
{-Check (i, count) -}
return value [i] ; }

This does not create or modify the instance variables, so no call to Span is needed

before the shift . I t does, however, access ins tance var iables , so shift inser ts an
in i t i a l call to Span:

p u b l i c char c h a r A t (i n t i) (- n v a l u e , ncount , n o f f s e t -) {
(char v a l u e [] , i n t count) -- Span (nva lue , ncount , n o f f s e t) ;
{-Check (i, count) -}
return value [i] ; }

265

Simplification entails unfolding Span, eliminating the array copy operation, and
simplifying:

publ ic char cha rAt (in t i) (- nvalue, ncount, n o f f s e t -) {
{- Check (i , ncount) -}
return nvalue[i + noffset]; }

7 B a c k g r o u n d a n d C o n c l u s i o n

Background . There is significant previous work on synthesizing and reasoning
about encapsulated abstract data types. Class manipulations are most obviously
influenced by Hoare's early work [H72]. Most related work focuses either on syn-
thesizing type implementations from algebraic specifications or on refinement of
data representations into more concrete forms [D80,MG90,W93]. But evolution
does not always involve synthesis or refinement, and the techniques introduced
here are meant to alter (and not necessarily refine) both structure and (internal)
meaning.

Ideas for boundary manipulations appear in Burstall and Goguen's work on
theory operations [BG77]. Wile developed some of these ideas into informally-
described manipulations on types that he used to provide an account of the
heapsort algorithm [W81]. He used a system of manipulating flag bits to record
whether values have been computed yet in order to achieve the effect of a primi-
tive class manipulation. For boundary manipulations, we build on several recent
efforts which have developed and applied concepts analogous to the operation
m~gvation techniques [GN93,JF88,O92].

Early versions of the boundary manipulation and shift techniques were de-
fined (without proof) and applied to introduce destructive operations in pro-
grams [JS87,$86] and in a larger case study in which a complex data structure
for the text buffer of an interactive text editor was developed [NLS90].

The program manipulation techniques we introduce for classes and other
encapsulations are meant to complement other manipulation and specialization
techniques for achieving local restructuring and optimizations that do not involve
manipulating encapsulations.

Conclusion. The techniques described in this paper are source-level tech-
niques meant to be embodied in interactive tools used with programmer guid-
ance to develop and evolve software. The intent is to achieve a more flexible and
exploratory approach to the design, configuration, implementation, and adap-
tation of encapsulated abstractions. Manipulation techniques such as these can
decrease the coupling between a programmer decision to perform a particular
computation and the related decision of where the computation should be placed
with respect to class and internal interface structure.

Acknowledgements . Thanks to John Boyland and Edwin Chart, who con-
tributed valuable insights. Thanks also to the anonymous referees for helpful
comments.

266

R e f e r e n c e s

[BG94]

[BD77]

[BG77]

[D80]

[GN93]

[G93]

[H72]

[JF88]

[JS87]

[K96]

[MG90]

[MG95]

[NLS90]

[092]

[P86]
[P84]

[s80]

[s86]

[$94]

[w88]

[w81]
[W93]

R.W.Bowdidge and W.G. Griswold, Automated Support for Encapsulating
Abstract Data Types. ACM SIGSOFT Symposium Foundations of Software
Engineering, 1994.
R.M. Burstall and J. Darfington, A transformation system for developing
recursive programs. JACM 24, pp.44-67, 1977.
R.M. Burstall and J. Goguen, Putting theories together to make specifica-
tions. IJCAI, 1977.
J. Darlington, The synthesis of implementations for abstract data types. Im-
perial College Report, 1980.
W.G. Griswold and D. Notkin, Automated assistance for program restruc-
turing. ACM TOSEM 2:3, 1993.
J.V. Guttag and J. J. Homing, et al., Larch: Languages and Tools for Formal
Specification, Springer-Verlag, 1993.
C.A.R. Hoare, Proof of correctness of data representations. Acta Informatica
1, pp. 271-281, 1972.
R. Johnson and B. Foote, Designing reusable classes. Journal of Object-
Oriented Programming, June/July 1988.
U. Jcrring and W. Scherlis, Deriving and using destructive data types. Pro-
gram Specification and Transformation, Elsevier, 1987.
G. Kiczales, Beyond the Black Box: Open Implementation, IEEE Software,
January 1996.
Carroll Morgan and P.H.B. Gardiner, Data refinement by calculation. Acta
Informatica 27 (1990).
J.D. Morgenthaler and W.G. Griswold, Program analysis for practical pro-
gram restructuring. ICSE-17 Workshop on Program Transformation for Soft-
ware Evolution, 1995.
R.L. Nord, P. Lee, and W. Scherlis, Formal manipulation of modular software
systems. ACM/SIGSOFT Formal methods in software development, 1990.
W. Opdyke, Refactoring Object-Oriented Frameworks. PhD Thesis, Univer-
sity of Illinois, 1992.
R. Paige, Programming with invariants. IEEE Software 3:1, 1986.
A. Pettorossi, A powerful stragey for deriving efficient programs by transfor-
mation. ACM Symposium on Lisp and Functional Programming, 1984.
W. Scherlis, Expression procedures and program derivation. Stanford Uni-
versity technical report, 1980.
W. Scherlis, Abstract data types, specialization, and program reuse. Ad-
vanced programming environments, Springer, 1986.
W. Scherlis, Boundary and path manipulations on abstract data types. IFIP
94, North-Holland, 1994.
P. Wadler, Deforestation: Transforming programs to eliminate trees. Euro-
pean Symposium on Programming, Springer, 1988.
D.S. Wile, Type transformations. IEEE TSE SE-7, pp.32-39, 1981.
K.R. Wood, A practical approach to software engineering using Z and the
refinement calculus. ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, 1993.

