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Abst rac t .  We present a generic framework for specifying and imple- 
menting offline partial evaluators. The framework provides the infra- 
structure for specializing higher-order programs with computational ef- 
fects specified through a monad. It performs sound specialization for 
MI monadic instances and is evaluation-order independent. It subsumes 
most previously published partial evaluators for higher-order functional 
programming languages in the sense that they axe instances of the generic 
framework with respect to a particular monad. 
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1 Introduction 

A partial evaluator [10, 23] specializes a program with respect to a known part  
of its input. The resulting specialized program takes the rest of the input and 
delivers the same result as the original program applied to the whole input. The 
specialized program usually runs faster than the original one. 

One particular flavor of partial evaluation is offline partial evaluation. In its 
first stage, a binding-time analysis annotates all phrases of a program that  only 
depend on the known input as executable at specialization time. The execution 
of the remaining phrases is deferred to the run time of the specialized program. In 
the second stage, a static reducer interprets the annotated program. It evaluates 
all phrases annotated as executable and generates code for the remaining phrases. 

The goal of this work is to present a generic framework to specify and im- 
plement the static reducer. The framework unifies the existing specifications of 
static reducers and it provides a sound basis to implement reducers that  execute 
and generate code with computational effects. It goes beyond existing specializ- 
ers in tha t  it allows for experimentation with various effects in a modular way. 

To achieve this modularity, the framework is parameterized over a monad. 
The choice of a monad fixes a particular computational effect. Monads have 
been used in the context of programming languages to structure denotational 
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semantics [30], to structure functional programs [39,40], and to equip pure func- 
tional languages with side-effecting operations like I /O and mutable state [24,32]. 
.Closely related to structuring denotational semantics is the construction of mod- 
ular interpreters [18,28]. There are also recent theoretical approaches to formalize 
partial evaluation using monads [21,26]. 

1.1 Four Ways to Static Reduct ion  

In the past, four different approaches have been used to implement static reduc- 
ers dealing with a particular computational effect. All of them rest on denota- 
tional specifications of specialization, or--from a programmer's point of view-- 
on viewing the static reducer as an interpreter for an annotated language. The 
implementation languages of these interpreters (the metalanguages of the spec- 
ifications) range from applied lambda calculus to ML with control operators. 
By factoring these specifications over an annotated variant of Moggi's compu- 
tational metalanguage [21,30], we demonstrate that  all of them are composed 
from the same set of building blocks, the sole difference being the staging of 
computation at specialization time. Here is the set of building blocks: 

evalv 
B 
,% 

A4 

an evaluation function for a pure call-by-value lambda calculus; 
a binding-time analysis that  maps terms to annotated terms; 
a specializer for applied lambda calculus written in lambda calculus 
(e.g., Lambdamix [19]); 
a monadic expansion translation that  maps the computational met- 
alanguage to applied lambda calculus by expanding the monadic op- 
erators to lambda terms according to the definition of the monad; 
a call-by-value explication that  translates from the (annotated) 
source language to the (annotated) metalanguage, encoding a call- 
by-value evaluation strategy. 

As an example for the different approaches consider a call-by-value language A! 
with some computational effect and specialize a program p to r with respect to 
known data s. We assume access to the program text of all functions mentioned 
above: [Sv] is the lambda term denoting the function S,  = eval, [S,],  [p s] is 
the textual application of p to s, and so on. 

T r a n s f o r m  Source  P r o g r a m  to Expanded Monadic Style Applying A4ogv 
to [p s] yields an effect-free lambda term. This term can now be analyzed and 
statically reduced with a specializer for the lambda calculus [8,19]. 

,.s,, (B (M  (ev(rp sl)))) = M (,rv(l,-1)) (1) 

This approach is viable [9, 31,37], but it suffers from a number of drawbacks. 

- Monadic expansion typically introduces many new abstractions. This in- 
crease in program size slows down the analysis B and the static reduction. 
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- The expanded term can be hard to read for the user of the partial evaluator. 
It provides no useful feedback from the annotated term on how to change 
the source program to achieve bet ter  specialization. 

- The straightforward expansion often does not lead to satisfactory results 
from the binding-time analysis. For example, sophisticated state-passing 
translations have been designed to obtain better  results [31,37]. 

- The specialized program is also in expanded monadic style (for example, 
in continuation-passing style [9]), which requires an inverse translation (for 
example, a direct style translation [13]) to obtain readable results. 

Specializer in E x p a n d e d  M o n a d i c  S ty le  At the cost of moving to a more 
sophisticated binding-time analysis B!, which takes computational effects into 
account (e.g., [37]), equation (1) can be rewritten to 

(,,,, (~(,~,  r,, ~1))) = M (e , , r r l )  
hence (8. oA4 o$.) (~,rp sl) = (M oE~) rrl 
hence ($U 1 o2~4 -1 o 8 .  o/ t4  oE. )  (B!r p sl)  = rrl 

Changing the staging by symbolically composing the specializer with the monadic 
expansion and the explication and their inverses yields 

evalv rE~ -1 o j ~ _ l  o 8v o j~  o e~l B, rp sl = rrl (2) 

There are a number of advantages in return for this complication. 

- The source program does not undergo any translation. 
- The binding-time analysis applies directly to the source program p and can 

transmit useful feedback to the user of the system. 
- The specialized program is built from pieces of the original source program. 

The inverse translation is hard-wired into the specializer. 

Examples of this approach are Bondorf 's  specializer in extended continuation- 
passing style [4] and a specializer for call-by-value lambda calculus with first-class 
references in extended continuation-passing store-passing style [17]. 

Specializer in Direct Style with Monadic Operators Here we depart  from 
writing the specializer in a pure language and use a meta-interpreter eval! = 
(evalv o/ t4  o Cv) for A! with the monad in question built in. On top of that  we 
write a direct style specializer S! in A! using the built-in monadic operations. 
For example, if S~ was written in ML it could make use of exceptions, state, and 
control operations. 

This approach has the same advantages as the previous approach. Addition- 
ally, it is usually more efficient since eval! can employ machine-level implemen- 
tations of the monadic operations. Now we can reason as follows: 

F~l = eval~ [S~l ( ~  Fp sl) 
= (eval. o.A,4 oE~) rs:l (B~Fp ~l) 
= eval~ (A,'[(E~FS!])) (/3! Fp s]) 
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Lawall and Danvy [25] have followed exactly this path (for the continuation 
monad) to construct an efficient implementation of Bondorf's specializer in direct 
style with control operators. Their work exploits the built-in continuation monad 
of Scheme and" ML. 

Since 2! simply interprets unannotated pure terms, it follows that 

This generalizes a result of Lawall and Danvy [25], namely [2ol --- cv IS,1 where 

C. is a translation to extended continuation-passing style, encoding call-by-value 
evaluation; it holds [20] that C. = A/Ic o E. (where ~4c is the monadic 
expansion for the continuation monad, see Sec. 5); 

Sc is a continuation-based specializer in CPS; it holds that Sc = S. o Cv. 

Define a Specializer for the  Meta language  Hatcliff and Danvy [21] trans- 
late p to the metalanguage via Ev and then define the binding-time analysis BML 
and the specializer 8ML for the metalanguage. 

sMs ( .LUEv(I-p sl)n) = ,r.,..(r,,.1) 

The specialized program is also written in the metalanguage and may have to 
be translated back into )~.~. 

1.2 The  Design Space 

Figure 1 shows the design space of specialization for languages with compu- 
tational effects. Again, ,~! is an impure lambda calculus with some "built-in" 
effects, ~ML is an enrichment of Moggi's computational metalanguage, and ;~ is 
a pure (but applied) lambda calculus. The underlined variants are the respective 
annotated versions of the calculi. They are connected via binding-time analy- 
ses B for the respective calculi. The annotated programs are mapped to their 
specialized versions by the respective specializer S. The diagram should convey 
the idea that--ideally--the order of the transformations should not matter for 
the results. Paths in the diagram correspond to design choices in constructing a 
specializer, as exemplified before. Clearly, if the path to the specialized program 
does not end in the lower left of the diagram, we need inverse transformations 
for E and (possibly) A4 to get a specialized program in the source language. 

The diagram suggests that a specializer has to map the annotated version of 
a calculus to its standard version. As a counterexample, consider the specializer 
A/1-1 o S! that maps ~! to )~ML. 

1.3 Our Approach 

We distinguish three languages, the annotated source language ,k!, the annotated 
computational metalanguage ~ML, and an implementation language )~impl, which 
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Fig. 1. Generic Framework 

is a functional programming language equipped with a particular monad T .  All 
of them are defined in Sec. 2. In Sec. 3, we define a monadic semantics for the 
annotated source language in terms of an explication translation from ~! to ~---ML" 
The actual specializer maps ~ML programs to ~! programs. This has two advan- 
tages: the binding-time analysis and the explication of the evaluation order are 
left to the frontend and an inverse of the explication translation is not required. 
The first stage of specialization, G, maps ~---ML programs to Ximpl programs. G is 
generalized from a continuation interpretation for ~---ML in Sec. 4. Evaluation of 
the ~impl program yields the specialized program in ~!. Subsequently, we instan- 
t iate T with various monads and discuss the outcome: the continuation monad 
yields continuation-based partial evaluation (Sec. 5), the identity monad yields 
Gomard and Jones's specializer for the lambda calculus (Sec. 6), a combination 
of the continuation monad and the store monad yields a specializer for core ML 
with references (Sec. 7), a combination of the continuation monad and the ex- 
ception monad yields a specializer that  can process exceptions at specialization 
t ime (Sec. 8). For each choice of monad T we give a specification G T of the 
monadic operators in terms of ~. The composition GT o G plays the role of AA 
in the diagram. As outlined in 1.1 above, any implementation of the operators 
will do, as long as it obeys the specification. 

2 N o t a t i o n  

2.1 A n n o t a t e d  L a m b d a  Ca lcu lus  

The source language is a simply typed annotated lambda calculus ~_. It will be 
extended later to ~! to demonstrate the t reatment  of monadic effects like state 
and exceptions. It is straightforward to extend both with the usual programming 
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constructs. The typing rules are standard. 

terms E ::= x I Ax.E I E@E I A--x.E I EQ_E 
types T ::= ~1 ~- --~ ~" I-~1 T--+T 

The type t is the type of integers, and T -+ 7-' is the type of functions that  map 
~- to T'. In the implementation, the underlined (dynamic) types are subsumed in 
the type Code. Beta  reduction of static terms is the only rule of computation. 

We use standard notational conventions: application associates to the left, 
the  scope of a A goes as far to the right as possible, and we can merge tambda 
abstractions as in Axy.E. As usual, =~ is single step reduction, = ~  is the reflexive 
transitive closure of ~ ,  and = is the reflexive, transitive, and symmetric closure 
of ~ .  

2.2 Annotated Computational  Metalanguage 

The computational metalanguage [30] is an extended lambda calculus that  makes 
the introduction and composition of computations explicit. Here is the syntax 
of its annotated version [21]: 

terms M ::= x I Ax.M I M @ M  I unit(M) I let x ~ M in M 
I Ax .M I M ~ M  I unit(M) I le__s x ~ M in M 

types T : : ~ - t l T - " ~ T I T T I ~ _ I T ' - ' ~ T I T T  

Intuitively, uni t (M) denotes a trivial computation that  returns the value of M. 
The monadic let let x ~ M1 in M2 expresses the sequential composition of 
computations: first, M1 is performed and then M2 with x bound to the value 
returned by M1. We augment beta reduction and the monadic reduction rules 

let x ~ (let y ~ M1 in/1//2) in M3 -+ let y ~ M1 in let x ~ M2 in M3 (3) 

let x ~ M in unit(x) ~ M (4) 

let x ~ unit(M1) in/l//2 --~ M2[x := M1] (5) 

by rules that  reorganize underlined let expressions, too. 

let x ~ (le_At y ~ M1 in M2) in/1//3 -+ le__tt y ~ M1 in let x ~ M2 in M3 (6) 

le__t_t x ~ (let y r M1 in M2) in M3 --+ let y ~ M1 in le_s x ~ M2 in M3 (7) 

le_t_t x ~ (let y ~ M1 in M2) in/1//3 -+ let y ~ M1 in let x ~ M2 in/1//3 (8) 

2.3 Implementat ion Language 

The implementation language Aimpl is a lambda-calculus extended with the 
monadic constructs and some special operators. The special operators include 
the binary syntax constructors A (,) and ~ (,). Furthermore, there are operators 
specific to the currently used monad (see below for examples). The implemen- 
tation language is no longer a true annotated language, since A(, ) and ~( ,  ) 
are merely constructors for the datatype Code. The implementation language 
is purposefully close to existing functional programming languages so that  its 
programs are easily transcribed. 
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3 E x p l i c a t i o n  

The explication translation performs the first part of the work. It maps the 
(annotated) source language ~! into the (annotated) metalanguage ~ML and 
makes a particular evaluation order explicit. We only consider g,  0 which fixes 
left-to-right call-by-value evaluation. 

g~(x) - unit(x) 
g~ ()~x.E) -- unit()~x.g~ (E)) 
g.(EI@E~) --= let xl 4== g.(E1) in let x2 r g.(E2) in xl@x2 
g.(_~x.E) -- unit(~x.g.(E)) 
s ------ let xl 4= s in let x2 r s in xl@x2 

The translation of the underlined constructs mirrors the translation of the static 
constructs exactly, which in turn is standard [20]. This will always be the case 
for the explication translation. It is easy to show that  the translation preserves 
typing. 

L e m m a  1. Suppose F F- E :  7. Then 2~4~F~ F- gv(E) : A ~ - ~  where 

A . r2 --+ T1] = M.[T2  --+ Me.IT1] M  Code] = Code 

This approach is similar to that of Hatcliff and Danvy [21]. They translate the 
source language to the metalanguage in the very beginning and perform the 
binding-time analysis on terms of the metalanguage. We can accommodate this 
setup, but we also support a translation from the annotated source language 
(after binding-time analysis) to the annotated metalanguage. Both metalan- 
guages have in common the existence of reductions involving the underlined 
constructs. The language considered by Hatcliff and Danvy excludes rules (7) 
and (8) [21, fig. 10]. This is merely a different design choice as explained by 
Lawall and Thiemann [26]. The crucial point is the following theorem [21]. 

T h e o r e m  1. ~--~ML reduction preserves operational equivalence. 

4 S e m a n t i c s  f o r  ~---ML 

The language ~--ML contains non-standard reductions, namely the reorganiz- 
ing rules for let expressions. Hence we develop a CPS translation that  maps 
~ML to .~ in such a way that  reduction in )tML is simulated by reduction in 
Aimpl. Figure 2 defines the translation using let (x, El ,  E2) as syntactic sugar for 

(x, E2)), El).  

L e m m a  2. Suppose M1 =r M2 then Mc[M1] =~impl Mc[M2]. 

Recall that  we promised a generic implementation scheme parameterized 
over a monad. So far, we have only produced one implementation for a partic- 
ular instance, the continuation monad. Let us now abstract from this instance 
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MoM 
Mr 
Mr 
Me[unit(M)]] 
M~[let x ~= M1 in M2]] = 

M~ JIM1 ~U2 ] =- 

Mr 
A~ c [let x ~= M~ in M2]] -~ 

~_~x 
= Ax.Mc[[M]] 
= Ak..Md[M1]]@.M~[M2]@k 
=_ Ak.k@.s l 

)~k..Md[M1]]@),x..Mr 
~(x, Md[M]@Az.z) 

Ak.k@(~(A.4~[[M1], .Md[M2]) ) 

Ak.M~[M1]~Az.let(x, z, M~M2]~k  ) 

Fig. 2. Annotated continuation introduction 

~M 
G[[Ax.M~ 
~[[MI@M2] 
O[[unit(M)D 
O[let x r M1 in M2]] 
G[hx.M] 
a[M~M2~ 

G[unit(M)~ 
G[let x r M1 in M2]] 

= Ax.G[M] 
apply G[[M1]] G[M2]] 

_~ unit (G[[M]]) 
let x r G[[M1] in G~'M2]] 

~(x, ~Code (G~'M]])) 
- unit(~(G[[M1]], ttCode(G[[U~]))) if M2: T r 
= unit(~(G[Ml]], al[M~])) otherwise 

unit (aiM]I) 
= shiftCode w. let z ~.~ 6[[M1] in 

unit(let(x, z, ~Code (w@G[M2]))) 

Fig. 3. Translation to the implementation language 

by rewrit ing--in the implementation language the right sides of Mc  such that  
we obtain the original definition of Mc  by monadic expansion, i.e., CPS trans- 
formation. 

Figure 3 defines the translation. It might seem like nothing has happened in 
this transformation. However, we have taken an important  conceptual step. We 
have gotten rid of the annotated language with non-standard reductions in favor 
of a standard functional language with monadic operators. In other words, we 
have an implementation. 

There are two non-standard constructs in the translated terms. ~Code(M) 
denotes an effect delimiter. It runs the computation M (which may involve ef- 
fects), discards all effects, and returns the result, provided that  M terminates. 
shiftCode x .M grabs the context of the computation up to the next enclosing 
~Code(M'),  discards it, and binds it as a function to x. The standard implemen- 
tation of these operators in terms of continuations is given in the next section 5. 
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These operators are restricted so that  shiftCode x . M  only abstracts contexts 
that  return Code. Otherwise, type soundness could not be guaranteed. 

5 Continuat ion-Based Special ization 

We obtain sound continuation-based specialization [26] from the generic specifi- 
cation G by substituting the continuation monad T T = (r --+ Code) --+ Code in 
the implementation language. 

The monadic expansion translation boils down to defining the operators 
apply M M, unit(M),  let x ~ M in M, ~Code(/Yl), and shiftCode x . M .  

a o M  = 
Gd[Ax.M] -- Ax.Gd[M] 
G~l[apply M1 M2]I =- Ak.Gd[M1]]@Gd[M2]@k 

Gelid(x, M)ll = ~(x, Qd[U]l) 
acid(M1, M2)~ = ~(ac[M1], G~[M2]) 
G~ [unit (M)]] = Ak.k@G~[M] 
ae[let x ~= M1 in M2] = Ak.{~e[[M1]]~Ax.ac[[M2]]@k 
G~[[~Code(M)] =_ Q~IIM]]@Az.x 
6~[[shiftCode x.M]] - )~k.(Xx.O,[[M~QAz.z)@Ay.Ak'.k'@(k@y) 

Here is the connection to Ad~ with o denoting composition. 

L e m m a  3. Gc o ~ = ~  2t4~. 

For the specializer S~ of Lawall and Thiemann [26] we find: 

L e m m a  4. (6c o 6 o C~) = ~  Sc. 

There are specifications of continuation-based specialization in direct style 
[25] that  employ the control operators shift and reset [14]. In contrast to reset, 
~Code0 is a general effect delimiter that  runs an encapsulated computation, 
extracts its results, and hides all its effects. The difference is visible in the com- 
putation type of "reset(M)". 

6 Special ization for the Lambda Calculus 

Gomard's specializer Lambdamix [19] is targeted towards an applied lambda 
calculus. It results from setting T T = T, the identity monad. 

GI[Ax.M] = Ax.Q,[M] 
Qil[apply M1 M2] = ~,[M1]~Qi[M2] 
Q, [~(z, M)ll = ~(x,Q,~M]) 
a,[~(M1, Ms)] = ~(a,[M~], G,[M~]) 

Qi [unit(M)] = G, [M] 
Q,[let z r M1 in M2] = (Ax.~I[M2])@G, IMx] 
Gil~Code(M)] = a,[M] 
G,[shiftCode z.M D - (xx.a,~M])~(Xz.z) 

Calling Lambdamix S~ we have the following connection (see also [38]): 

L e m m a  5. (G~ o C~) ~ S~ 
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7 S p e c i a l i z a t i o n  w i t h  M u t a b l e  Store 

If we set T T = (r  X Store --+ Code x Store) -+ Store ~ Code x Store (a 
continuation-passing and store-passing monad) we obtain a specializer for a lan- 
guage with mutable store [17]. The expansion now reads as follows (using (,) for 
pairing and 7h for projection). 

G,[Ax.M] =- ,',x.6,[M] 
~,[[apply Mt M2]] =- ,~ks.~,[M~]@G,[M2l@k~s 
G, li(a:, M)] = i (z ,  ~,[M]) 
G[(~(Mt,M,)] -= ~(G,  [Mt] ,  g ,  [M2]) 
a , [u~ i t (M)]  - ~k~ .k@(g , [M] ,  ~) 

~, [~Code(M)] =- 7rl(~,[M]~(A(x,s).(x,s))@Sempty) 
~,l[shiftCode x.M] = ,~ks.(),x.G,[M]~(,~(z, s').(z, s'))@s)~Ay.)~k' s'.k'@(k~(y, s')) 

The only problematic cases are ~Code(M) and shiftCode x .M.  The ~Code(M) 
case shows that  the standard reset operator is not sufficient here. The computa- 
tion M is applied to the empty continuation $(x, s).(x, s) and the empty store 
Sempty. In the end the Store component is discarded and only the value re- 
turned.  An implementation of reset would have to thread the store through the 
computation. 

Since ~Code(M) discards the static store, the binding-time analysis must 
guarantee that  each reference, whose lifetime crosses the effect delimiter, is dy- 
namic. We have developed such an analysis elsewhere [37]. 

To understand the implementation of shiftCode x . M  observe that  the com- 
putation M is applied to the empty continuation and to the current store s. 
In the translated term, each occurrence of x stands for a function that  accepts 
a value y, a continuation k', and a store s'. The function applies the captured 
continuation k to (y, s') to obtain the result of k paired with the resulting store. 
Both are passed to k' to produce the result of the computation. 

Specialization with a store is not very interesting without any operations on 
it. We add the standard set of primitive operations, to allocate, read, and update 
references, to the source language. 

E :: . . . .  I ref E l !  E I E  := E Ire__XfEI!E[E :-- E 
v :: . . . .  I ref T [ re_~f ~- 

The typing rules and operational semantics are again standard (similar to ML). 
The metalanguage and the implementation language are extended by the same 
set of operators, but the result type of all these operations is a computation type, 
i.e., we consider Store an abstract datatype with operations mkref : A4v[T -+ 
ref T~, rdref : A/tv[ref 7- -~ T]], and wrref : ref T --4 A4~ IT --+ T~. Extending the 
explication is standard: 

g,(ref E) -- let x 4= E,(E) in ref x 
gv(! E) -- let x r gv(E) in ! x 
g,(E1 :---- E2) - let Xl 4= g~(Et) in let x2 4= Ev(E2) in xt := x2 
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G requires some more care. 

~[ref M] --- ref G[M~ 
~I!M]  -~!GEM] 
G[[ M~ ~ unit(~(G[M])) 

A 

G[re._[f M] -- unit(ref(~Code(~[M]))) if M:  T r 
= unit(ref(G[M])) otherwise 

~[M1 := M2] = ~M~] := G[M2~ 
{;[M1 := M2] = unit(:-~(G[[M~],tlCode(~[[M2~)))if M2: T__ ~- 

= unit(:~(~[[M1], G~M2])) otherwise 

The  translat ion depends on the type of terms. In the image of the call-by- 
name translation, the argument  of ref  and the second argument  of :-- have 
computat ion type. The placement of the delimiter ~Code0 is required to preserve 
type  correctness. Since each effect delimiter causes less effects to be performed 
at  specialization time, it is obvious tha t  in a call-by-name language with effects 
less computat ions are performed in a known context. The monadic expansion to 
the implementat ion language is straightforward. 

G, iref M] = Aks.mkref G~[M] ks 
r M] _= Aks.rdref ~,[M] ks 
~,[Ul := U2] = Aks.wrref G,[M1] a,[M2] ks 

A 

Gs[ref(M)] _= ref(G, [M]) 
Gs~(M)] _= !(G,[M]) 

8 Specialization with Exceptions 

Finally, we embark on processing exceptions at specialization time. We use a 
model of exceptions with "raise E" and "El handle E2" constructs to raise and 
intercept exceptions and one fixed type "Exception" of exceptions. We assume 
that E2 is a function that maps Exception to the same type as El. 

E :: .... I raise E I E handle E I raise E I E handle E 

The extension of the explication translation is standard: 

gv (raise E) = let x r s (E) in raise x 
s handle E2) = E,(E) handle Ax.C,,(E2@x) 

The interesting par t  is the translation G. 

G[[raise M~ = raise ~[[M]] 
G[[M1 handle M2] = G[[M1] handle GHM2] 
~[[raise M~ = raise(G[M~) 

aIM1 handle M2~ = handle(~Code(G[[Ul]] ), G[[M2]]) 

In the definition of the monadic expansion M e  for the exception monad,  we 
write [f,g] : (A + B) -+ C if f : A -+ C and g : B --~ C. We use s tandard  
notat ion for the injection functions inl : A -~ A + B and inr : B --+ A + B. 
We do not use the straightforward exception monad, but a composition with the 
continuation monad, which is required to define a sound call-by-value specializer 
with exceptions. 

T r = ((T + Exception) --+ (Code + Exception)) --+ (Code + Exception) 
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~e [M1 @ M2 ] 
G~[A(x, M)] 
G~ [4(Mx, M2)]] 
G~[[unit (M)~ 
Gd[let x 4= M1 in M2] 

g~ ~shiftCode x .M]  
G~ ~raise M~ 
Gr 
6~ JIM1 handle M2~ 
G~[M1 handle M2~ 

~ X  
= Ax.G~[[M]] 
- ,Xk.G~[MI~@G~[M2~@k 

--= @(~,[M1], G~ [M21) 
--- Ak.k@(inl G, gM]) 
-- Ak.G,[MI]@[Ax.~,~M2~@k, Ay.k@inr y] 
-- G~M]@[Az .x ,  ;~y.s z)] 
-- Ak.(Ax.G,~M]@[Az.inl z, Az.inr z])@Ay.Ak' .k '@(k@(inl y)) 
-- Ak.k@(inr GerM]) 
-- raise(6~ IM]I) 
= Ak.6,[M~]@[Ax.k@(inl x),G~[M2]@k] 
--- Gr handle G,[M2]I 

Again, the placement of ~Code(M) restricts the binding-time analysis. All ex- 
ceptions that may cross the effect delimiter must be dynamic. 

9 Related  Work 

There are two formalizations of partial evaluation using Moggi's work [30]. Hat- 
cliff and Danvy [21] define a binding-time analysis and specialization for an 
annotated version of the monadic metalanguage. Their specializer exploits the 
monadic law 3 to "flatten" nested let expressions. To obtain an executable spec- 
ification of the specializer they define a separate operational semantics (close 
to an abstract machine) that they prove equivalent to their first definition of 
specialization. Lawall and Thiemann [26] define an annotated version of Moggi's 
computational lambda calculus and show that it is implementable through a 
annotated CPS translation. This translation forms a reflection in a annotated 
lambda calculus of the annotated computational lambda calculus. Thus they 
show that a particular flavor of continuation-based partial evaluation is sound 
for all monadic models, thereby establishing firm ground for the development of 
specializers with computational effects expressed through monads. 

In contrast to these works, the present work continues the work on monadic 
interpreters [18, 28, 40] in that it shows how to use monads to structure spe- 
cializers in functional programming languages. Hence, the focus is on directly 
executable specifications. Our specifications implement the flattening transfor- 
mation (the monad law 3) using special operations of the monad used to im- 
plement the specializer. Incidentally, these operations correspond to effect de- 
limiters, control operators, and store operators [22]. We rely on the two above 
works [21,26] for the soundness of this approach. 

Effect delimiters have been considered by a number of researchers for varying 
purposes. Riecke and Viswanathan [35,36] construct fully abstract denotational 
semantics for languages with monadic effects. Launchbury and Peyton Jones [24] 
define an effect delimiter for the state monad with a second order polymorphic 
type to encapsulate state-based computations. Similar operators have been used 
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by Dussart et al [16] in order to get satisfactory results in a type specializer for 
the monadic metalanguage extended with mutable store (as in Sec.7). 

There are offiine partial evaluators for first-order imperative languages [1, 
5, 7, 11, 12] and for higher-order languages [2, 3, 8, 29]. However, most partial 
evaluators for higher-order imperative languages [2, 3,6] defer all computational 
effects to run time [5]. Realistic partial evaluators for higher-order languages 
with side effects must be able to perform side effects at specialization time. 
The only partial evaluator so far capable of this has been specified for a subset 
of Scheme by Thiemann and Dussart [17]. That work defines the specializer in 
extended continuation-passing store-passing style, it defines a binding-time anal- 
ysis (which is proved correct elsewhere [37]), and considers pragmatic aspects 
such as efficient management of the store at specialization time and specializa- 
tion of named program points. In contrast, the present work identifies a general 
scheme underlying the construction of specializers that address languages with 
computational effects. It does so in an evaluation-order independent framework 
and is built around monads in order to achieve maximum flexibility. 

Birkedal and Welinder [2] developed an ad hoc scheme to deal with exceptions 
in their specializer for ML. It needs a separate correctness proof, because it is 
not based on the monadic metalanguage. 

10  C o n c l u s i o n  

We have specified a generic framework for partial evaluation and demonstrated 
that it subsumes many existing algorithms for partial evaluation. The framework 
is correct for all monadic instances since it only performs reductions which are 
sound in the computational metalanguage. 

In addition, we have investigated the construction of a generic binding-time 
analysis for languages with arbitrary effects, the construction of program gener- 
ators instead of specializers, and the construction of specializers in direct style. 
These are reported in the full version of this paper [38] which also considers the 
call-by-name explication and some further language constructs, namely numbers 
and primitive operations, conditionals, and recursion. 
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