
A G e n e r i c F r a m e w o r k for S p e c i a l i z a t i o n
(Abridged Version)

Peter Thiemann*

Universit~t T/ibingen
thiemann@inf ormatik, uni-tuebingen, de

Abst rac t . We present a generic framework for specifying and imple-
menting offline partial evaluators. The framework provides the infra-
structure for specializing higher-order programs with computational ef-
fects specified through a monad. It performs sound specialization for
MI monadic instances and is evaluation-order independent. It subsumes
most previously published partial evaluators for higher-order functional
programming languages in the sense that they axe instances of the generic
framework with respect to a particular monad.

Keywords: higher-order programming, program transformation, partial evalua-
tion, computational effects

1 Introduction

A partial evaluator [10, 23] specializes a program with respect to a known part
of its input. The resulting specialized program takes the rest of the input and
delivers the same result as the original program applied to the whole input. The
specialized program usually runs faster than the original one.

One particular flavor of partial evaluation is offline partial evaluation. In its
first stage, a binding-time analysis annotates all phrases of a program that only
depend on the known input as executable at specialization time. The execution
of the remaining phrases is deferred to the run time of the specialized program. In
the second stage, a static reducer interprets the annotated program. It evaluates
all phrases annotated as executable and generates code for the remaining phrases.

The goal of this work is to present a generic framework to specify and im-
plement the static reducer. The framework unifies the existing specifications of
static reducers and it provides a sound basis to implement reducers that execute
and generate code with computational effects. It goes beyond existing specializ-
ers in tha t it allows for experimentation with various effects in a modular way.

To achieve this modularity, the framework is parameterized over a monad.
The choice of a monad fixes a particular computational effect. Monads have
been used in the context of programming languages to structure denotational

* Author's present address: Department of Computer Science, Uniyersity of Notting-
ham, University Park, Nottingham NG7 2RD, England

268

semantics [30], to structure functional programs [39,40], and to equip pure func-
tional languages with side-effecting operations like I /O and mutable state [24,32].
.Closely related to structuring denotational semantics is the construction of mod-
ular interpreters [18,28]. There are also recent theoretical approaches to formalize
partial evaluation using monads [21,26].

1.1 Four Ways to Static Reduct ion

In the past, four different approaches have been used to implement static reduc-
ers dealing with a particular computational effect. All of them rest on denota-
tional specifications of specialization, or--from a programmer's point of view--
on viewing the static reducer as an interpreter for an annotated language. The
implementation languages of these interpreters (the metalanguages of the spec-
ifications) range from applied lambda calculus to ML with control operators.
By factoring these specifications over an annotated variant of Moggi's compu-
tational metalanguage [21,30], we demonstrate that all of them are composed
from the same set of building blocks, the sole difference being the staging of
computation at specialization time. Here is the set of building blocks:

evalv
B
,%

A4

an evaluation function for a pure call-by-value lambda calculus;
a binding-time analysis that maps terms to annotated terms;
a specializer for applied lambda calculus written in lambda calculus
(e.g., Lambdamix [19]);
a monadic expansion translation that maps the computational met-
alanguage to applied lambda calculus by expanding the monadic op-
erators to lambda terms according to the definition of the monad;
a call-by-value explication that translates from the (annotated)
source language to the (annotated) metalanguage, encoding a call-
by-value evaluation strategy.

As an example for the different approaches consider a call-by-value language A!
with some computational effect and specialize a program p to r with respect to
known data s. We assume access to the program text of all functions mentioned
above: [Sv] is the lambda term denoting the function S, = eval, [S,], [p s] is
the textual application of p to s, and so on.

T r a n s f o r m Source P r o g r a m to Expanded Monadic Style Applying A4ogv
to [p s] yields an effect-free lambda term. This term can now be analyzed and
statically reduced with a specializer for the lambda calculus [8,19].

,.s,, (B (M (ev(rp sl)))) = M (,rv(l,-1)) (1)

This approach is viable [9, 31,37], but it suffers from a number of drawbacks.

- Monadic expansion typically introduces many new abstractions. This in-
crease in program size slows down the analysis B and the static reduction.

269

- The expanded term can be hard to read for the user of the partial evaluator.
It provides no useful feedback from the annotated term on how to change
the source program to achieve bet ter specialization.

- The straightforward expansion often does not lead to satisfactory results
from the binding-time analysis. For example, sophisticated state-passing
translations have been designed to obtain better results [31,37].

- The specialized program is also in expanded monadic style (for example,
in continuation-passing style [9]), which requires an inverse translation (for
example, a direct style translation [13]) to obtain readable results.

Specializer in E x p a n d e d M o n a d i c S ty le At the cost of moving to a more
sophisticated binding-time analysis B!, which takes computational effects into
account (e.g., [37]), equation (1) can be rewritten to

(,,,, (~(,~, r,, ~1))) = M (e , , r r l)
hence (8. oA4 o$.) (~,rp sl) = (M oE~) rrl
hence ($U 1 o2~4 -1 o 8 . o/ t4 oE.) (B!r p sl) = rrl

Changing the staging by symbolically composing the specializer with the monadic
expansion and the explication and their inverses yields

evalv rE~ -1 o j ~ _ l o 8v o j~ o e~l B, rp sl = rrl (2)

There are a number of advantages in return for this complication.

- The source program does not undergo any translation.
- The binding-time analysis applies directly to the source program p and can

transmit useful feedback to the user of the system.
- The specialized program is built from pieces of the original source program.

The inverse translation is hard-wired into the specializer.

Examples of this approach are Bondorf 's specializer in extended continuation-
passing style [4] and a specializer for call-by-value lambda calculus with first-class
references in extended continuation-passing store-passing style [17].

Specializer in Direct Style with Monadic Operators Here we depart from
writing the specializer in a pure language and use a meta-interpreter eval! =
(evalv o/ t4 o Cv) for A! with the monad in question built in. On top of that we
write a direct style specializer S! in A! using the built-in monadic operations.
For example, if S~ was written in ML it could make use of exceptions, state, and
control operations.

This approach has the same advantages as the previous approach. Addition-
ally, it is usually more efficient since eval! can employ machine-level implemen-
tations of the monadic operations. Now we can reason as follows:

F~l = eval~ [S~l (~ Fp sl)
= (eval. o.A,4 oE~) rs:l (B~Fp ~l)
= eval~ (A,'[(E~FS!])) (/3! Fp s])

270

Lawall and Danvy [25] have followed exactly this path (for the continuation
monad) to construct an efficient implementation of Bondorf's specializer in direct
style with control operators. Their work exploits the built-in continuation monad
of Scheme and" ML.

Since 2! simply interprets unannotated pure terms, it follows that

This generalizes a result of Lawall and Danvy [25], namely [2ol --- cv IS,1 where

C. is a translation to extended continuation-passing style, encoding call-by-value
evaluation; it holds [20] that C. = A/Ic o E. (where ~4c is the monadic
expansion for the continuation monad, see Sec. 5);

Sc is a continuation-based specializer in CPS; it holds that Sc = S. o Cv.

Define a Specializer for the Meta language Hatcliff and Danvy [21] trans-
late p to the metalanguage via Ev and then define the binding-time analysis BML
and the specializer 8ML for the metalanguage.

sMs (.LUEv(I-p sl)n) = ,r.,..(r,,.1)

The specialized program is also written in the metalanguage and may have to
be translated back into)~.~.

1.2 The Design Space

Figure 1 shows the design space of specialization for languages with compu-
tational effects. Again, ,~! is an impure lambda calculus with some "built-in"
effects, ~ML is an enrichment of Moggi's computational metalanguage, and ;~ is
a pure (but applied) lambda calculus. The underlined variants are the respective
annotated versions of the calculi. They are connected via binding-time analy-
ses B for the respective calculi. The annotated programs are mapped to their
specialized versions by the respective specializer S. The diagram should convey
the idea that--ideally--the order of the transformations should not matter for
the results. Paths in the diagram correspond to design choices in constructing a
specializer, as exemplified before. Clearly, if the path to the specialized program
does not end in the lower left of the diagram, we need inverse transformations
for E and (possibly) A4 to get a specialized program in the source language.

The diagram suggests that a specializer has to map the annotated version of
a calculus to its standard version. As a counterexample, consider the specializer
A/1-1 o S! that maps ~! to)~ML.

1.3 Our Approach

We distinguish three languages, the annotated source language ,k!, the annotated
computational metalanguage ~ML, and an implementation language)~impl, which

271

~! ~ "~.~L

~ L

A,I ,E

M ,[

M ,E

,2

8

Fig. 1. Generic Framework

is a functional programming language equipped with a particular monad T . All
of them are defined in Sec. 2. In Sec. 3, we define a monadic semantics for the
annotated source language in terms of an explication translation from ~! to ~---ML"
The actual specializer maps ~ML programs to ~! programs. This has two advan-
tages: the binding-time analysis and the explication of the evaluation order are
left to the frontend and an inverse of the explication translation is not required.
The first stage of specialization, G, maps ~---ML programs to Ximpl programs. G is
generalized from a continuation interpretation for ~---ML in Sec. 4. Evaluation of
the ~impl program yields the specialized program in ~!. Subsequently, we instan-
t iate T with various monads and discuss the outcome: the continuation monad
yields continuation-based partial evaluation (Sec. 5), the identity monad yields
Gomard and Jones's specializer for the lambda calculus (Sec. 6), a combination
of the continuation monad and the store monad yields a specializer for core ML
with references (Sec. 7), a combination of the continuation monad and the ex-
ception monad yields a specializer that can process exceptions at specialization
t ime (Sec. 8). For each choice of monad T we give a specification G T of the
monadic operators in terms of ~. The composition GT o G plays the role of AA
in the diagram. As outlined in 1.1 above, any implementation of the operators
will do, as long as it obeys the specification.

2 N o t a t i o n

2.1 A n n o t a t e d L a m b d a Ca lcu lus

The source language is a simply typed annotated lambda calculus ~_. It will be
extended later to ~! to demonstrate the t reatment of monadic effects like state
and exceptions. It is straightforward to extend both with the usual programming

272

constructs. The typing rules are standard.

terms E ::= x I Ax.E I E@E I A--x.E I EQ_E
types T ::= ~1 ~- --~ ~" I-~1 T--+T

The type t is the type of integers, and T -+ 7-' is the type of functions that map
~- to T'. In the implementation, the underlined (dynamic) types are subsumed in
the type Code. Beta reduction of static terms is the only rule of computation.

We use standard notational conventions: application associates to the left,
the scope of a A goes as far to the right as possible, and we can merge tambda
abstractions as in Axy.E. As usual, =~ is single step reduction, = ~ is the reflexive
transitive closure of ~ , and = is the reflexive, transitive, and symmetric closure
of ~ .

2.2 Annotated Computational Metalanguage

The computational metalanguage [30] is an extended lambda calculus that makes
the introduction and composition of computations explicit. Here is the syntax
of its annotated version [21]:

terms M ::= x I Ax.M I M @ M I unit(M) I let x ~ M in M
I Ax .M I M ~ M I unit(M) I le__s x ~ M in M

types T : : ~ - t l T - " ~ T I T T I ~ _ I T ' - ' ~ T I T T

Intuitively, uni t (M) denotes a trivial computation that returns the value of M.
The monadic let let x ~ M1 in M2 expresses the sequential composition of
computations: first, M1 is performed and then M2 with x bound to the value
returned by M1. We augment beta reduction and the monadic reduction rules

let x ~ (let y ~ M1 in/1//2) in M3 -+ let y ~ M1 in let x ~ M2 in M3 (3)

let x ~ M in unit(x) ~ M (4)

let x ~ unit(M1) in/l//2 --~ M2[x := M1] (5)

by rules that reorganize underlined let expressions, too.

let x ~ (le_At y ~ M1 in M2) in/1//3 -+ le__tt y ~ M1 in let x ~ M2 in M3 (6)

le__t_t x ~ (let y r M1 in M2) in M3 --+ let y ~ M1 in le_s x ~ M2 in M3 (7)

le_t_t x ~ (let y ~ M1 in M2) in/1//3 -+ let y ~ M1 in let x ~ M2 in/1//3 (8)

2.3 Implementat ion Language

The implementation language Aimpl is a lambda-calculus extended with the
monadic constructs and some special operators. The special operators include
the binary syntax constructors A (,) and ~ (,). Furthermore, there are operators
specific to the currently used monad (see below for examples). The implemen-
tation language is no longer a true annotated language, since A(,) and ~(,)
are merely constructors for the datatype Code. The implementation language
is purposefully close to existing functional programming languages so that its
programs are easily transcribed.

273

3 E x p l i c a t i o n

The explication translation performs the first part of the work. It maps the
(annotated) source language ~! into the (annotated) metalanguage ~ML and
makes a particular evaluation order explicit. We only consider g, 0 which fixes
left-to-right call-by-value evaluation.

g~(x) - unit(x)
g~ ()~x.E) -- unit()~x.g~ (E))
g.(EI@E~) --= let xl 4== g.(E1) in let x2 r g.(E2) in xl@x2
g.(_~x.E) -- unit(~x.g.(E))
s ------ let xl 4= s in let x2 r s in xl@x2

The translation of the underlined constructs mirrors the translation of the static
constructs exactly, which in turn is standard [20]. This will always be the case
for the explication translation. It is easy to show that the translation preserves
typing.

L e m m a 1. Suppose F F- E : 7. Then 2~4~F~ F- gv(E) : A ~ - ~ where

A . r2 --+ T1] = M.[T2 --+ Me.IT1] M Code] = Code

This approach is similar to that of Hatcliff and Danvy [21]. They translate the
source language to the metalanguage in the very beginning and perform the
binding-time analysis on terms of the metalanguage. We can accommodate this
setup, but we also support a translation from the annotated source language
(after binding-time analysis) to the annotated metalanguage. Both metalan-
guages have in common the existence of reductions involving the underlined
constructs. The language considered by Hatcliff and Danvy excludes rules (7)
and (8) [21, fig. 10]. This is merely a different design choice as explained by
Lawall and Thiemann [26]. The crucial point is the following theorem [21].

T h e o r e m 1. ~--~ML reduction preserves operational equivalence.

4 S e m a n t i c s f o r ~---ML

The language ~--ML contains non-standard reductions, namely the reorganiz-
ing rules for let expressions. Hence we develop a CPS translation that maps
~ML to .~ in such a way that reduction in)tML is simulated by reduction in
Aimpl. Figure 2 defines the translation using let (x, El , E2) as syntactic sugar for

(x, E2)), El).

L e m m a 2. Suppose M1 =r M2 then Mc[M1] =~impl Mc[M2].

Recall that we promised a generic implementation scheme parameterized
over a monad. So far, we have only produced one implementation for a partic-
ular instance, the continuation monad. Let us now abstract from this instance

274

MoM
Mr
Mr
Me[unit(M)]]
M~[let x ~= M1 in M2]] =

M~ JIM1 ~U2] =-

Mr
A~ c [let x ~= M~ in M2]] -~

~_~x
= Ax.Mc[[M]]
= Ak..Md[M1]]@.M~[M2]@k
=_ Ak.k@.s l

)~k..Md[M1]]@),x..Mr
~(x, Md[M]@Az.z)

Ak.k@(~(A.4~[[M1], .Md[M2]))

Ak.M~[M1]~Az.let(x, z, M~M2]~k)

Fig. 2. Annotated continuation introduction

~M
G[[Ax.M~
~[[MI@M2]
O[[unit(M)D
O[let x r M1 in M2]]
G[hx.M]
a[M~M2~

G[unit(M)~
G[let x r M1 in M2]]

= Ax.G[M]
apply G[[M1]] G[M2]]

_~ unit (G[[M]])
let x r G[[M1] in G~'M2]]

~(x, ~Code (G~'M]]))
- unit(~(G[[M1]], ttCode(G[[U~]))) if M2: T r
= unit(~(G[Ml]], al[M~])) otherwise

unit (aiM]I)
= shiftCode w. let z ~.~ 6[[M1] in

unit(let(x, z, ~Code (w@G[M2])))

Fig. 3. Translation to the implementation language

by rewrit ing--in the implementation language the right sides of Mc such that
we obtain the original definition of Mc by monadic expansion, i.e., CPS trans-
formation.

Figure 3 defines the translation. It might seem like nothing has happened in
this transformation. However, we have taken an important conceptual step. We
have gotten rid of the annotated language with non-standard reductions in favor
of a standard functional language with monadic operators. In other words, we
have an implementation.

There are two non-standard constructs in the translated terms. ~Code(M)
denotes an effect delimiter. It runs the computation M (which may involve ef-
fects), discards all effects, and returns the result, provided that M terminates.
shiftCode x .M grabs the context of the computation up to the next enclosing
~Code(M'), discards it, and binds it as a function to x. The standard implemen-
tation of these operators in terms of continuations is given in the next section 5.

275

These operators are restricted so that shiftCode x . M only abstracts contexts
that return Code. Otherwise, type soundness could not be guaranteed.

5 Continuat ion-Based Special ization

We obtain sound continuation-based specialization [26] from the generic specifi-
cation G by substituting the continuation monad T T = (r --+ Code) --+ Code in
the implementation language.

The monadic expansion translation boils down to defining the operators
apply M M, unit(M), let x ~ M in M, ~Code(/Yl), and shiftCode x . M .

a o M =
Gd[Ax.M] -- Ax.Gd[M]
G~l[apply M1 M2]I =- Ak.Gd[M1]]@Gd[M2]@k

Gelid(x, M)ll = ~(x, Qd[U]l)
acid(M1, M2)~ = ~(ac[M1], G~[M2])
G~ [unit (M)]] = Ak.k@G~[M]
ae[let x ~= M1 in M2] = Ak.{~e[[M1]]~Ax.ac[[M2]]@k
G~[[~Code(M)] =_ Q~IIM]]@Az.x
6~[[shiftCode x.M]] -)~k.(Xx.O,[[M~QAz.z)@Ay.Ak'.k'@(k@y)

Here is the connection to Ad~ with o denoting composition.

L e m m a 3. Gc o ~ = ~ 2t4~.

For the specializer S~ of Lawall and Thiemann [26] we find:

L e m m a 4. (6c o 6 o C~) = ~ Sc.

There are specifications of continuation-based specialization in direct style
[25] that employ the control operators shift and reset [14]. In contrast to reset,
~Code0 is a general effect delimiter that runs an encapsulated computation,
extracts its results, and hides all its effects. The difference is visible in the com-
putation type of "reset(M)".

6 Special ization for the Lambda Calculus

Gomard's specializer Lambdamix [19] is targeted towards an applied lambda
calculus. It results from setting T T = T, the identity monad.

GI[Ax.M] = Ax.Q,[M]
Qil[apply M1 M2] = ~,[M1]~Qi[M2]
Q, [~(z, M)ll = ~(x,Q,~M])
a,[~(M1, Ms)] = ~(a,[M~], G,[M~])

Qi [unit(M)] = G, [M]
Q,[let z r M1 in M2] = (Ax.~I[M2])@G, IMx]
Gil~Code(M)] = a,[M]
G,[shiftCode z.M D - (xx.a,~M])~(Xz.z)

Calling Lambdamix S~ we have the following connection (see also [38]):

L e m m a 5. (G~ o C~) ~ S~

276

7 S p e c i a l i z a t i o n w i t h M u t a b l e Store

If we set T T = (r X Store --+ Code x Store) -+ Store ~ Code x Store (a
continuation-passing and store-passing monad) we obtain a specializer for a lan-
guage with mutable store [17]. The expansion now reads as follows (using (,) for
pairing and 7h for projection).

G,[Ax.M] =- ,',x.6,[M]
~,[[apply Mt M2]] =- ,~ks.~,[M~]@G,[M2l@k~s
G, li(a:, M)] = i (z , ~,[M])
G[(~(Mt,M,)] -= ~(G, [Mt] , g , [M2])
a , [u~ i t (M)] - ~k~ .k@(g , [M] , ~)

~, [~Code(M)] =- 7rl(~,[M]~(A(x,s).(x,s))@Sempty)
~,l[shiftCode x.M] = ,~ks.(),x.G,[M]~(,~(z, s').(z, s'))@s)~Ay.)~k' s'.k'@(k~(y, s'))

The only problematic cases are ~Code(M) and shiftCode x .M. The ~Code(M)
case shows that the standard reset operator is not sufficient here. The computa-
tion M is applied to the empty continuation $(x, s).(x, s) and the empty store
Sempty. In the end the Store component is discarded and only the value re-
turned. An implementation of reset would have to thread the store through the
computation.

Since ~Code(M) discards the static store, the binding-time analysis must
guarantee that each reference, whose lifetime crosses the effect delimiter, is dy-
namic. We have developed such an analysis elsewhere [37].

To understand the implementation of shiftCode x . M observe that the com-
putation M is applied to the empty continuation and to the current store s.
In the translated term, each occurrence of x stands for a function that accepts
a value y, a continuation k', and a store s'. The function applies the captured
continuation k to (y, s') to obtain the result of k paired with the resulting store.
Both are passed to k' to produce the result of the computation.

Specialization with a store is not very interesting without any operations on
it. We add the standard set of primitive operations, to allocate, read, and update
references, to the source language.

E :: I ref E l ! E I E := E Ire__XfEI!E[E :-- E
v :: I ref T [re_~f ~-

The typing rules and operational semantics are again standard (similar to ML).
The metalanguage and the implementation language are extended by the same
set of operators, but the result type of all these operations is a computation type,
i.e., we consider Store an abstract datatype with operations mkref : A4v[T -+
ref T~, rdref : A/tv[ref 7- -~ T]], and wrref : ref T --4 A4~ IT --+ T~. Extending the
explication is standard:

g,(ref E) -- let x 4= E,(E) in ref x
gv(! E) -- let x r gv(E) in ! x
g,(E1 :---- E2) - let Xl 4= g~(Et) in let x2 4= Ev(E2) in xt := x2

277

G requires some more care.

~[ref M] --- ref G[M~
~I!M] -~!GEM]
G[[M~ ~ unit(~(G[M]))

A

G[re._[f M] -- unit(ref(~Code(~[M]))) if M: T r
= unit(ref(G[M])) otherwise

~[M1 := M2] = ~M~] := G[M2~
{;[M1 := M2] = unit(:-~(G[[M~],tlCode(~[[M2~)))if M2: T__ ~-

= unit(:~(~[[M1], G~M2])) otherwise

The translat ion depends on the type of terms. In the image of the call-by-
name translation, the argument of ref and the second argument of :-- have
computat ion type. The placement of the delimiter ~Code0 is required to preserve
type correctness. Since each effect delimiter causes less effects to be performed
at specialization time, it is obvious tha t in a call-by-name language with effects
less computat ions are performed in a known context. The monadic expansion to
the implementat ion language is straightforward.

G, iref M] = Aks.mkref G~[M] ks
r M] _= Aks.rdref ~,[M] ks
~,[Ul := U2] = Aks.wrref G,[M1] a,[M2] ks

A

Gs[ref(M)] _= ref(G, [M])
Gs~(M)] _= !(G,[M])

8 Specialization with Exceptions

Finally, we embark on processing exceptions at specialization time. We use a
model of exceptions with "raise E" and "El handle E2" constructs to raise and
intercept exceptions and one fixed type "Exception" of exceptions. We assume
that E2 is a function that maps Exception to the same type as El.

E :: I raise E I E handle E I raise E I E handle E

The extension of the explication translation is standard:

gv (raise E) = let x r s (E) in raise x
s handle E2) = E,(E) handle Ax.C,,(E2@x)

The interesting par t is the translation G.

G[[raise M~ = raise ~[[M]]
G[[M1 handle M2] = G[[M1] handle GHM2]
~[[raise M~ = raise(G[M~)

aIM1 handle M2~ = handle(~Code(G[[Ul]]), G[[M2]])

In the definition of the monadic expansion M e for the exception monad, we
write [f,g] : (A + B) -+ C if f : A -+ C and g : B --~ C. We use s tandard
notat ion for the injection functions inl : A -~ A + B and inr : B --+ A + B.
We do not use the straightforward exception monad, but a composition with the
continuation monad, which is required to define a sound call-by-value specializer
with exceptions.

T r = ((T + Exception) --+ (Code + Exception)) --+ (Code + Exception)

278

~e [M1 @ M2]
G~[A(x, M)]
G~ [4(Mx, M2)]]
G~[[unit (M)~
Gd[let x 4= M1 in M2]

g~ ~shiftCode x .M]
G~ ~raise M~
Gr
6~ JIM1 handle M2~
G~[M1 handle M2~

~ X
= Ax.G~[[M]]
- ,Xk.G~[MI~@G~[M2~@k

--= @(~,[M1], G~ [M21)
--- Ak.k@(inl G, gM])
-- Ak.G,[MI]@[Ax.~,~M2~@k, Ay.k@inr y]
-- G~M]@[Az .x , ;~y.s z)]
-- Ak.(Ax.G,~M]@[Az.inl z, Az.inr z])@Ay.Ak' .k '@(k@(inl y))
-- Ak.k@(inr GerM])
-- raise(6~ IM]I)
= Ak.6,[M~]@[Ax.k@(inl x),G~[M2]@k]
--- Gr handle G,[M2]I

Again, the placement of ~Code(M) restricts the binding-time analysis. All ex-
ceptions that may cross the effect delimiter must be dynamic.

9 Related Work

There are two formalizations of partial evaluation using Moggi's work [30]. Hat-
cliff and Danvy [21] define a binding-time analysis and specialization for an
annotated version of the monadic metalanguage. Their specializer exploits the
monadic law 3 to "flatten" nested let expressions. To obtain an executable spec-
ification of the specializer they define a separate operational semantics (close
to an abstract machine) that they prove equivalent to their first definition of
specialization. Lawall and Thiemann [26] define an annotated version of Moggi's
computational lambda calculus and show that it is implementable through a
annotated CPS translation. This translation forms a reflection in a annotated
lambda calculus of the annotated computational lambda calculus. Thus they
show that a particular flavor of continuation-based partial evaluation is sound
for all monadic models, thereby establishing firm ground for the development of
specializers with computational effects expressed through monads.

In contrast to these works, the present work continues the work on monadic
interpreters [18, 28, 40] in that it shows how to use monads to structure spe-
cializers in functional programming languages. Hence, the focus is on directly
executable specifications. Our specifications implement the flattening transfor-
mation (the monad law 3) using special operations of the monad used to im-
plement the specializer. Incidentally, these operations correspond to effect de-
limiters, control operators, and store operators [22]. We rely on the two above
works [21,26] for the soundness of this approach.

Effect delimiters have been considered by a number of researchers for varying
purposes. Riecke and Viswanathan [35,36] construct fully abstract denotational
semantics for languages with monadic effects. Launchbury and Peyton Jones [24]
define an effect delimiter for the state monad with a second order polymorphic
type to encapsulate state-based computations. Similar operators have been used

279

by Dussart et al [16] in order to get satisfactory results in a type specializer for
the monadic metalanguage extended with mutable store (as in Sec.7).

There are offiine partial evaluators for first-order imperative languages [1,
5, 7, 11, 12] and for higher-order languages [2, 3, 8, 29]. However, most partial
evaluators for higher-order imperative languages [2, 3,6] defer all computational
effects to run time [5]. Realistic partial evaluators for higher-order languages
with side effects must be able to perform side effects at specialization time.
The only partial evaluator so far capable of this has been specified for a subset
of Scheme by Thiemann and Dussart [17]. That work defines the specializer in
extended continuation-passing store-passing style, it defines a binding-time anal-
ysis (which is proved correct elsewhere [37]), and considers pragmatic aspects
such as efficient management of the store at specialization time and specializa-
tion of named program points. In contrast, the present work identifies a general
scheme underlying the construction of specializers that address languages with
computational effects. It does so in an evaluation-order independent framework
and is built around monads in order to achieve maximum flexibility.

Birkedal and Welinder [2] developed an ad hoc scheme to deal with exceptions
in their specializer for ML. It needs a separate correctness proof, because it is
not based on the monadic metalanguage.

10 C o n c l u s i o n

We have specified a generic framework for partial evaluation and demonstrated
that it subsumes many existing algorithms for partial evaluation. The framework
is correct for all monadic instances since it only performs reductions which are
sound in the computational metalanguage.

In addition, we have investigated the construction of a generic binding-time
analysis for languages with arbitrary effects, the construction of program gener-
ators instead of specializers, and the construction of specializers in direct style.
These are reported in the full version of this paper [38] which also considers the
call-by-name explication and some further language constructs, namely numbers
and primitive operations, conditionals, and recursion.

R e f e r e n c e s

1. Lars Ole Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU report
94/19).

2. Lars Birkedal and Morten Welinder. Partial evaluation of Standard ML. Rapport
93/22, DIKU, University of Copenhagen, 1993.

3. Anders Bondorf. Automatic autoprojection of higher order recursive equations.
Science of Programming, 17:3-34, 1991.

4. Anders Bondorf. Improving binding times without explicit CPS-conversion. In
Proc. 1992 ACM Conference on Lisp and Functional Programming, pages 1-10,
San Francisco, California, USA, June 1992.

280

5. Anders Bondorf and Olivier Danvy. Automatic autoprojection of recursive equa-
tions with global variables and abstract data types. Science of Programming,
16(2):151-195, 1991.

6. Anders Bondorf and Jesper Jcrgensen. Efficient analysis for realistic off-line partial
evaluation. Journal of Functional Programming, 3(3):315-346, July 1993.

7. Mikhail A. Bulyonkov and Dmitrij V. Kochetov. Practical aspects of specialization
of Algol-like programs. In Danvy et al. [15], pages 17-32.

8. Charles Consel. Polyvariant binding-time analysis for applicative languages. In
David Schmidt, editor, Proc. ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation PEPM '93, pages 66-77, Copenhagen,
Denmark, June 1993. ACM Press.

9. Charles Consel and Olivier Danvy. For a better support of static data flow. In
John Hughes, editor, Proc. Functional Programming Languages and Computer Ar-
chitecture 1991, volume 523 of Lecture Notes in Computer Science, pages 496-519,
Cambridge, MA, 1991. Springer-Verlag.

10. Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In
POPL1993 [33], pages 493-501.

11. Charles Consel, Luke Hornof, Francois No~l, Jacques Noy@, and Nicolae Volanschi.
A uniform approach for compile-time and run-time specialization. In Danvy et al.
[15], pages 54-72.

12. Charles Consel and Francois Noel. A general approach for run-time specialization
and its application to C. In Proc. 23rd Annual ACM Symposium on Principles of
Programming Languages, pages 145-156, St. Petersburg, Fla., January 1996. ACM
Press.

13. Olivier Danvy. Back to direct style. Science of Programming, 22:183-195, 1994.
14. Olivier Danvy and Andrzej Filinski. Abstracting control. In LFP 1990 [27], pages

151-160.
15. Olivier Danvy, Robert Glfick, and Peter Thiemann, editors. Dagstuhl Seminar

on Partial Evaluatwn 1996, volume 1110 of Lecture Notes ~n Computer Science,
Schlofi Dagstuhl, Germany, February 1996. Springer-Verlag.

16. Dirk Dussart, John Hughes, and Peter Thiemann. Type specialisation for impera-
tive languages. In Mads Tofte, editor, Proc. International Conference on Functional
Programming 1997, pages 204-216, Amsterdam, The Netherlands, June 1997. ACM
Press, New York.

17. Dirk Dussart and Peter Thiemann. Partial evaluation for higher-order languages
with state. Berichte des Wilhelm-Schickard-Instituts WSI-97-XX, Universit~t
Tiibingen, April 1997.

18. David Espinosa. Building interpreters by transforming stratified monads.
ftp://altdorf.ai.mit.edu/pub/dae, June 1994.

19. Carsten K. Gomard and Neil D. Jones. Compiler generation by partial evaluation:
A case study. Structured Programmzng, 12:123-144, 1991.

20. John Hatcliff and Olivier Danvy. A generic account of continuation-passing styles.
In Proc. 21st Annual ACM Symposium on Principles of Programming Languages,
pages 458-471, Portland, OG, January 1994. ACM Press.

21. John Hatcliff and Olivier Danvy. A computational formalization for partial evalu-
ation. Mathematical Structures in Computer Science, 7(5):507-542, 1997.

22. G. F. Johnson and Dominic Duggan. Stores and partial continuations as first-class
objects in a language and its environment. In Proc. 15th Annual ACM Symposium
on Princzples of Programming Languages, pages 158-168, San Diego, California,
January 1988. ACM Press.

281

23. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, 1993.

24. John Launchbury and Simon L. Peyton Jones. Lazy functional state threads. In
Proc. of the ACM SIGPLAN '94 Conference on Programming Language Design
and Implementatwn, pages 24-35, Orlando, Fla, USA, June 1994. ACM Press.

25. Julia Lawall and Olivier Danvy. Continuation-based partial evaluation. In
Proc. 1994 ACM Conference on Lisp and Functional Programming, pages 227-
238, Orlando, Florida, USA, June 1994. ACM Press.

26. Julia Lawall and Peter Thiemann. Sound specialization in the presence of compu-
tational effects. In Proc. Theoretical Aspects of Computer Software, volume 1281
of Lecture Notes in Computer Science, pages 165-190, Sendai, Japan, September
1997. Springer-Verlag.

27. Proc. 1990 ACM Conference on Lisp and Functional Programming, Nice, France,
1990. ACM Press.

28. Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In POPL1995 [34], pages 333-343.

29. Karoline Malmkjmr, Nevin Heintze, and Olivier Danvy. ML partial evaluation
using set-based analysis. In Record of the 1994 ACM SIGPLAN Workshop on
ML and its Applications, number 2265 in INRIA Research Report, pages 112-119,
Orlando, Florida, June 1994.

30. Eugenio Moggi. Notions of computations and monads. Information and Compu-
tation, 93:55-92, 1991.

31. Barbara Moura, Charles Consel, and Julia Lawall. Bridging the gap between func-
tional and imperative languages. Publication interne 1027, Irisa, Rennes, France,
July 1996.

32. Simon L. Peyton Jones and Philip L. Wadler. hnperative functional programming.
In POPL1993 [33], pages 71-84.

33. Proc. 20th Annual ACM Symposium on Principles of Programming Languages,
Charleston, South Carolina, January 1993. ACM Press.

34. Proc. 22nd Annual ACM Symposium on Principles of Programming Languages,
San Francisco, CA, January 1995. ACM Press.

35. John Riecke. Delimiting the scope of effects. In Arvind, editor, Proc. Functional
Programming Languages and Computer Architecture 1993, pages 146-155, Copen-
hagen, Denmark, June 1993. ACM Press, New York.

36. John Riecke and Ramesh Viswanathan. Isolating side effects in sequential lan-
guages. In POPL1995 [34], pages 1-12.

37. Peter Thiemann. Correctness of a region-based binding-time analysis. In
Proc. Mathematical Foundations of Programming Semantics, Thirteenth Annual
Conference, volume 6 of Electronic Notes in Theoretical Computer Science, page 26,
Pittsburgh, PA, March 1997. Carnegie Mellon University, Elsevier Science BV.
URL: http://www.elsevier.nl/locate/entcs/volume6.html.

38. Peter Thiemann. A generic framework for specialization. Berichte des Wilhelm-
Schickard-Instituts WSI-97-XXX, Universit/it Tiibingen, October 1997.

39. Philip L. Wadler. Comprehending monads. In LFP 1990 [27], pages 61-78.
40. Philip L. Wadler. The essence of functional programming. In Proc. 19th Annual

ACM Symposium on Principles of Programming Languages, pages 1-14, Albu-
querque, New Mexico, January 1992. ACM Press.

