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Abs t r ac t .  The purpose of this paper is to make a number of points 
about the selection of topics, research style, and dissemination of ideas. 
The writing style chosen is to present past personal decisions which might 
be regarded as technical or strategic mistakes and to indicate what pos- 
itive messages can be derived from the experiences. 

Introduct ion 

An invited contribution is an opportuni ty to do something different: for a start ,  
I write in the first person singular. In a sense, I intend to preach: to argue tha t  
some formal methods research is going in a direction which has little chance of 
making an impact  on computing practise; to t ry  to persuade senior researchers to 
direct students -o r  anyone who is susceptible to influence- to look more seriously 
at  new applications and less a t  polishing ways of t reat ing problems which have 
come to be seen as classical. 

Jus t  preaching is not likely to sway people so I have chosen to don a "hair 
shirt" and describe some decisions tha t  I have made which could be regarded 
as mistakes. At the end of each of my four "confessions", I t ry  to draw lessons 
from the story. Of course, there is a degree of self-justification in these lessons. 
Furthermore,  I should concede that  I could probably not have presented some 
of these lessons without a gap of (in some cases, many) years. Wha t  follows 
certainly does not present the only examples I could have drawn from about  
thir ty  years of trying to develop and disseminate what have become known as 
"formal methods".  But  I believe tha t  each of these four enable me to make a 
positive point. 
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1 H a n d l i n g  p a r t i a l  f u n c t i o n s  in  p r o o f s  

I first met the problem of how to reason about partial functions in the IBM 
Vienna Laboratory in the late 1960s; I remember an intense discussion with 
Peter Lucas during the period that  he was writing [Luc69]. The early Vienna 
(operational semantics) VDL work had used McCarthy's  conditional expression 
interpretation of logical operators and I had found that  these presented a num- 
ber of difficulties which went beyond solving the problem that  initially presented 
itself. The  reason for my first stay in Vienna was to experiment with using the 
VDL (cf. [LW69]) language definitions in proofs about implementation correct- 
ness of compiling algorithms and I suspect that  I encountered difficulties earlier 
than many precisely because I was one of the first people to make such use of 
the definitions. 

I have had several tries at this problem since and have - I  guess- to view all 
but  the last as mistakes (and to continue to question the last!). Most important  
is that  the criteria for success have been motivated by efficacy in the construction 
of proofs. 

P r o b l e m  

The difficulty of reasoning about  partial functions is apparent to anyone who has 
faced other than the most trivial of specification tasks. Terms arise in logical 
expressions which for certain values of their free variables fail to denote an 
(obvious) value. One source of this problem is operators on basic data  types 
such as sequences: taking the head of an empty sequence does not denote an 
obvious value so an expression like hd t might or might not denote a value. In 

Vt E ~ �9 t = [] V t = append(hdt, tlt) 

it is obviously intended that  a value be denoted but perhaps less obvious as to 
how to explain in a compositional way why it is. 

The more troublesome terms come from partial functions. In large specifica- 
tions, one needs many auxiliary functions and they are often defined by recursion. 
What  makes their handling more delicate than monadic operators is that  the 
domain over which they are defined can depend on relationships between their ar- 
guments. Examples of moderate difficulty could be cited from work on databases 
etc. A simple example which I have used in several papers is intentionally just  
complex enough to illustrate the problem. 

d i#  :Z  • Z - ~  Z 

di#( i , j )  _~ ~f i = j the. 0 e ~  di#(i , j  + 1) + 1 fi 



is a perverse definition of subtraction over the integers; its intended domain 
appears to be summarised by 

V i , j : Z . i > _ j  ~ d i f f ( i , j ) = i - j  (1) 

But here again a denotational understanding founders on the need to provide a 
value for terms like diff(2,  3). 

The conditional interpretation of the logical operators outlined in [McC63] 
extends their meaning to cover undefined operands so that  the implication in 
Eq. 1 evaluates to true with false as its left operand and undefined as its right. As 
indicated above, the conditional expression approach works but  is less than ideal 
in proofs: the familiar commutativity property of conjunction and disjunction 
are lost and - in the case in hand-  the contrapositive does not hold. 

V i , j : Z . d i f f ( i , j )  ~ i - j  ~ i < j (2) 

Moreover, although less likely to arise, there is no reason why the following 
should not be true 

Vi , j :  Z .  d i f f ( i , j )  = i - j V d i f f ( j ,  i) = j - i (3) 

but  this cannot hold in the conditional interpretation. 
The real rub with the conditional view is that  every operator is forced 

to be understood via its conditional expression meaning whether or not this 
is necessary. This observation has prompted a number of computer scientists 
(e.g. [Jon72,Dij76,Gri81]) to experiment with mixed sets of classical and condi- 
tional operators. The difficulty then is that  the number of rules for manipulating 
the double set of operators is far greater and less intuitive than one would wish. 
None of the above cited contributions provide a full set of rules and surprises like 
right distribution of "conditional and" over the "conditional or" are unintuitive. 

I made a further a t tempt  to stay with classical logic in [Jon80] by using 
quantifiers to bound variables so as to make any term only meet values of its 
free variables for which it is defined. This experiment was also unsuccessful in 
proofs although it is broadly what is much more systematically worked out in 
Order-Sorted Algebras - see [GM92]. 

One of my earliest exposures to classical predicate calculus came from read- 
ing [Kle52] and I am sure that  I had retained a memory of Lukasiewicz's "three- 
valued" logical operators. These are presented in Kleene's "blue book" only 
by t ru th  tables but a student of Peter Aczel had provided an axiomatisation 
in [Ko176] and I misused the absence of his real supervisor to get Jen Cheng 
interested in the challenge of giving a natural deduction proof style for such 
operators (this led to [BCJ84,Che86,CJ91]). This logic has become known as 
the Logic of  Part ial  Funct ion (or LPF) and its use in [Jon86] and subsequent 
publications on VDM have convinced me that  this provides a usable proof sys- 
tem. (As Kees Middelburg pointed out, Cheng had only provided a justification 
for an untyped version of the logic whereas VDM proofs typically used a typed 
version - this hole was closed in [JM94].) LPF  is not classical logic, but  the only 
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significant casualty is the "law of the excluded middle" - which with expressions 
such as 

hd[] = h V h d [ ]  ~ 5  (4) 

is a loss I can tolerate. 
There are of course other approaches to the thorny problem of reasoning 

about  partial functions - see [JM94,CJ91,Jon95] for further references. 

L e s s o n s  

The lessons which ! believe it is important  to draw from my series of a t tempts  
to find a satisfactory way to reason about  partial functions include the fact the 
a real difficulty should be faced rather than ignored (I can accept any approach 
to this problem much more readily than pretending it does not exist). But the 
main lesson is that  the mathematics that we require to handle computer science 
problems may not be classical; it might or might not exist in textbooks. Kline 
wrote 

More than anything else Mathematics is a method 

Which I take to indicate that  a mathematical approach exists and that  there is 
not some sacrosanct body of results within which we must expect to find the 
tools to handle all (computing) problems. 

2 O p e r a t i o n  d e c o m p o s i t i o n  r u l e s  

An earlier (but yet to be published - see [Jon92] for a preprint) paper, traces one 
view of a history of work on program verification. One interesting observation 
that  one could add to those made in the history is that  all the way from Tur- 
ing, through Floyd to Hoare and Dijkstra, there has been a reliance on proving 
programs satisfy specifications in terms of predicates of a single state. Since the 
purposes of a program are likely to be some sort of input /output  relation this re- 
striction being applied to post-conditions is surprising. In effect this odd decision 
causes people to invent a number of auxiliary tricks such as extra "variables" 
which cannot be changed by the program but have to be employed to remember 
the initial state. 

In contrast, the earliest work (post my first stay in Vienna) on what was 
to become VDM [Jon73] used post-conditions which directly related initial and 
final states. This section relates the discovery of usable operation decomposition 
rules for such post-conditions. 

P r o b l e m  

In [Jon92], Hoare's seminal contribution of [Hoa69] is taken as a fulcrum around 
which earlier and subsequent efforts can be conveniently surveyed. The rule 
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(axiom) there which facilitates reasoning about partial correctness of repetitive 
while constructs is both well known and a model of clarity. 

{PAb) S{P} 
{P) while b do S end {P A- b) 

It is the reward of the single state view of post-conditions that  such concise 
rules are available. (One can see this perhaps even more clearly with Dijkstra's 
weakest pre-condition work - see [DS90] and the considerable literature that  this 
has spawned; but the Hoare rules provide a bet ter  comparison with the VDM 
work.) 

In [Jon80] there are a number of rules which make it possible to establish 
results about iterative constructs. Interestingly, the first rules presented are for 
initialised while constructs. There is some virtue in this decision since the rules 
were intended to be used in program development and it is a fact tha t  most 
useful iterative constructs have to be preceded by initialisation: the combined 
rules in some sense included the statement composition with the initialisation 
in a way which prompted reasonable design decisions. But even comparing the 
rules in [Hoa69] and [JonS0] for simple iteration the latter look heavy: they are 
presented as two separate domain conditions, two conditions about  the relational 
meaning of the components and desired post-condition in addition to separate 
clauses about  termination. 

Peter  Aczel wrote in [Acz82] 

But a more flexible and powerful approach has been advocated by 
Cliff Jones . . .  His approach is to allow the post-condition of a specifica- 
tion to depend on the starting state of a c o m p u t a t i o n . . .  

but  went on to add that  

His [CBJ] rules appear elaborate and unmemorable compared with 
the original rules for partial correctness of Hoare. 

which is a considerably more polite commentary than they deserved. Aczel's 
unpublished note went on to show how a form of rule to cover post-conditions 
of two states could be formulated neatly (and be memorable). In the following, 
P is a predicate (truth-valued function) of a single state and R is a (transitive, 
well-founded) relation over state pairs. The rule 

{P^b)  s { P ^ R }  
[AczelJones] {p} while b do S end {R Rtwf 

captures termination which was treated separately in the Hoare rule. (As a 
further confession here, [Jon80] presents the stupid compromise of using a ter- 
mination function whose domain was a single state as in Hoare's rule). 
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L e s s o n  

The lesson that  I wish to draw from this story is that  it is sometimes necessary 
to use a somewhat inelegant formulation until a better  solution can be found. 
The path to the improvement might need to look at "simplifications" (such as 
Hoare's choice to rely on post-conditions of a single state) but one must also be 
prepared to look at the untidy solution to see what needs simplifying. 

Hardy wrote in [Har67] 

there is no permanent place in the world for ugly mathematics 

but  there might be times when an ugly formulation is the best we have and its 
use is more honest than ducking the problem. Perhaps if we all had Hardy's  skill 
and taste, we should always have clean formulations; I suspect not; I am sure 
that  mere mortals can make a contribution be presenting something on which 
others can develop improvements. 

Just  before concluding this section, it is worth pointing out that  the elegant 
formulation in the AczelJones rule above does actually lose something which 
was present in [Jon80]. In the original rules -qui te  apart  from the question of 
including composed initialisation- there was a distinction between forward and 
backwards composition of the overall loop relation for the repetitive construct 
with the relation for the loop body. In [Jon80] they were called "up versus 
down" loops. Essentially the difference is whether the intermediate results of 
the loop are best understood in terms of a relation from the initial state or a 
relation with the end state. Use of the Hoare-like axioms tends to force non- 
overwriting of initial state information and can mostly be viewed as relations 
with the initial state; programs which compute the same result by destroying 
their inputs (e.g. computing n factorial whilst subtracting 1 from the variable 
containing n at each iteration) are often bet ter  understood via relations to the 
final state. The [Jon80] rules reflected this directly; there is an open piece of 
work to show how to do this with the new rule. 

3 A c h a l l e n g e  f r o m  p a r a l l e l  o b j e c t - b a s e d  l a n g u a g e s  

The events related in this section are much more recent than those discussed 
above and are to some extent are still unfolding. I developed a compositional 
way of developing some parallel (shared variable) programs during my work 
in Oxford: rely and guarantee-conditions were proposed in [Jon81,Jon83] as a 
way of recording and reasoning about interference; the work then lay somewhat 
dormant (a significant exception is the transfer to Temporal Logic in [BKP84]) 
until picked up and significantly developed in [Str I returned to 
the challenge of finding usable methods for the design of interfering programs 
during a Research Council Fellowship from 1988-93. Although the developments 
of Ketil Str and Pierre Collette had made interference reasoning more use- 
ful, it was still clear that  the proof work involved would be unlikely to find 
favour with working engineers who were already difficult to wean away from 
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testing to reasoning about sequential programs. Ideas like rely and guarantee- 
conditions had shown that  it was possible to specify interference in a way which 
facilitated constructing proofs about compositional developments but there were 
simply too many things to be proved. (Furthermore, it took considerable expe- 
rience to juggle items between the various predicates - this is a point reviewed 
in [CJ98].) Late on in my Fellowship I realised that  parallel object-oriented (or 
perhaps object-based since inheritance is a quagmire) languages offered a mar- 
velous way to constrain interference and thus to put  in the hands of the program 
designer a way to indicate precisely where interference was -and  was no t -  an 
issue; POOL [AR89,Ame89] was the major inspiration. 

The research led to the development of a design language which became 
known as ro~A in which there are three levels at which interference can be 
controlled 

- all instance variables are strictly local to the object in which they are con- 
tained 

- objects which can only be reached via local references form islands within 
which no interference can be experienced 

- objects which can be reached by general references are subject (via their 
methods) to interference from elsewhere 

There was then a linguistic framework in which decisions about interference 
could be expressed and complex reasoning with rely and guarantee-conditions 
could be restricted to those areas where the designer made a conscious decision 
that  intimate interference between two processes was necessary. An unexpected 
bonus of the move to object-based languages was that  there was a clear way 
of introducing some forms of concurrency by transforming sequential programs 
into ones which were observationally equivalent at the input /ou tput  level but  
could run faster if there were sufficiently many processors available (and a few 
scheduling problems were resolved). 

P r o b l e m  

A simple example of two allegedly equivalent ~roj3A programs can be given in 
the context of a linked list implementation of a sorting vector: Figures 1 and 2 
show two lroBA programs which ought be equivalent. 

A sequence of integers is represented by a linked-list of Sort objects. The 
first object behaves as a server containing the whole queue but, in fact, each 
object holds a single element of the sequence (in v) and a unique reference to 
the next object in the list (in l). The method insert places its argument such that  
the resulting sequence is in ascending order; test searches the sequence for its 
argument. The implementation of both of these methods is sequential: at most 
one object is active at any one time. In Figure 2 concurrency has been introduced 
by applying two equivalences. The insert method given in Figure 1 is sequential: 
its client is held in a "rendezvous" until the effect of the insert has passed down 
the list structure to the appropriate point and the return statements have been 
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executed in every object on the way back up the list. If the return statement of 
inser t  is commuted to the beginning of the method as in Figure 2, the client is 
able to continue its computation concurrently with the activity of the insertion. 
Fhrthermore, as the insertion progresses down the list, objects "up stream" of 
the operation are free to accept further method calls. One can thus imagine a 
whole series of inser t  operations trickling concurrently down the list structure. 

Sort  class 
vars v: N ~-- O; l: unique ref(Sort)  +- nil 
insert(x: N) m e t h o d  

begin  

if is-nil(l) then (v +- x; l +-- new Sort) 
elif v ~ x then l . insert(x) 
else (l . insert(v); v +- x) 
fi; 
return 

end 
test(x: N) method : B 

i f  is-nil(1) V x < v then  return false 
elif x = v then  re tu rn  t rue  

else re tu rn  l . test(x) 
fi 

Fig. 1. Example Program Sort - sequential 

One task facing the 7rof~A research was then to have a justified set of equiv- 
alence -or  t ransformation- rules (I rejected the suggestion that  I just put  down 
the transformation rules as the (only) language definition both because I did 
not initially see the prospect of getting a complete set of rules and because this 
would have simply shifted the burden onto anyone interested in implementing 
such a language). 

Well, this sounded like a familiar challenge - -  one for which I had been 
equipped by over two decades of work on language definition topics. One writes 
a model-oriented (operational or denotational) description of the language and 
proves the putative equivalences are consistent with the model-oriented seman- 
tics. I dismissed the idea of writing a denotational definition in terms of power 
domains (my views on the real advantages of denotational semantics are some- 
what heretical) and opted to write an SOS definition. Although I realised when 
reviewing the work of some PhD students who picked up this line of research 
that  there is little real guidance in the literature as to how to formulate a clear 
operational semantics definition, the task is not difficult for someone who has 
written several definitions. But then the problems start: one could say that  there 
is no natural algebra for SOS definitions. Initial at tempts at proving the puta- 
tive equivalences sound with respect to the SOS definition were cumbersome and 
unrevealing. 
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Sort  class 
vars v: N ~- O; l: unique ref(Sort)  ~- nil 
insert(x: N) method 

begin 
return; 
if is-nil( l)  then (v ~- x; l ~- new Sor~) 
elif v < x then l . insert(x)  
else ( l . insert(v);  v <-- x) 
fi 

end 
test(x: N) method : B 

if is-nil(1) V x ~_ v then return false 
elif x = v then return true 
else delegate l . tes t (x)  
fi 

Fig. 2. The concurrent implementation of Sort  

As well as stumbling on POOL at what appears to have been the right 
time, I also read the early papers (cf. [Mi192,MPW92]) on the r-calculus at 
about  this point. Independently of David Walker, I decided to give the semantics 
of my parallel object based language by mapping it to the r-calculus (David 
was actually there first and, when Ito-sensei kindly sent me a copy of JIM91], 
I saw [Wal91] as a confirmation of what I was attempting).  A mapping was 
not difficult to write although here there was less experience on which to base 
the style and I think it is fair to say that  David and I have influenced each 
other in subsequent choices. There are clear notions of equivalences for process 
algebras so I was naively optimistic that  it was just a case of choosing the most 
appropriate to the context of roSA and it would be straightforward to justify 
the putative equivalences. Well, there are certainly no shortage of notions of 
bi-similarity! In fact I conjecture -based on my search- that  there are far more 
notions than there are examples of proofs. It quickly became clear that  the 
process expressions which resulted from my mapping of the roSA programs of 
Figures 1 and 2 to the 7r-calculus resulted in process expressions which are not 
bi-similar in any obvious sense. The full story of the search for proofs has yet to 
be written. I was flattered that  scientists like David Walker, Davide Sangiorgi 
and Benjamin Pierce found the problem interesting (cf. [Wa193,Wa194]). Suffice 
it to say that  the task of proving particular cases of the equivalences (but one 
related to what I termed in [HJ96] as delegation is more delicate than the one 
illustrated here) was tractable but  prompted new variants of bi-similarity; the 
task of justifying the general equivalences via the mapping to the r-calculus has 
proved far more taxing; [HJ96] does contain arguments via SOS for the general 
case. (It would also be interesting to trace how the SOS proof at tempts and 
those via the mapping have yielded insights which have influenced each other.) 
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L e s s o n  

I will risk offending some colleagues by maintaining that the notions of process 
algebraic equivalences have proceeded as an end in themselves rather than being 
clearly motivated by applications. The lesson that  I would wish to draw from 
the ~roflA story is that  a clear need for notions of equivalence might be a bet ter  
guiding light for research than a pure mathematical taxonomy of variants. 

In [Jon96] and in my invited talk at ICFEM in Hiroshima, I argued strongly 
for looking at new application areas far more exotic than the parallel object- 
oriented languages discussed in the previous section; examples such as Virtual 
Reality modelling languages, CORBA, Java etc. seem to me much more poten- 
tially stimulating than honing formal description techniques on well worn ab- 
stractions of older computing paradigms. I hope the the 7ro~A story illustrates 
the potential payoff. 

4 D e p l o y i n g  f o r m a l  m e t h o d s  

This section relates a strategic rather than a technical mistake. It prepares the 
way for a comment in the summary. To make clear my starting point here, I 
assume that  the purpose of developing formal methods is to influence practical 
engineering of computer systems (whether hardware or software). It is a measure 
of my unease with some research in the area of computer science that  I feel it 
necessary to state this fact. 

At one stage of my career, I spent a lot of time trying to transfer technology 
into practical computing environments. Most notably this was associated with 
VDM in IBM but there were many other contacts and it is perhaps less well 
known that  I was also involved as a consultant in the Z work for CICS. During 
the late 1970s and early 80s, I consistently advised that  the only way to get formal 
methods into real use was to insist that  everyone in a team became familiar with 
their use. This advice was the result of several earlier rather negative experiences. 
Firstly I had repeatedly seen groups of "architects" design systems and record 
their work in natural language which was passed to a group of formalists who 
a t tempted to build a model from their understanding of the English. Anyone 
who has experienced this process for a significant system will know the upshot: 
streams of questions and contradictions are generated in the formalisation; the 
direct reward for passing these back to the architects was a further stream of 
English (with sometimes a grudging acknowledgement that  these formalists were 
asking very interesting questions). As way of arriving at a coherent model of a 
system, this left much to be desired. It seemed to me that  the only way forward 
was for everyone to work on the same (formal) model. Furthermore, in teaching 
VDM, I always insisted on teaching proof concepts because I felt tha t  -even if 
not used-  they deepened people's understanding of the formalism. I had also 
seen - in  IBM Hursley as it so happens-  the waste that  occurred when one or 
two people in a large group went off to learn some formal method and came back 
into a group where even the notation was a complete barrier to interchange. In 
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contrast, I had had some positive experiences where we were able to brainwash 
whole project groups at the same time. 

Whether these experiences really justified my austere advice is not really the 
most important point here. It was some time before I saw that not only are 
there are some engineers who question the need for formal notation but there 
are some people who find it impossible to extract useful abstractions from the 
level of detail with which they normally work. 

In more recent pronouncements on the application of formal methods I have 
modified my position considerably. I now recommend that something like Opera- 
tions Research groups are formed where different members bring different skills. 
Thus there might be domain experts, implementors and formalists all involved 
in an architecture group. 

Towards the end of the time when I was teaching at Manchester, I also 
taught a (Master's level) course on defining models of systems which put minimal 
emphasis on the notation itself and none on formal proof. 

The lesson I draw from the above is that computer scientists have to think 
about how there ideas might be deployed; this might include addressing tool 
support before expecting users to adopt a new method; it almost certainly in- 
volves tackling a significant range of examples; my advice would also be to work 
together with real engineers (not just students) before thinking that one has the 
"silver bullet" for which industry has been waiting. 

S u m m a r y  

The above four personal stories are certainly not the only ones that I could 
have used to illustrate my themes: I could have chosen examples such as the 
decision in VDM language definitions to use an "exit combinator" rather than 
continuations, or the risk of deliberately using a data reification rule which was 
known to be incomplete. I could perhaps have chosen a catalogue of mistakes 
that I believe have been made by other scientists. But the examples chosen do 
serve to illustrate a number of points that I feel are in danger of being ignored 
by some researchers today. 

Before reiterating the points of this sermon, I should make one thing abso- 
lutely clear. Nothing in what I have to say argues against the search for funda- 
mental concepts which really do change the way we think about key concepts. 
With Algol-like languages we were lucky enough to find a ready concept for their 
denotations; for parallel languages, the search has been much harder and has not 
really yielded a universally agreed result. It is clear that finding the right concept 
here could make considerably more difference than detailed differences between 
one notation or another. Nor do I underestimate the importance of notation. 
Hoare's major supplement to Floyd's work was notational but it bought about 
a complete change of emphasis from operational reasoning to compositional de- 
sign. But it must be remembered that significant steps in science are likely to 
come from long experimentation. 
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To take my points in the reverse of the order above: if we claim that  we 
are doing research for the practising engineer we must make sure that  the ideas 
proposed have at least some chance of being deployed in a way in which those 
building systems will actually be able to use them. Every esoteric mathematical  
concept must really be worthwhile (or carefully hidden in the way that  my good 
friend Michael Jackson did so successfully in his design methods). 

If we only look for mathematical elegance without clear applicability, we 
should be honest enough to list ourselves as (pure) mathematicians and not rely 
on a spurious contact with some simplified computing problems to justify our 
research. 

We must look at today's applications and learn from them. Much has hap- 
pened in computing since the "stack" and the problem of the "Dining Philoso- 
phers" were first taken as important  paradigms on which to test formal ap- 
proaches. Whatever  the disadvantages of modern software (and I know many of 
them), significant systems are now constructed on top of a flexible and general 
interfaces to packages which handle much of the detail o f - fo r  example-  the pre- 
cise presentation on the screen. Attention has turned from closed systems which 
compute a particular input /output  function to reactive systems. 

We must not expect to find solutions to all of the problems presented by 
building computer systems in standard mathematics. Nor -unless we are un- 
believably for tunate-  will we always find beautiful mathematical  solutions first 
time; but  publishing an at tempt  which does solve a problem could spur others 
to show the way to a cleaner formulation. In any case, this is a more honest 
approach than ignoring all aspects of a problem which do not fit our current for- 
malism. We should perhaps avoid massaging known problems: don' t  spend too 
much time on esoteric mathematics unless you're convinced it can all be hidden 
from engineers - -  remember that  for formal methods to be used they must be 
usable by engineers. 
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