
Some Mistakes I Have
and What I Have Learned from Them

Cliff B Jones

Harlequin plc
Queens Court, Wilmslow Road, Alderley Edge, Cheshire, SK9 7QD

e-marl: cbj@harlequin.com
Department of Computer Science, Manchester University, M13 9PL

e-mail: cbjQcs.man.ac.uk

Abs t r ac t . The purpose of this paper is to make a number of points
about the selection of topics, research style, and dissemination of ideas.
The writing style chosen is to present past personal decisions which might
be regarded as technical or strategic mistakes and to indicate what pos-
itive messages can be derived from the experiences.

Introduct ion

An invited contribution is an opportuni ty to do something different: for a start ,
I write in the first person singular. In a sense, I intend to preach: to argue tha t
some formal methods research is going in a direction which has little chance of
making an impact on computing practise; to t ry to persuade senior researchers to
direct students -o r anyone who is susceptible to influence- to look more seriously
at new applications and less a t polishing ways of t reat ing problems which have
come to be seen as classical.

Jus t preaching is not likely to sway people so I have chosen to don a "hair
shirt" and describe some decisions tha t I have made which could be regarded
as mistakes. At the end of each of my four "confessions", I t ry to draw lessons
from the story. Of course, there is a degree of self-justification in these lessons.
Furthermore, I should concede that I could probably not have presented some
of these lessons without a gap of (in some cases, many) years. Wha t follows
certainly does not present the only examples I could have drawn from about
thir ty years of trying to develop and disseminate what have become known as
"formal methods". But I believe tha t each of these four enable me to make a
positive point.

8

1 H a n d l i n g p a r t i a l f u n c t i o n s in p r o o f s

I first met the problem of how to reason about partial functions in the IBM
Vienna Laboratory in the late 1960s; I remember an intense discussion with
Peter Lucas during the period that he was writing [Luc69]. The early Vienna
(operational semantics) VDL work had used McCarthy's conditional expression
interpretation of logical operators and I had found that these presented a num-
ber of difficulties which went beyond solving the problem that initially presented
itself. The reason for my first stay in Vienna was to experiment with using the
VDL (cf. [LW69]) language definitions in proofs about implementation correct-
ness of compiling algorithms and I suspect that I encountered difficulties earlier
than many precisely because I was one of the first people to make such use of
the definitions.

I have had several tries at this problem since and have - I guess- to view all
but the last as mistakes (and to continue to question the last!). Most important
is that the criteria for success have been motivated by efficacy in the construction
of proofs.

P r o b l e m

The difficulty of reasoning about partial functions is apparent to anyone who has
faced other than the most trivial of specification tasks. Terms arise in logical
expressions which for certain values of their free variables fail to denote an
(obvious) value. One source of this problem is operators on basic data types
such as sequences: taking the head of an empty sequence does not denote an
obvious value so an expression like hd t might or might not denote a value. In

Vt E ~ �9 t = [] V t = append(hdt, tlt)

it is obviously intended that a value be denoted but perhaps less obvious as to
how to explain in a compositional way why it is.

The more troublesome terms come from partial functions. In large specifica-
tions, one needs many auxiliary functions and they are often defined by recursion.
What makes their handling more delicate than monadic operators is that the
domain over which they are defined can depend on relationships between their ar-
guments. Examples of moderate difficulty could be cited from work on databases
etc. A simple example which I have used in several papers is intentionally just
complex enough to illustrate the problem.

d i# :Z • Z - ~ Z

di#(i , j) _~ ~f i = j the. 0 e ~ di#(i , j + 1) + 1 fi

is a perverse definition of subtraction over the integers; its intended domain
appears to be summarised by

V i , j : Z . i > _ j ~ d i f f (i , j) = i - j (1)

But here again a denotational understanding founders on the need to provide a
value for terms like diff(2, 3).

The conditional interpretation of the logical operators outlined in [McC63]
extends their meaning to cover undefined operands so that the implication in
Eq. 1 evaluates to true with false as its left operand and undefined as its right. As
indicated above, the conditional expression approach works but is less than ideal
in proofs: the familiar commutativity property of conjunction and disjunction
are lost and - in the case in hand- the contrapositive does not hold.

V i , j : Z . d i f f (i , j) ~ i - j ~ i < j (2)

Moreover, although less likely to arise, there is no reason why the following
should not be true

Vi , j : Z . d i f f (i , j) = i - j V d i f f (j , i) = j - i (3)

but this cannot hold in the conditional interpretation.
The real rub with the conditional view is that every operator is forced

to be understood via its conditional expression meaning whether or not this
is necessary. This observation has prompted a number of computer scientists
(e.g. [Jon72,Dij76,Gri81]) to experiment with mixed sets of classical and condi-
tional operators. The difficulty then is that the number of rules for manipulating
the double set of operators is far greater and less intuitive than one would wish.
None of the above cited contributions provide a full set of rules and surprises like
right distribution of "conditional and" over the "conditional or" are unintuitive.

I made a further a t tempt to stay with classical logic in [Jon80] by using
quantifiers to bound variables so as to make any term only meet values of its
free variables for which it is defined. This experiment was also unsuccessful in
proofs although it is broadly what is much more systematically worked out in
Order-Sorted Algebras - see [GM92].

One of my earliest exposures to classical predicate calculus came from read-
ing [Kle52] and I am sure that I had retained a memory of Lukasiewicz's "three-
valued" logical operators. These are presented in Kleene's "blue book" only
by t ru th tables but a student of Peter Aczel had provided an axiomatisation
in [Ko176] and I misused the absence of his real supervisor to get Jen Cheng
interested in the challenge of giving a natural deduction proof style for such
operators (this led to [BCJ84,Che86,CJ91]). This logic has become known as
the Logic of Part ial Funct ion (or LPF) and its use in [Jon86] and subsequent
publications on VDM have convinced me that this provides a usable proof sys-
tem. (As Kees Middelburg pointed out, Cheng had only provided a justification
for an untyped version of the logic whereas VDM proofs typically used a typed
version - this hole was closed in [JM94].) LPF is not classical logic, but the only

10

significant casualty is the "law of the excluded middle" - which with expressions
such as

hd[] = h V h d [] ~ 5 (4)

is a loss I can tolerate.
There are of course other approaches to the thorny problem of reasoning

about partial functions - see [JM94,CJ91,Jon95] for further references.

L e s s o n s

The lessons which ! believe it is important to draw from my series of a t tempts
to find a satisfactory way to reason about partial functions include the fact the
a real difficulty should be faced rather than ignored (I can accept any approach
to this problem much more readily than pretending it does not exist). But the
main lesson is that the mathematics that we require to handle computer science
problems may not be classical; it might or might not exist in textbooks. Kline
wrote

More than anything else Mathematics is a method

Which I take to indicate that a mathematical approach exists and that there is
not some sacrosanct body of results within which we must expect to find the
tools to handle all (computing) problems.

2 O p e r a t i o n d e c o m p o s i t i o n r u l e s

An earlier (but yet to be published - see [Jon92] for a preprint) paper, traces one
view of a history of work on program verification. One interesting observation
that one could add to those made in the history is that all the way from Tur-
ing, through Floyd to Hoare and Dijkstra, there has been a reliance on proving
programs satisfy specifications in terms of predicates of a single state. Since the
purposes of a program are likely to be some sort of input /output relation this re-
striction being applied to post-conditions is surprising. In effect this odd decision
causes people to invent a number of auxiliary tricks such as extra "variables"
which cannot be changed by the program but have to be employed to remember
the initial state.

In contrast, the earliest work (post my first stay in Vienna) on what was
to become VDM [Jon73] used post-conditions which directly related initial and
final states. This section relates the discovery of usable operation decomposition
rules for such post-conditions.

P r o b l e m

In [Jon92], Hoare's seminal contribution of [Hoa69] is taken as a fulcrum around
which earlier and subsequent efforts can be conveniently surveyed. The rule

]]

(axiom) there which facilitates reasoning about partial correctness of repetitive
while constructs is both well known and a model of clarity.

{PAb) S{P}
{P) while b do S end {P A- b)

It is the reward of the single state view of post-conditions that such concise
rules are available. (One can see this perhaps even more clearly with Dijkstra's
weakest pre-condition work - see [DS90] and the considerable literature that this
has spawned; but the Hoare rules provide a bet ter comparison with the VDM
work.)

In [Jon80] there are a number of rules which make it possible to establish
results about iterative constructs. Interestingly, the first rules presented are for
initialised while constructs. There is some virtue in this decision since the rules
were intended to be used in program development and it is a fact tha t most
useful iterative constructs have to be preceded by initialisation: the combined
rules in some sense included the statement composition with the initialisation
in a way which prompted reasonable design decisions. But even comparing the
rules in [Hoa69] and [JonS0] for simple iteration the latter look heavy: they are
presented as two separate domain conditions, two conditions about the relational
meaning of the components and desired post-condition in addition to separate
clauses about termination.

Peter Aczel wrote in [Acz82]

But a more flexible and powerful approach has been advocated by
Cliff Jones . . . His approach is to allow the post-condition of a specifica-
tion to depend on the starting state of a c o m p u t a t i o n . . .

but went on to add that

His [CBJ] rules appear elaborate and unmemorable compared with
the original rules for partial correctness of Hoare.

which is a considerably more polite commentary than they deserved. Aczel's
unpublished note went on to show how a form of rule to cover post-conditions
of two states could be formulated neatly (and be memorable). In the following,
P is a predicate (truth-valued function) of a single state and R is a (transitive,
well-founded) relation over state pairs. The rule

{P^b) s { P ^ R }
[AczelJones] {p} while b do S end {R Rtwf

captures termination which was treated separately in the Hoare rule. (As a
further confession here, [Jon80] presents the stupid compromise of using a ter-
mination function whose domain was a single state as in Hoare's rule).

12

L e s s o n

The lesson that I wish to draw from this story is that it is sometimes necessary
to use a somewhat inelegant formulation until a better solution can be found.
The path to the improvement might need to look at "simplifications" (such as
Hoare's choice to rely on post-conditions of a single state) but one must also be
prepared to look at the untidy solution to see what needs simplifying.

Hardy wrote in [Har67]

there is no permanent place in the world for ugly mathematics

but there might be times when an ugly formulation is the best we have and its
use is more honest than ducking the problem. Perhaps if we all had Hardy's skill
and taste, we should always have clean formulations; I suspect not; I am sure
that mere mortals can make a contribution be presenting something on which
others can develop improvements.

Just before concluding this section, it is worth pointing out that the elegant
formulation in the AczelJones rule above does actually lose something which
was present in [Jon80]. In the original rules -qui te apart from the question of
including composed initialisation- there was a distinction between forward and
backwards composition of the overall loop relation for the repetitive construct
with the relation for the loop body. In [Jon80] they were called "up versus
down" loops. Essentially the difference is whether the intermediate results of
the loop are best understood in terms of a relation from the initial state or a
relation with the end state. Use of the Hoare-like axioms tends to force non-
overwriting of initial state information and can mostly be viewed as relations
with the initial state; programs which compute the same result by destroying
their inputs (e.g. computing n factorial whilst subtracting 1 from the variable
containing n at each iteration) are often bet ter understood via relations to the
final state. The [Jon80] rules reflected this directly; there is an open piece of
work to show how to do this with the new rule.

3 A c h a l l e n g e f r o m p a r a l l e l o b j e c t - b a s e d l a n g u a g e s

The events related in this section are much more recent than those discussed
above and are to some extent are still unfolding. I developed a compositional
way of developing some parallel (shared variable) programs during my work
in Oxford: rely and guarantee-conditions were proposed in [Jon81,Jon83] as a
way of recording and reasoning about interference; the work then lay somewhat
dormant (a significant exception is the transfer to Temporal Logic in [BKP84])
until picked up and significantly developed in [Str I returned to
the challenge of finding usable methods for the design of interfering programs
during a Research Council Fellowship from 1988-93. Although the developments
of Ketil Str and Pierre Collette had made interference reasoning more use-
ful, it was still clear that the proof work involved would be unlikely to find
favour with working engineers who were already difficult to wean away from

]3

testing to reasoning about sequential programs. Ideas like rely and guarantee-
conditions had shown that it was possible to specify interference in a way which
facilitated constructing proofs about compositional developments but there were
simply too many things to be proved. (Furthermore, it took considerable expe-
rience to juggle items between the various predicates - this is a point reviewed
in [CJ98].) Late on in my Fellowship I realised that parallel object-oriented (or
perhaps object-based since inheritance is a quagmire) languages offered a mar-
velous way to constrain interference and thus to put in the hands of the program
designer a way to indicate precisely where interference was -and was no t - an
issue; POOL [AR89,Ame89] was the major inspiration.

The research led to the development of a design language which became
known as ro~A in which there are three levels at which interference can be
controlled

- all instance variables are strictly local to the object in which they are con-
tained

- objects which can only be reached via local references form islands within
which no interference can be experienced

- objects which can be reached by general references are subject (via their
methods) to interference from elsewhere

There was then a linguistic framework in which decisions about interference
could be expressed and complex reasoning with rely and guarantee-conditions
could be restricted to those areas where the designer made a conscious decision
that intimate interference between two processes was necessary. An unexpected
bonus of the move to object-based languages was that there was a clear way
of introducing some forms of concurrency by transforming sequential programs
into ones which were observationally equivalent at the input /ou tput level but
could run faster if there were sufficiently many processors available (and a few
scheduling problems were resolved).

P r o b l e m

A simple example of two allegedly equivalent ~roj3A programs can be given in
the context of a linked list implementation of a sorting vector: Figures 1 and 2
show two lroBA programs which ought be equivalent.

A sequence of integers is represented by a linked-list of Sort objects. The
first object behaves as a server containing the whole queue but, in fact, each
object holds a single element of the sequence (in v) and a unique reference to
the next object in the list (in l). The method insert places its argument such that
the resulting sequence is in ascending order; test searches the sequence for its
argument. The implementation of both of these methods is sequential: at most
one object is active at any one time. In Figure 2 concurrency has been introduced
by applying two equivalences. The insert method given in Figure 1 is sequential:
its client is held in a "rendezvous" until the effect of the insert has passed down
the list structure to the appropriate point and the return statements have been

14

executed in every object on the way back up the list. If the return statement of
inser t is commuted to the beginning of the method as in Figure 2, the client is
able to continue its computation concurrently with the activity of the insertion.
Fhrthermore, as the insertion progresses down the list, objects "up stream" of
the operation are free to accept further method calls. One can thus imagine a
whole series of inser t operations trickling concurrently down the list structure.

Sort class
vars v: N ~-- O; l: unique ref(Sort) +- nil
insert(x: N) m e t h o d

begin

if is-nil(l) then (v +- x; l +-- new Sort)
elif v ~ x then l . insert(x)
else (l . insert(v); v +- x)
fi;
return

end
test(x: N) method : B

i f is-nil(1) V x < v then return false
elif x = v then re tu rn t rue

else re tu rn l . test(x)
fi

Fig. 1. Example Program Sort - sequential

One task facing the 7rof~A research was then to have a justified set of equiv-
alence -or t ransformation- rules (I rejected the suggestion that I just put down
the transformation rules as the (only) language definition both because I did
not initially see the prospect of getting a complete set of rules and because this
would have simply shifted the burden onto anyone interested in implementing
such a language).

Well, this sounded like a familiar challenge - - one for which I had been
equipped by over two decades of work on language definition topics. One writes
a model-oriented (operational or denotational) description of the language and
proves the putative equivalences are consistent with the model-oriented seman-
tics. I dismissed the idea of writing a denotational definition in terms of power
domains (my views on the real advantages of denotational semantics are some-
what heretical) and opted to write an SOS definition. Although I realised when
reviewing the work of some PhD students who picked up this line of research
that there is little real guidance in the literature as to how to formulate a clear
operational semantics definition, the task is not difficult for someone who has
written several definitions. But then the problems start: one could say that there
is no natural algebra for SOS definitions. Initial at tempts at proving the puta-
tive equivalences sound with respect to the SOS definition were cumbersome and
unrevealing.

15

Sort class
vars v: N ~- O; l: unique ref(Sort) ~- nil
insert(x: N) method

begin
return;
if is-nil(l) then (v ~- x; l ~- new Sor~)
elif v < x then l . insert(x)
else (l . insert(v); v <-- x)
fi

end
test(x: N) method : B

if is-nil(1) V x ~_ v then return false
elif x = v then return true
else delegate l . tes t (x)
fi

Fig. 2. The concurrent implementation of Sort

As well as stumbling on POOL at what appears to have been the right
time, I also read the early papers (cf. [Mi192,MPW92]) on the r-calculus at
about this point. Independently of David Walker, I decided to give the semantics
of my parallel object based language by mapping it to the r-calculus (David
was actually there first and, when Ito-sensei kindly sent me a copy of JIM91],
I saw [Wal91] as a confirmation of what I was attempting). A mapping was
not difficult to write although here there was less experience on which to base
the style and I think it is fair to say that David and I have influenced each
other in subsequent choices. There are clear notions of equivalences for process
algebras so I was naively optimistic that it was just a case of choosing the most
appropriate to the context of roSA and it would be straightforward to justify
the putative equivalences. Well, there are certainly no shortage of notions of
bi-similarity! In fact I conjecture -based on my search- that there are far more
notions than there are examples of proofs. It quickly became clear that the
process expressions which resulted from my mapping of the roSA programs of
Figures 1 and 2 to the 7r-calculus resulted in process expressions which are not
bi-similar in any obvious sense. The full story of the search for proofs has yet to
be written. I was flattered that scientists like David Walker, Davide Sangiorgi
and Benjamin Pierce found the problem interesting (cf. [Wa193,Wa194]). Suffice
it to say that the task of proving particular cases of the equivalences (but one
related to what I termed in [HJ96] as delegation is more delicate than the one
illustrated here) was tractable but prompted new variants of bi-similarity; the
task of justifying the general equivalences via the mapping to the r-calculus has
proved far more taxing; [HJ96] does contain arguments via SOS for the general
case. (It would also be interesting to trace how the SOS proof at tempts and
those via the mapping have yielded insights which have influenced each other.)

16

L e s s o n

I will risk offending some colleagues by maintaining that the notions of process
algebraic equivalences have proceeded as an end in themselves rather than being
clearly motivated by applications. The lesson that I would wish to draw from
the ~roflA story is that a clear need for notions of equivalence might be a bet ter
guiding light for research than a pure mathematical taxonomy of variants.

In [Jon96] and in my invited talk at ICFEM in Hiroshima, I argued strongly
for looking at new application areas far more exotic than the parallel object-
oriented languages discussed in the previous section; examples such as Virtual
Reality modelling languages, CORBA, Java etc. seem to me much more poten-
tially stimulating than honing formal description techniques on well worn ab-
stractions of older computing paradigms. I hope the the 7ro~A story illustrates
the potential payoff.

4 D e p l o y i n g f o r m a l m e t h o d s

This section relates a strategic rather than a technical mistake. It prepares the
way for a comment in the summary. To make clear my starting point here, I
assume that the purpose of developing formal methods is to influence practical
engineering of computer systems (whether hardware or software). It is a measure
of my unease with some research in the area of computer science that I feel it
necessary to state this fact.

At one stage of my career, I spent a lot of time trying to transfer technology
into practical computing environments. Most notably this was associated with
VDM in IBM but there were many other contacts and it is perhaps less well
known that I was also involved as a consultant in the Z work for CICS. During
the late 1970s and early 80s, I consistently advised that the only way to get formal
methods into real use was to insist that everyone in a team became familiar with
their use. This advice was the result of several earlier rather negative experiences.
Firstly I had repeatedly seen groups of "architects" design systems and record
their work in natural language which was passed to a group of formalists who
a t tempted to build a model from their understanding of the English. Anyone
who has experienced this process for a significant system will know the upshot:
streams of questions and contradictions are generated in the formalisation; the
direct reward for passing these back to the architects was a further stream of
English (with sometimes a grudging acknowledgement that these formalists were
asking very interesting questions). As way of arriving at a coherent model of a
system, this left much to be desired. It seemed to me that the only way forward
was for everyone to work on the same (formal) model. Furthermore, in teaching
VDM, I always insisted on teaching proof concepts because I felt tha t -even if
not used- they deepened people's understanding of the formalism. I had also
seen - in IBM Hursley as it so happens- the waste that occurred when one or
two people in a large group went off to learn some formal method and came back
into a group where even the notation was a complete barrier to interchange. In

]7

contrast, I had had some positive experiences where we were able to brainwash
whole project groups at the same time.

Whether these experiences really justified my austere advice is not really the
most important point here. It was some time before I saw that not only are
there are some engineers who question the need for formal notation but there
are some people who find it impossible to extract useful abstractions from the
level of detail with which they normally work.

In more recent pronouncements on the application of formal methods I have
modified my position considerably. I now recommend that something like Opera-
tions Research groups are formed where different members bring different skills.
Thus there might be domain experts, implementors and formalists all involved
in an architecture group.

Towards the end of the time when I was teaching at Manchester, I also
taught a (Master's level) course on defining models of systems which put minimal
emphasis on the notation itself and none on formal proof.

The lesson I draw from the above is that computer scientists have to think
about how there ideas might be deployed; this might include addressing tool
support before expecting users to adopt a new method; it almost certainly in-
volves tackling a significant range of examples; my advice would also be to work
together with real engineers (not just students) before thinking that one has the
"silver bullet" for which industry has been waiting.

S u m m a r y

The above four personal stories are certainly not the only ones that I could
have used to illustrate my themes: I could have chosen examples such as the
decision in VDM language definitions to use an "exit combinator" rather than
continuations, or the risk of deliberately using a data reification rule which was
known to be incomplete. I could perhaps have chosen a catalogue of mistakes
that I believe have been made by other scientists. But the examples chosen do
serve to illustrate a number of points that I feel are in danger of being ignored
by some researchers today.

Before reiterating the points of this sermon, I should make one thing abso-
lutely clear. Nothing in what I have to say argues against the search for funda-
mental concepts which really do change the way we think about key concepts.
With Algol-like languages we were lucky enough to find a ready concept for their
denotations; for parallel languages, the search has been much harder and has not
really yielded a universally agreed result. It is clear that finding the right concept
here could make considerably more difference than detailed differences between
one notation or another. Nor do I underestimate the importance of notation.
Hoare's major supplement to Floyd's work was notational but it bought about
a complete change of emphasis from operational reasoning to compositional de-
sign. But it must be remembered that significant steps in science are likely to
come from long experimentation.

18

To take my points in the reverse of the order above: if we claim that we
are doing research for the practising engineer we must make sure that the ideas
proposed have at least some chance of being deployed in a way in which those
building systems will actually be able to use them. Every esoteric mathematical
concept must really be worthwhile (or carefully hidden in the way that my good
friend Michael Jackson did so successfully in his design methods).

If we only look for mathematical elegance without clear applicability, we
should be honest enough to list ourselves as (pure) mathematicians and not rely
on a spurious contact with some simplified computing problems to justify our
research.

We must look at today's applications and learn from them. Much has hap-
pened in computing since the "stack" and the problem of the "Dining Philoso-
phers" were first taken as important paradigms on which to test formal ap-
proaches. Whatever the disadvantages of modern software (and I know many of
them), significant systems are now constructed on top of a flexible and general
interfaces to packages which handle much of the detail o f - fo r example- the pre-
cise presentation on the screen. Attention has turned from closed systems which
compute a particular input /output function to reactive systems.

We must not expect to find solutions to all of the problems presented by
building computer systems in standard mathematics. Nor -unless we are un-
believably for tunate- will we always find beautiful mathematical solutions first
time; but publishing an at tempt which does solve a problem could spur others
to show the way to a cleaner formulation. In any case, this is a more honest
approach than ignoring all aspects of a problem which do not fit our current for-
malism. We should perhaps avoid massaging known problems: don' t spend too
much time on esoteric mathematics unless you're convinced it can all be hidden
from engineers - - remember that for formal methods to be used they must be
usable by engineers.

References

[Acz82]
[Ame89]

[AR89]

[BCJ84]

[BKP84]

[Che86]

P. Aczel. A note on program verification, manuscript, January 1982.
Pierre America. Issues in the design of a parallel object-oriented language.
Formal Aspects of Computing, 1(4), 1989.
Pierre America and Jan Rutten. A Parallel Object-Oriented Language: De-
sign and Semantic Foundations. PhD thesis, Free University of Amsterdam,
1989.
H. Barringer, J.H. Cheng, and C. B. Jones. A logic covering undefinedness
in program proofs. Acta Informatica, 21:251-269, 1984.
H. Barringer, R. Kuiper, and A. Pnueli. Now you can compose temporal
logic specification. In Proceedings of 16th ACM STOC, Washington, May
1984.
J.H. Cheng. A Logic for Partial Functions. PhD thesis, University of Manch-
ester, 1986.

]9

[C J91]

[CJ98]

[Co194]

[Dij76]
[DS90]

[GM92]

[Gri81]
[Har67]
[H J96]

[Hoa69]

[IM91]

[JM94]

[Jon72]

[Jon73]

[Jon80]

[Jon81]

[Jon83]

[Jon86]

[Jon92]

[Jon95]

J. H. Cheng and C. B. Jones. On the usability of logics which handle partial
functions. In C. Morgan and J. C. P. Woodcock, editors, 3rd Refinement
Workshop, pages 51-69. Springer-Verlag, 1991.
P. Collette and C. B. Jones. Enhancing the tractability of rely/guarantee
specifications in the development of interfering operations. In G. D. Plotkin,
editor, to be published. MIT Press, 1998.
Pierre Collette. Design of Compositional Proof Systems Based on
Assumption-Commitment Specifications - Application to UNITY. PhD the-
sis, Louvain-la-Neuve, June 1994.
E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
Edsger W Dijkstra and Carel S Scholten. Predicate Calculus and Program
Semantics. Springer-Verlag, 1990. ISBN 0-387-96957-8, 3-540-96957-8.
J. Goguen and J. Meseguer. Order-sorted algebra h Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theo-
retical Computer Science, 105:217-273, 1992.
D. Gries. The Science of Programming. Springer-Verlag, 1981.
G. H. Hardy. A Mathematician's Apology. Cambridge University Press, 1967.
Steve J. Hodges and Cliff B. Jones. Non-interference properties of a con-
current object-based language: Proofs based on an operational semantics.
In Burkhard Freitag, Cliff B. Jones, Christian Lengauer, and Hans-J5rg
Schek, editors, Oject Orientation with Parallelism and Persistence, pages
1-22. Kluwer Academic Publishers, 1996.
C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576-580, 583, October 1969.
T. Ito and A. R. Meyer, editors. TACS'91 - Proceedings of the International
Conference on Theoretical Aspects of Computer Science, Sendal, Japan, vol-
ume 526 of Lecture Notes in Computer Science. Springer-Verlag, 1991.
C.B. Jones and C.A. Middelburg. A typed logic of partial functions recon-
structed classically. Acta Informatica, 31(5):399-430, 1994.
C. B. Jones. Formal development of correct algorithms: an example based
on Earley's recogniser. In SIGPLAN Notices, Volume 7 Number 1, pages
150-169. ACM, January 1972.
C. B. Jones. Formal development of programs. Technical Report 12.117,
IBM Laboratory Hursley, June 1973.
C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall
International, 1980. ISBN 0-13-821884-6.
C. B. Jones. Development Methods for Computer Programs including a No-
tion of Interference. PhD thesis, Oxford University, June 1981. Printed as:
Programming Research Group, Technical Monograph 25.
C. B. Jones. Specification and design of (parallel) programs. In Proceedings
of IFIP'83, pages 321-332. North-Holland, 1983.
C. B. Jones. Systematic Software Development Using VDM. Prentice Hall
International, 1986.
C. B. Jones. The search for tractable ways of reasoning about programs.
Technical Report UMCS-92-4-4, Manchester University, 1992.
C.B. Jones. Partial functions and logics: A warning. Information Processing
Letters, 54(2):65-67, 1995.

20

[Jon96]

[Kle52]
[Ko176]

[Luc69]

[LW69]

[McC63]

[Mil92]

[MPW92]

[st~90]

[Wal91]

[Wa1931

[Wa194]

[Xu921

C. B. Jones. Some practical problems and their influence on semantics. In
ESOP'96, volume 1058 of Lecture Notes in Computer Science, pages 1-17.
Springer-Verlag, 1996.
S. C. Kleene. Introduction to Metamathematies. Van Nostrad, 1952.
G. Koletsos. Sequent calculus and partial logic. Master's thesis, Manchester
University, 1976.
P. Lucas. Note on strong meanings of logical operators. Technical Report
LN 25.3.051, IBM Laboratory Vienna, 1969.
P. Lucas and K. Walk. On The Formal Description of PL/I, volume 6 of
Annual Review in Automatic Programming Part 3. Pergamon Press, 1969.
J. McCarthy. Predicate calculus with 'undefined' as a truth-value. Technical
Report AI Memo 1, Stanford Artificial Intelligence Project, March 22nd 1963.
R. Milner. The polyadic 7r-calculus: A tutorial. In M. Broy, editor, Logic
and Algebra of Specification. Springer-Verlag, 1992.
R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. In-

formation and Computation, 100:1-77, 1992.
K. Str Development of Parallel Programs on Shared Data-Structures.
PhD thesis, Manchester University, 1990. available as UMCS-91-1-1.
D. Walker. 7r-calculus semantics for object-oriented programming languages.
In JIM91], pages 532-547, 1991.
D. Walker. Process calculus and parallel object-oriented programming lan-
guages. In In T. Casavant (ed), Parallel Computers: Theory and Practice.
Computer Society Press, to appear, 1993.
D. Walker. Algebraic proofs of properties of objects, 1994. Proceedings of
ESOP'94.
Qiwen Xu. A Theory of State-based Parallel Programming. PhD thesis,
Oxford University, 1992.

