
Observat ional Proofs w i th Critical C o n t e x t s

Narjes Berregeb Adel Bouhoula Michael Rusinowitch

LORIA - INRIA Lorraine
615, rue du Jardin Botanique - B.P. 101
54602 ViUers-l~s-Nancy Cedex, France.

E-mail:{berregeb,bouhoula,rusi}@loria.fr

A b s t r a c t . Observability concepts contribute to a better understanding
of software correctness. In order to prove observational properties, the
concept of Context Induction has been developed by Hennicker [10]. We
propose in this paper to embed Context Induction in the implicit induc-
tion framework of [8]. The proof system we obtain applies to conditional
specifications. It allows for many rewriting techniques and for the refu-
tation of false observational conjectures. Under reasonable assumptions
our method is refutationally complete, i.e. it can refute any conjecture
which is not observationally valid. Moreover this proof system is opera-
tional: it has been implemented within the Spike prover and interesting
computer experiments are reported.

1 I n t r o d u c t i o n

Observational concepts are fundamental in formal methods since for proving the
correctness of a program with respect to a specification it is essential to be able to
abstract away from internal implementation details. Data objects can be viewed
as equal if they cannot be distinguished by experiments with observable result.
The idea that the semantics of a specification must describe the behaviour of an
abstract da ta type as viewed by an external user, is due to [9]. Though a lot
of work has been devoted to the semantical aspects of observability (see [2] for
a classification), few proof techniques have been studied [17,5,14,13], and even
less have been implemented. In this paper we propose an automatic method for
proving observational properties of conditional specifications. The method re-
lies on computing families of well chosen contexts, called critical contexts, that
"cover" in some sense all observable ones. These families are applied as induction
schemes. Our inference system basically consists in extending terms by critical
contexts and simplifying the results with a powerful rewriting machinery in order
to generate new subgoals. An advantage of this approach is that it allows also
for disproving false observational conjectures. The method is even refutationally
complete for an interesting class of specifications. From a preliminary implemen-
tation on top of the Spike prover [8] computer experiments are reported. The
given examples have been treated in a fully automatic way by the program.

39

2 R e l a t e d w o r k s

Hennicker [10] has proposed an induction principle, called context induction,
which is a proof principle for behavioural abstractions. A property is observa-
tionally valid if it is valid for all observable experiments. Such experiments are
represented by observable contexts, which are context of observable sort over the
signature of a specification where a distinguished subset of its sorts is specified as
observable. Hence, a property is valid for all observable experiments if it is valid
for all corresponding observable contexts. A context c is viewed as a particular
term containing exactly one variable; therefore, the subterm ordering defines a
noetherian relation on the set of observable contexts. Consequently, the princi-
ple of structural induction induces a proof principle for properties of contexts of
observable sort, which is called context induction. This approach provides with
a uniform proof method for the verification of behavioural properties. It has
been implemented in the system ISAR [1]. However, in concrete examples, this
verification is a non trivial task, and requires human guidance: the system of-
ten needs a generalization of the current induction assertion before each nested
context induction, so that to achieve the proof.

Malcolm and Goguen [14] have proposed a proof technique which simplifies
Hennicker proofs. The idea is to split the signature into generators and defined
functions. Proving that two terms are behaviourally equivalent, comes to prove
that they give the same result in all observable contexts built from defined func-
tions, provided that the generators verify a congruence relation w.r.t, behavioural
equivalence. This proof technique is an efficient optimization of Hennicker proofs.

Bidoit and Henniker [4] have investigated how a first order logic theorem
prover can be used to prove properties in an observational framework. The
method consists in computing automatically some special contexts called cru-
cial contexts, and in enriching the specification so that to automatically prove
observational properties. But this method was only developed for the proof of
equations and for specifications where only one sort is not observable. Besides, it
fails on several examples (cf. Stack example), where it is not possible to compute
crucial contexts.

Bidoit and Hennicker [5] have also investigated characterization of be-
havioural theories that allows for proving behavioural theorems with standard
proof techniques for first order logic. In particular they propose general condi-
tions under which an infinite axiomatization of the observational equality can be
transformed into a finitary one. However, in general there is no automatic pro-
cedure for generating such a finite axiomatization of the observational equality.

Puel [16] has adapted Huet-Hullot procedure for proof by consistency w.r.t.
the final model. Lysne [13] extends Bachmair's method for proof by consistency
to the final algebra framework. The proof technique is based on a special com-
pletion procedure whose idea is to consider, not only critical pairs emerging from
positioning rewrite rules on equations, but also those emerging from positioning
equations on to rewrite rules. This approach is restricted to equations and re-
quires the ground convergence property of the axioms in order to be sound (in
our case, ground convergence is needed only for refutational completeness).

40

3 B a s i c n o t i o n s

We assume tha t the reader is familiar with the basic concepts of algebraic speci-
fications [18], te rm rewriting and equational reasoning. A many sorted signature

is a pair (S, F) where S is a set of sorts and F is a set of function symbols. For
short, a many sorted signature 2Y will simply be denoted by F. We assume tha t
we have a part i t ion of F in two subsets, the first one, C, contains the constructor
symbols and the second, D, is the set of defined symbols. Let X be a family of
sorted variables and let T(F, X) be the set of sorted terms, vat(t) stands for the
set of all variables appearing in t. A te rm is linear if all its variables occur only
once in it. I f vat(t) is empty then t is a ground term. The set of all ground terms
is T(F) . Let A be an arbi trary non-empty set, and let Fa = {fA I f E F} such
tha t if f is of arity n then fA is a function from A11 to A. The pair (A, F) is
called a G-algebra, and A the carrier of the algebra. For sake of simplicity, we
will write A to denote the Z-a lgebra when F and FA are non-ambiguous.

A substitution assigns terms of appropriate sorts to variables. The domain
of q is defined by: dom(71) = {z [z ~ / ~ z}. If t is a term, then tO denotes the
application of 0 to t. I f r /applies every variable to a ground term, then r / is a
ground substitution. We denote by = the syntactic equivalence between objects.
Let N* be the set of sequences of positive integers. For any te rm t, Pos(t) C N*
denotes its set of positions and the expression t /u denotes the subterm of t at
a position u. We write t[s]~ (resp. t[s]) to indicate that s is a subterm of t
at position u (resp. at some posit ion).The top position is written ~. Let t(u)
denote the symbol of t at position u. A position u in a te rm t is said to be a
strict position if t(u) = f E F. A position u in a term t such tha t t(u) = x
and x E X, is a linear variable position if x occurs only once in t, otherwise,
u is a non linear variable position. The depth of a term t is defined as follows:
I t l = 0 if t is a constant or a variable, otherwise, [f (t l , . . . ,tn)[= 1 + maxiltil.
We denote by ~ a transitive irreflexive relation on the set of terms, tha t is
noetherian, monotonic (s >- t implies w[s],, >- w[t]~), stable per instantiat ion
(s >- t implies se >- t~r) and satisfies the subterm property (f (. . - , t , . . .) >- t).
The multiset extension of ~- will be denoted by >>. An equation is a formula
of the form l = r. A conditional equation is a formula of the following form:

11 1t Ai=l al : bi => l = r. I t will be written = bi ~ l --~ r and called a A i = I ai
conditional rule if {la} >> (r~r, ala, bier,..., ana, b11cr} for each substi tution ~r.
The precondition of rule n = bi ~ l --+ r Ai=l ai = Ai=l ai is 11 bi. The te rm l is the
left-hand side of the rule. A rewrite rule c ~ l -+ r is left-linear if l is linear.
A set of conditional rules is called a rewrite system. A constructor is free if it
is not the root of a left-hand side of a rule. Let t be a te rm in T(C, X) , t is
called a constructor term. A rewrite system R is left-linear if every rule in R
is left-linear. We define depth(R) as the maximal depth of the strict positions
in its left-hand sides. Let R be a set of conditional rules. Let t be a te rm and
u a position in t. We write: t[lcr]~ -+R t[ra]~ if there is a substi tution tr and a
conditional equation Ai~I : ai = bi ~ l = r in R such that:

(i) l~ >- r a .

(ii) for all i E [1 . . . n] there exists ci such that aio" --+*R ci and bi~r -+~ ci.

41

(iii) {t[l~]~} >> {al~, blur, . . . ,ancr, bna}.
Rewriting is extended to literals and clauses as expected.

spec i f i ca t ion: STACK
sorts: nat, stack
o b s e r v a b l e sorts : nat
c o n s t r u c t o r s :
0: --4nat;
s: nat --+nat;
Nil: -+stack;
push: nat x stack -+stack;
def ined funct ions:
top: stack -+ nat;
pop: stack --~ stack;
axioms:
top(Nil) = 0
top(push(i, s)) = i
pop(Nil) = Nil
ipop(push(i, s)) = s

Fig. 1. Stack specification

A te rm t is irreducible (or in normal form) if there is no te rm s such tha t t --+R
s. A te rm t is ground reducible iff all its ground instances are reducible. A symbol
f E F is completely defined if all ground terms with root f are reducible to terms
in T(C) . We say that R is su~ciently complete if all symbols in D are completely

yn I I defined. A clause C is an expression of the form : Ai=I ai = bi ~ Vj=I a j = bj.
The clause C is positive if n = 0. The clause C is a logical consequence of E if
C is valid in any model of E, denoted by E ~ C. We say that C is inductively
valid in E and denote it by E ~Ind C if for any ground substitution a, (for
all i, E ~ ai~ =bicr) implies (there exists j , E ~ a ~ = b ~) . We say tha t
two terms s and t are joinable, denoted by s SR t, if s --+~ v and t - - ~ v for
some t e rm v. The rewrite system R is ground convergent if the terms u and v
are joinable whenever u, v E T (F) and R ~ u = v.

4 O b s e r v a t i o n a l s e m a n t i c s

The notion of observation technique have been introduced as a means for de-
scribing what is observed in a given algebra. An observational specification is
then obtained by adding an observation technique to a s tandard algebraic spec-
ification. The observation technique we use in our method is based on sorts 1
The semantics we choose is based on a relaxing of the satisfaction relation. The

1 but it can be easily extended to observations based on operators

42

notion of context is fundamental in all approaches based on such observational
semantics. An observational property is obtained by taking into account only ob-
servable information. Thus, to show that it is valid, one has to show its validity
in all observable contexts.

Let T(F , X) be a term algebra and let (S, F) be its signature. A context over
F is a non-ground term c E T (F , X) with a distinguished occurrence of a variable
called the context variable of c. To indicate the context variable zs occuring in
c, we often write c[zs] instead of c, where s is the sort of zs. A context reduced
to a variable zs of sort s is called an empty context of sort s. The application of
a context c[zs] to a term t E T (F , X) of sort s, denoted by c[t], is defined by the
substitution of zs by t in c[zs]. The context c is said to be applicable to t. By
exception, vat(c) will denote the set of all variables occurring in c but the context
variable of c. A context c is ground if vat(c) = ~. We denote by [c[the depth of e.
A subcontext (resp. strict subcontext) of c, is a subterm (resp. strict subterm) of
c with the same contextual variable. A clausal context c for a clause C is a list of

! contexts < C l , . . . , cn, c'1, . . . , cm > such that for all i E [1..n] : ci is applicable to
' = b~. The application of c to ai = bi, and for all j E [1..m] : c~ is applicable to aj

n - - c b m , I Ibl C, denoted by c[C], gives the clause Ai=l ci[ai] - ~[i] ~ ~ i = l c)[ai] = g[~].
Let c[zs] and c'[z's,] be two contexts such that c is of sort s , let t be a term
of sort s and e be a substitution such that zs qE dora(e). We use the following
notations: c'[(c[t])]=(c'[c])[t]=c'[c[t]] and (c[t])cr = (ce)[tcr] =c[t]~r.

A specification S P is a triple (S, F, E) where (S, F) is a signature and E is
a set of conditional equations. An observational specification SPobs is a couple
(SP, Sobs) such that S P = (S , F , E) is a specification and Sobs C_ S is the
set of observable sorts. The Stack specification in Figure 1, is an observational
specification, where Sobs = {nat} .

An observable term is a term whose sort belongs to Sobs. The set of
observable contexts is denoted by Cobs �9 An equation a = b is observ-
able if a and b are observable. The precondition of a rule is observable
if all its equations are observable. Consider the specification in Figure 1.
There are infinitely many observable contexts: top(zstacl,), top(pop(zs tae~)) , . . . ,
top(pop(. . . (pop(zstack)) . . .)), . . . top(push(zst,ck)), top(push(i , pop(zstack))), . . .

The notion of observational validity is based on the idea that two objects
in a given algebra are observationally equal if they cannot be distinguished by
computations with observable results. These computations are formalized by
contexts.

Let a and b be two terms. We say that a and b are observationally equal, and
we denote it by E ~Obs a = b iff for all c �9 Cobs, E ~Irtd c[a] = c[b]. Consider
the stack specification in Figure 1. It is easy to see that push(top (s) ,pop(s)) -- s
is not satisfied (in the classical sense). However, intuitively, it is observationally
satisfied if we just observe the elements of the sequences push(top(s) , pop(s))
and s. This can be formally shown by considering all observable contexts.

The next theorem gives a useful characterization of observational theorems
(see e.g. [151):

43

T h e o r e m 1. Suppose that all the preconditions of E are observable. Then
E ~Ob, Ain=l ai = bi ::~ VT=l a~ = b~ iff for all#round substitutions a, if
(for all i, E ~Ob, ai~ = bi~) then (there exists j such that E ~ob~ a~cr =

5 I n d u c t i o n s c h e m e s

Our purpose in this section is to introduce the ingredients allowing us to prove
and disprove behavioural properties. This task amounts in general to check an
infinite number of ground formulas for validity, since an infinite number of in-
stances and an infinite number of contexts have to be considered for building
these ground instances. This is where induction comes into play. Test substi-
tutions will provide us with induction schemes for substitutions and critical
contexts will provide us with induction schemes for contexts. In general, it is
not possible to consider all the observable contexts. However, cover contexts
are sufficient to prove behavioural theorems by reasoning on the ground irre-
ducible observable contexts rather than on the whole set of observable contexts.
In the following, we denote by R a conditional rewriting system with observable
preconditions.

D e f i n i t i o n 2 (c o v e r se t) . A cover set, denoted by CS, for R, is a finite set of
irreducible terms such that for all ground irreducible te rm s, there exist a t e rm
t in C S and a ground substitution a such that t~ -- s.

We now introduce the notion of cover context that is used to schematize
all contexts. Note tha t a cover context need not be observable, (unlike crucial
contexts of [4]). The intuitive idea is to use cover context to extend the conjec-
tures by the top in order to create redexes. Then the obtained formulas can be
simplified by axioms and induction hypothesis.

D e f i n i t i o n 3. [cover context set] A cover context set CC is a set of contexts such
that: for each ground irreducible context Cob, [z,] e Cob,, there exists c[z,] E CC
and a substi tut ion 0 such that dom(O) = var(c) and cO is a subcontext of Cobs �9

A cover context set for the specification stack is
{Znat,top(zstaek),pop(z, taek)}. The context push(i ,z , taek) is not a cover
context since top(push(i, z,tack)) and pop(push(i, Z,taek)) are reducible.
Note tha t usually there are infinitely many possible cover context sets. For
instance,{znat,top(z, tack),top(pop(z,taek)),pop(pop(z, tack))} is also a cover
context set.

In the following, we refine cover context sets so that to be able not only to
prove behavioural properties, but Mso to disprove the non valid ones. We need
first to introduce the following notions: A context c is quasi ground reducible if
for all ground substi tution r such tha t dora(r) = var(c), cr is reducible. A te rm
t is strongly irreducible if none of its non-variable subterms matches a left-hand
side of a rule in R. A positive clause Cpo, - Vi"_-i al = bi is strongly irreducible

44

if Cpo~ is not a tautology, and the maximal elements of {ai, bi} w.r.t. -~ are
strongly irreducible by R.

Cover sets and cover context sets are fundamental for the correctness of our
method. However, they cannot help us to disprove the non observationally valid
clauses. For this purpose, we introduce a new notion of critical context sets and
we use test sets defined in [7].

D e f i n i t i o n 4 (test set, test s u b s t i t u t i o n) . A test set is a cover set which
has the following additional properties: (i) the instance of a ground reducible
term by a test substitution matches a left-hand side of R. (ii) if the instance of a
positive clause Cpos by a test substitution ~ is strongly irreducible, then Cposa
is not inductively valid w. r . t .R . A test substitution for a clause C instanciates
all induction variables of C by terms taken from a given test set whose variables
are renamed.

Def in i t ion 5 (critical context set, critical clausal context) . A critical
context set S is a cover context set such that for each positive clause Cpos, if
C[Cpo,]a is strongly irreducible where cr is a test substitution of Cpos and e is
a clausal context of Cpo,, then Cpo, e is not observationally valid w . r . t . R . A
critical clausal context for a clause C is a clausal context for C whose contexts
belongs to S.

Test substitutions and critical context sets permit us to refute false conjec-
tures by constructing a counterexample.

Def in i t ion 6 (p r o v a b l y i n c o n s i s t e n t) . Let R be a conditional rewriting sys-
n m !

tern with observable preconditions. We say that C - Ai=l ai = bi ~ Vj=I aj =
b~ is provably inconsistent if and only if there exists a test substitution ~ and a
clausal critical context c such that:

(i) for all i, a i a = bier is an inductive theorem w. r . t .R .
(ii) c[VSm__x a~ = b~]a is strongly irreducible by R.

Provably inconsistent clauses are not observationally valid.

T h e o r e m 7. Let R be a conditional rewriting system with observable precon-
ditions. Let C be a provably inconsistent clause. Then C is not observationally
valid.

5.1 C o m p u t a t i o n of test sets

The computat ion of test sets and test substitutions for conditional specifica-
tions is decidable if the axioms are sufficiently complete and the constructors
are specified by a set of unconditional equations (see [12]). Unfortunately, no al-
gori thm exists for the general case of conditional specifications. However, in [7],
a procedure is described for computing test sets when the axioms are sufficiently
complete over an arbitrary specification of constructors.

45

5.2 C o m p u t a t i o n o f c r i t i c a l c o n t e x t s

Let us first introduce the following l emma which gives us a useful characterization
of critical context sets:

L e m m a 8. Let R be a conditional rewriting system. Let C C be a cover context
set that has the following properties:

(i) any non-observable context in CC has variables at depth greater than or
equal to depth(R).

(ii} for each context c[zs] E CC, there exists an observable context Cobs such that
Cobs [e] is strongly irreducible.

Then, C C is a critical context set for R.

Proof. Let C be a positive clause such that c[C]~ is strongly irreducible, where
cr is a test substi tution of C and c is a critical clausal context of C. Let us prove
tha t Co" is not observationMly valid. By (ii), there exists an observable clausal
context Cobs such that Cobs[C] is strongly irreducible. Now, using (i), we conclude
that Cobs[c[C]]~ is also strongly irreducible. Then, Cobs [c[C]]a is a provably in-
consistent clause w.r.t. Definition 11 in [7]. By Theorem 12 in [7], Cobs[C[C-~]~ is
not inductively valid. Thus, R V=Obs Ccr.

CCo := {c e T(F, X)] Icl ~ depth(R), c E Cobs , c is not quasi ground reducible
and does not contain any observable strict subcontext}

To := {c e T(F, X) I Icl = depth(R), c f~ Cob, , c is not quasi ground reducible
c does not contain any observable subcontext, and all variables (including the contex
one) in c occur at depth(R)}.

repeat
CCi+l := CC~ t.) {c E Ti I qci E CCi such that ci[c] is not quasi ground reducible}
7~+1 := T~ \ CC~+I

until CCi+I = CC~

output: CCI

Fig. 2. Computation of Critical Contexts

Now, let us present our method for constructing such critical contexts. The
idea of our procedure is the following: start ing from the non quasi ground re-
ducible observable contexts of depth smaller than or equal to depth(R), we con-
struct all contexts that can be embedded in one of those observable contexts, to
give a non quasi ground reducible and observable context. I t can be proved, by

46

reduction to ground reducibility, that quasi ground reducibility is decidable too
for equational systems and semi-decidable for conditional rewrite systems [11].
The following remark is also useful: given a context c[zs] of the form f (t l , . . . , tn)
where f is a completely defined function and for all i E [1..n], ti is a constructor
term. If zs does not appear at an induction position of f , then c[zs] is quasi
ground reducible.

T h e o r e m 9. Let R be a rewriting system and C C be the result of the application
of the procedure given in Figure 2. Then:

- C C is a cover context set for R.
- if R is equational and left-linear then C C is a critical context set for R.

Proof. It is relatively easy to show that C C is a cover context set for R. Now,
assume that R is equational and leftlinear and let us prove that C C is also a
critical context set for R. By construction, any non-observable context in C C has
variables at depth greater than or equal to depth(R). Now, since R is equational,
any non quasi ground reducible context is necessarily strongly irreducible. On
the other hand, R is left-linear and the variables of non-observable context occur
at depth(R), then for each context c[zs] E CC, there exists i such that c E CCi,
we can show that there exists an observable context Cobs such that Cobs[C] is
strongly irreducible. The proof is done by induction on i.

Example 10. Consider the Stack specification in Figure 1. We have depth(R) =
1, then:
CC0 = { z , o , top(zstook)},
To = {pop(z, taek), push(i, zstael,) }.
c c x = { z . o , , top(z) } u {pop() } ,
C C = CC1 is a critical context set for R.

Example 11. Consider the List specification in Figure 3. We have: depth(R) = 1,
then:
CCo = {znat, Zboot, in(x, z.st)},
To = {union(z .s t , x), insert(x, z.st)},
CC1 = CCo U {union(zust, x)}.
C C = CC1 is a cover context set for R. In fact, union(x, zust) is quasi
ground reducible and in(y, union(z .s t , x)) is not quasi ground reducible since
in(O, union(z .s t , Ni l)) is irreducible, but in(y, insert(x, zust)) is quasi ground
reducible.

It is possible to compute critical context sets in the case where R is a condi-
tional rewriting system. It is sufficient to apply our procedure given in Figure 2
to compute a cover context set CC, and then to check that for each non observ-
able context c E CC, there exists an observable context Cobs such that Cobs[C]
is strongly irreducible. In Example 11, we have in(x, (union(zust, y) is strongly
irreducible, then we conclude that C C = { znat , Zbool , in(x, zust), union(z , st , x)}
is a critical context set for R.

47

spec i f i ca t ion: LIST
sorts: nat, bool, list
observable sorts: nat, bool
c o n s t r u c t o r s :
O: --+nat;
s: nat -+nat;
Nil: -+list;
insert: nat x list -+list;
True: -+bool;
False: -+bool;
defined functions:
union: list • list -+ list;
in: nat • list -+ bool;
eq: nat • nat -+ bool;
axioms:
union(Nil , l) = !
union(insert(x, l), ll) = insert(x, union(l, ll))
in(x, Nil) = False
eq(x, y) = True => in(x, insert(y, l)) = True
eq(x, y) = False => in(x, insert(y, 1)) = in(x, l)
eq(O, O) = True
eq(0, s (x)) = F a l s e
eq(s(x),O) = False
~q(s(x), s(y)) = eq(x, y)

Fig. 3. List specification

6 Inference system

The inference system we use (see Figure 4) is based on a set of transition rules
applied to (E, H) , where E is the set of conjectures to prove and H is the set of
induction hypotheses. The initial set of conditional rules R is oriented with a well
founded ordering. An I-derivation is a sequence of states: (E0, 0) ~-I (El , H1) ~-I
. . . (E , , H ,) t-! We say that an I-derivation is fair if the set of persistent
clauses (Ui Nj>i Ej) is empty. Context induction is performed implicitly by the
G e n e r a t i o n rule. An equation is selected in a clause and it is extended by critical
contexts and test sets. These extensions are rewritten by R either by conditional
rewriting or by case analysis. The resulting conjectures are collected in ~Jc,a Ec,~.
Case S i m p l i f i c a t i o n illustrates the case reasoning: it simplifies a conjecture
with conditional rules provided that the disjunction of their preconditions 2 is
inductively valid in R.

D e f i n i t i o n 12 (C ase Ana lys i s) . Let R be a set of conditional rules and let
l V r be a clause. Case Analysis(l[gcr]~, r) = {Pvr ~ l[dl~]u V r ; - . . ; Pncr
l[dno']u V r} i f Vi E [1 . . . n] : Pi ~ g "+ di E R a n d R ~ Ind Plo" V . . . V Pno'.

2 Recall that the preconditions of the axioms in R are assumed to be observable

48

The rule C o n t e x t s u b s u m p t i o n appeared to be very useful for manipulating
non orientable conjectures.

An I-derivation fails when there exists a conjecture such that no rule can be
applied to it. An I-derivation succeeds if all conjectures are proved.

T h e o r e m 13 (c o r r e c t n e s s o f success fu l I - d e r i v a t i o n s) . Let (Eo, 0)
(El, H1) bl . . . be a fair I-derivation. If it succeeds then R ~Ob, Eo.

t-i

Proof. The proof is done by contradiction. Suppose R ~=Ob8 Eo and let C E t3iEi
be a minimal counterexample w.r.t, a well founded ordering on clauses extending
>-p. We can easily show, as in [8], that no inference rule can be applied to C.
Hence C persists in the derivation contradicting the fairness hypothesis.

T h e o r e m 14 (c o r r e c t n e s s o f d i s p r o o f) . Let (Eo, 0) F-I (El,H1) I-i ..- be
an I-derivation. If there exists j such that D i s p r o o f is applied to (Ej, Hi), then
R ~Ob, Eo.

Proof. If there exists j such that D i s p r o o f is applied to (Ej , Hi), then by
Theorem 7, we conclude that R ~=obs Ej. Now, to prove that R ~=Obs Eo,
it is sufficient to prove the following claim: Let (Ej, Hi) t-i (Ej+I, Hi+t) be
an I-derivation step. If Vi < j, R ~Ob8 Ei then R ~Ob8 Ej+I. If (Ej, Hi) ~-I
(Ej+I, Hi+l) by a simplification rule, then the equations which are used for
simplification occur in some Ek (k _< j) and therefore are observationally
valid in R by assumption. Hence, Ej+I is observationally valid too in R. If
(Ej, Hi) ~-I (Ej+I, Hi+l) by G e n e r a t i o n on C �9 Ej , every auxiliary equation
which is used for rewriting an instance of C by a critical context c and a test
substitution e, is either in R or E~ (k < j) and hence Ej+I is valid in R.

Now we consider boolean specifications. To be more specific, we assume there
exists an observable sort bool with two free constructors {true, false}. The sort

n bool will be observable. Every rule in R is of type: Ai=l Pi = P~ =r s --+ t where
for all i in [1- . .n] , p~ e {true, false}. Conjectures will be boolean clauses, i.e.
clauses whose negative literals are of type -~(p = pt) where p' �9 {true, false}.
Let f �9 D, a completely defined symbol in R. Then f is strongly complete [7]
w.r.t R if for all the rules Pi ~ f (t l , . . . , t n) --~ ri whose left-hand sides are
identical up to a renaming/~i, we have R ~Ind Vi~=lpi#i. We say that R is
strongly complete if for all f �9 D, f is strongly complete w.r.t R.

T h e o r e m 15 (r e f u t a t i o n a l c o m p l e t e n e s s) . Let R be a conditional rewrite
system. Assume that R is ground convergent and strongly complete. Let Eo be
a set of boolean clauses. Then R ~=ob, Eo iff all fair derivations issued from
(Eo, 0) fair.

Proof. The proof follows the line of the corresponding Theorem 6.5 in [6] that
was given for the initial semantics.

4g

Generation: (E U {l v r}, H)
(E U (Uc,~ Ec,=), H u {C])

for all test substitution a and for all critical context c:
either c[l]a v ra is a tautology, then Ec,c, = @

i f o r c[l]a -'+R l', then Ec,~ = {l' V ra}
otherwise Ec,a = Case Analysis(c[/]a, ra)

Case S impl i f i ca t ion : (E U {l V r}, H)
(E u E ' , H)

i f E ' = Case Analys is (l , r)

(E U {(a = b) V r}, H)
Simplification: (E U {(a' --~) [/~'}}, H-)

a -+R a t, or
i f a[vA] -+HUE a[wA] by v = w where v >-- w and (vA -4 a or wA -4 b)

S u b s u m p t i o n : (E u {C}, H)
(E, H)

i f C is subsumed by a clause of R U H U E

Context S u b s u m p t i o n : (E U {C}, H)
(E, H)

I there exists a clause C ' 6 R U H U E and a clausal context c
i f such that c[C'] subsumes C

Delete: (E U {C}, H)
(E, H)

i f C is a tautology

(E u {C}, H)
D i s p r o o f :

Disproof
i f C is provably inconsistent

Fig. 4. Inference System I

7 Computer experiments

We have imp lemen ted these results in the Spike prover, wr i t ten in C a m l Light.

Example 16 (Stacks). We proved au toma t i ca l ly t ha t push(top(S) ,pop(S)) = S
is a behaviourM prope r ty of the s tack specification (see Figure 1). Note t ha t
this example fails with the approach of [4], since it is not possible to c o m p u t e
au toma t i cMly a set of crucial contexts: if two stacks have the same top they are
not necessarily equal. In the approach of [10], we have to in t roduce an auxi l iary
funct ion iterated_pop : nat x stack --+ stack such tha t iterated_pop(n, s) i tera tes
n t imes pop. This is easy because pop is unary. T h e funct ion iterated_pop is
defined by:

50

iterated_pop(O, s) = s, iterated_pop(n + 1, s) = iterated_pop(n, pop(s))

Then , we have to prove the p r o p e r t y for all con tex t s of the fo rm
top(iterated_pop(z, c[z,t~ck])). However, th is s chema t i za t i on of con tex t s could
be more c o m p l i c a t e d in case of a funct ion of a r i ty grea te r t h a n two. So, th is
process seems to be not easy to a u t o m a t i z e in general . In the a p p r o a c h of [14],
th is p r o b l e m rema ins too.

Now, let us descr ibe our proof. The prover compu te s first a tes t set f o r / ~ and
the i nduc t ion pos i t ions of funct ions, which are necessary for induc t ive proofs .
I t also c o m p u t e s a cr i t ica l context . These c o m p u t a t i o n are done on ly once and
before the beg inn ing of the proof.

t e s t set of R:

-> elem = {0, s(xl)}

-> stack = {Nil ; push(xl,x2)}

c r i t i c a l c o n t e x t s of R:
-> stack = {pop(xl)}

-> elem = {xl, top(xl)}

induction positions of functions:

-> top : [[1]]
-> pop : [[1]]

EO = {push(top(xl),pop(xl)) = xl}

Application of generation on:

push(top(xl),pop(xl)) = xl :

I) Nil = pop(Nil) ;

2) x2 = pop(push(xl,x2)) ;

3) 0 = top(Nil) ;

4) xl = top(push(xl,x2))

E1 = {Nil = pop(Nil) ;

x2 = pop(push(xl,x2)) ;

0 = top(Nil) ;

xl = top(push(xl,x2))}

HI = {push(top(xl),pop(x1)) = xl}

D e l e t e N i l = p o p (N i l)
i t i s subsumed b y : p o p (N i l) = N i l of R

Delete x2 = pop(push(xl,x2))

it is subsumed by:pop(push(xl,x2)) = x2 of R

Delete 0 = top(Nil)

it is subsumed by:top(Nil) = 0 of R

D e l e t e x l = t o p (p u s h (x l , x 2))
i t i s subsumed b y : t o p (p u s h (x l , x 2)) = x l of R

51

E2 = {}
H2 = {push(top(xl),pop(xl)) = xl}

The i n i t i a l c o n j e c t u r e s a r e o b s e r v a t i o n a l l y v a l i d i n R

Example 17 (Lists). Consider now the specification list in Figure 3. The theorem
insert(zl, insert(xl, z2)) = insert(zl, x2) is automatically proved.

test set of R:

-> n a t = {0 ; s (x l) }
-> list = {Nil ; insert(xl,x2)}

-> bool = {False ; True}

c r i t i c a l c o n t e x t s o f R:
-> b o o l = { x l , i n (x l , x 2) }
-> l i s t = { x l , u n i o n (x l , x 2) }

i n d u c t i o n p o s i t i o n s o f f u n c t i o n s :
-> u n i o n : [[1]]
-> i n : [[2]]
-> eq : [[1] ; [2]]

EO = {insert(xl,insert(xl,x2)) = insert(xl,x2)}

Application of generation on:

insert(xl,insert(xl,x2)) = insert(xl,x2) :

1) eq(x3,xl) = True => True = in(x3,insert(xl,x2)) ;

2) eq(x3,xl) = False => in(x3,insert(xl,x2)) = in(x3,insert(xl,x2)) ;

3) eq(x3,xl) = False, eq(x3,xl) = True ;

4) insert(xl,insert(xl,union(x2,x4))) = union(insert(xl,x2),x4)

Delete eq(x3,xl) = False => in(x3,insert(xl,x2)) = in(x3,insert(xl,x2))

Delete eq(x3,xl) = True => True = in(x3,insert(xl,x2))

it is subsumed by:eq(xl,x2) = True => in(xl,insert(x2,x3)) = True of R

E1 = {eq(x3,xl) = False, eq(x3,xl) = True ;

insert(xl,insert(xl,union(x2,x4))) = union(insert(xl,x2),x4)}

Hi = {insert(xl,insert(xl,x2)) = insert(xl,x2)}

S i m p l i f i c a t i o n o f :
i n s e r t (x l , i n s e r t (x l , u n i o n (x 2 , x 4))) = u n i o n (i n s e r t (x l , x 2) , x 4) by HI:

i n s e r t (x l , u n i o n (x 2 , x 4)) = u n i o n (i n s e r t (x l , x 2) , x 4)

E2 = {eq(x3,xl) = False, eq(x3,xl) = True ;

insert(xl,union(x2,x4)) = union(insert(xl,x2),x4)}

H2 = {insert(xl,insert(xl,x2)) = insert(xl,x2)}

Simplification of:

insert(xl,union(x2,x4)) = union(insert(xl,x2),x4) by R:

insert(xl,union(x2,x4)) = insert(xl,union(x2,x4))

52

E3 = ~eq(x3,xl) = False, eq(x3,xl) = True ;

insert(xi,union(x2,x4)) = insert(xl,union(x2,x4))}

H3 = ~insert(xl,insert(xl,x2)) = insert(xl,x2)~

Delete insert(xl,union(x2,x4)) = insert(xl,union(x2,x4))

Application of generation on:

eq(x3,xl) = False, eq(x3,xl) = True :

I) eq(O,O) = True, True = False ;

2) eq(s(xl),O) = True, False = False ;

3) eq(O,s(xl)) = True, False = False ;

4) eq(s(x2),s(xl)) ~ True, eq(x2,xl) = False

Delete eq(s(xl),O) = True, False = False

Delete eq(O,s(xl)) = True, False = False

Delete eq(O,O) = True, True = False

it is subsumed by:eq(xl,xl) = True of R

Simplification of:

eq(s(x2),s(xl)) = True, eq(x2,xl) = False by R:

eq(x2,xl) = True, eq(x2,xl) = False

B4 = {eq(x2,xl) = True, eq(x2,xl) = False}

H4 = {eq(x3,xl) = False, eq(x3,xl) ~ True ;

insert(xl,insert(xl,x2)) = insert(xl,x2)}

Delete eq(x2,xl) = True, eq(x2,xl) = False

it is subsumed by:eq(x3,xl) = False, eq(x3,xl) = True of H4

zs = s
H5 = {eq(x3,xl) ffi False, eq(x3,xl) = True ;

insert(xl,insert(xl,x2)) = insert(xl,x2)}

The initial conjectures are observationally valid in R

In the same way we have proved the following conjectures:

insert(x, insert(y,l)) = insert(y, insert(x,l)) and union(l, l') = union(l',l)

8 C o n c l u s i o n

We have presented an automatic procedure for proving observational properties
in conditional specifications. The method relies on the construction of a set of
critical contexts which enables to prove or disprove conjectures. Under reasonable
hypotheses, we have shown that the procedure is refutational complete: each non
observationally valid conjecture will be detected after a finite time.

53

A cover context w.r.t, our definition 3 garantees the soundness of our proce-
dure. However, cover contexts computed by our procedure may contain uneces-
sary contexts, as in Example 17 where union(zlist, x) is useless for observations.
We plan to refine our notion of cover and critical contexts in order to select only
the needed contexts.

We also plan to extend the observation technique to terms and formulas.

References

1. B. Bauer and R. Hennicker. Proving the correctness of algebraic implementations
by the ISAR system. In DISCO'g3, volume 722 of Lecture Notes in Computer
Science, pages 2-16. Springer-Verlag, 1993.

2. G. Bernot, M. Bidoit, and T. Knapik. Behavioural approaches to algebraic speci-
fications: A comparative study. Acta Informatica, 31(7):651-671, 1994.

3. N. Berregeb, A. Bouhoula, and M. Rnsinowitch. Observational proofs by implicit
context induction. Technical Report 3151, INRIA, 1997.

4. M. Bidoit and R. Hennicker. How to prove observational theorems with LP. In
U. Martin and J. Wing, editors, Proc. of First International Workshop on Larch.
Springer-Verlag, 1992.

5. M. Bidoit and R. Hennicker. Behavioural theories and the proof of behavioural
properties. Theoretical Computer Science, 165(1):3-55, 1996.

6. A. Bouhoula. Using Induction and Rewriting to Verify and Complete Parameter-
ized Specifications. Theoretical Computer Science, 170(1-2):245-276, 1996.

7. A. Bouhoula. Automated theorem proving by test set induction. Journal of Sym-
bolic Computation, 23(1):47-77, 1997.

8. A. Bouhoula and M. Rusinowitch. Implicit induction in conditional theories. Jour-
nal of Automated Reasoning, 14(2):189-235, 1995.

9. J. Guttag. The specification and Application to Programming of Abstract Data
Types. PhD Thesis, University of Toronto, 1975.

10. R. Hennicker. Context induction: a proof principle for behavioural abstractions
and algebraic implementations. Formal Aspects of Computing, 3(4):326-345, 1991.

11. S. Kaplan and M. Choquer. On the decidability of quasi-reducibility. Bulletin of
European Association for Theoretical Computer Science, 28:32-34, February 1986.

12. E. Kounalis. Testing for the ground (co-)reducibility property in term-rewriting
systems. Theoretical Computer Science, 106:87-117, 1992.

13. O, Lysne. Extending Bachmair's method for proof by consistency to the final
algebra. Information Processing Letters, 51:303-310, 1994.

14. G. Malcolm and J. Goguen. Proving correctness of refinement and implementa-
tion. Technical Monograph PRG-114, Oxford University Computing Laboratory,
November 1994.

15. P. Padawitz. Computing in Horn Clause Theories. Springer-Verlag, 1988.
16. L. Puel. Proofs in the final algebra. IXth Colloquium on Trees in Algebra and

Programming. Bordeaux, France, March 1984.
17. D.T. Sanella and A. Tarlecki. Towards formal development of ml programs: foun-

dations and methodology. In J. Diaz and F. Orejas, editors, TAPSOFT'89, volume
352 of Lecture Notes in Computer Science, pages 375-389. Springer-Verlag, 1989.

18. M. Wirsing. Algebraic specifications. In J. van Leeuwen, A. Meyer, M. Nivat,
M. Paterson, and D. Perrin, editors, Handbook of Theoretical Computer Science,
volume B, chapter 13. Elsevier Science Publishers B. V. (North-Holland) and The
MIT press, 1990.

