
Constructs, Concepts and Criteria for Reuse in
Concurrent Object-Oriented Languages

Ulrike Lechner

Institute for Media and Communications Management
University of St. Gallen

CH-9000 St. Gallen, Switzerland
emall: Ulrike .Lechner~mcm.unisg. ch

Abstract . For reuse in concurrent object-oriented languages we present
a set of reuse constructs. We give criteria for relations between classes
that can be implemented by those reuse constructs, characterize the
properties inherited via the constructs and explore that we have not
only constructs but concepts for reuse.
We demonstrate the concepts and constructs with the object-oriented
concurrent language Maude. We employ the p-calculus to reason about
these specifications and (bi)simulation relations parameterized with Ga-
lois connections to model reuse.
Keywords : Reuse, Object orientation, Concurrency, Rewriting, Mande,
p-calculus, Abstract Interpretation, Inheritance Anomaly.

1 I n t r o d u c t i o n

Reusability is considered to be one of the distinguishing advantages of object
orientation. However, Matsuoka and Yonezawa demonstrated in their seminal
paper on the inheritance anomaly that reuse in object-oriented concurrent lan-
guages is hardly feasible with inheritance alone [MY93].

To facilitate reuse in object-oriented concurrent languages more precisely in
a particular language Maude we have developed a set of reuse constructs and we
demonstrated that this set of reuse constructs is powerful enough to circumvent
the inheritance anomaly [LLNW96].

However, reuse of code alone is not satisfactory, in particular, not at the level
of a specification language, where inheritance o/ properties must have preference
over mere reuse o] code. We characterize the classes of properties tha t are in-
herited via our reuse constructs. We employ the modal #-calculus [Koz83,Bra92]
to reason about Maude specifications and we employ property preserving map-
pings, namely (hi-)simulation relations parameterized with Galois connections
[LGS+95], for relations between classes and to characterize the properties tha t
are inherited via the reuse relations.

We go one step further and give criteria for reuse relations, i.e., criteria, ac-
cording to which classes can be implemented with a reuse relation. The scenario,
we have in mind is object-oriented analysis and design of which establishing
an appropriate class hierarchy is an essential part [WK96,BJR98]. In sequential

172

object-oriented languages, the information stored inside the classes together with
the methods determine possible reuse relation [HP92]. The more concurrency a
language admits, the more the behavior of classes becomes relevant in reuse and
for relations between classes. We provide with our relations between classes of
algebras criteria about which classes can be in a "reuse relation".

Maude Transition System #-calculus

Ancestors SPA I = Mod(SPA) ~ formula schema

H e i r SPH I L Mod(SpH) ~ formula schema

Constructs Criteria Concepts

Let us explain this diagram. X is one of the three reuse relations. Note that
w e are able to have more than one ancestor. We have three different levels at
which we explore reuse. The first level is our specification language, Maude with
its reuse constructs. Maude specifications can be interpreted and the semantics
of Maude specifications are classes of algebras. For those classes of algebras, we
develop relations, which can be implemented as reuse constructs at the level of
Mande. The second level, which we consider in this paper, is thus the semantic
level of transition systems. The third level is the #-calculus. Properties of objects
can be phrased in the #-calculus and we can prove whether those properties hold
for a transition system [Lec97]. We characterize the classes of properties tha t are
inherited via our reuse constructs.

This paper is organized as follows. We introduce in Sect. 2 our specification
language Maude and in Sect. 3 our constructs for reuse. In Sect. 4, we give a brief
introduction to the #-calculus and the formula schemata. Sect. 5 contains the
framework of property-preserving mappings. In Sect. 6, we explore the criteria
for reuse and in Sect. 7 we characterize the properties tha t are inherited. Sect. 8
contains an example. We give a brief overview of related work in Sect. 9 and
conclude our results in Sect. 10.

173

2 M a u d e

This section provides a brief introduction to our specification language, Maude
[Mes96]. Note, that we employ the notation implemented in the CafeObj System
[FN96]. E.g., [Mes96,Lec97] provide a more detailed introduction to Maude.

Maude [Mes96] has two parts: one which defines the basic data types using
order-sorted equational specification and another which specifies states (so-called
configurations) and state changes.

In the state-dependent part of Maude one writes object-oriented specifica-
tions consisting of an import list, a number of class declarations, message declara-
tions, equations and transition rules. An object of a class is represented by a term
comprising an object identifier (of sort 0b jec t Id) , a class identifier and a set
of attributes with their values; e.g., < B : BdBuffer I cen t = C, max = M >
represents an object of class BdBuffer with identifier B and attributes cont and
max with values C and M, respectively. A message is a term of sort Message (in
mixfix notation) that consists of the message's name, the identifiers of the ob-
jects the message is addressed to and, possibly, parameters; e.g., the term (put
E i n t o B) is a message. A configuration (of sort ACZ-Configuration) is a mul-
tiset of objects and messages. Multiset union is denoted by juxtaposition. State
changes are specified by transition rules (keyword r l or c r l) .

As an example of a specification let us give the specification of bounded
buffers and explain it subsequently. The specification EXT-ACZ-C0NFIGURATION
specifies the basic data types of objects, messages and configurations (for a
formal definition see [Mes96,Lec97]). The empty state, i.e., the element of sort
ACZ-C0NFIGURATION is denoted by acz-empty. LIST specifies the sort L i s t of
finite sequences together with a juxtaposition operation where adding an element
E to a list C on the left is written E C and a list consisting of a list and a single
element is written C E. NAT contains the specification of natural numbers (Nat)
and the sort NzNat for natural numbers strictly greater than zero.

module BD-BUFFER {

import {

protecting (NAT)

protecting (LIST)

protecting (EXT-ACZ-CONFIGUPATION) }

signature {

class BdBuffer {
max : NzNat

cont : List }

op get _ replyto _

op to _ answer is _

op put _ into _

: Objectld Objectld -> Message
: ObjectId Elem -> Message
: Elem ObjectId -> Message }

axioms {

174

vats B R : Objectld

vat E : Elem

var C : List

var M : NzNat

vat ATTS : Attributes

crl

rl

[P]: (put E into B)

< B : BdBuffer i cont = C, max = M, ATTS >

=> < B : BdBuffer i cont= E C, max = M, ATTS >

if length(C) < M .

[G]: (get B replyto R)

< B : BdBuffer J cont = C E, max = M, ATTS >

=> < B : BdBuffer J cont = C , max = M, ATTS >

(to R answer is E) . } }

The class BdBuffer has two attributes, max is the capacity of a bounded
buffer and con t stores the buffered elements. The variable ATTS collects--accor-
ding to the syntax supported by the CafeObj system [FN96]--attributes not
mentioned in a rule or additional attributes particular to heirs of BdBuffer .

A bounded buffer may react to two messages: pu t and ge t . Put stores an
element in the buffer, ge t removes the oldest element being stored in the buffer
and sends it to a "receiver". The transition rule with rule label P says that an
object of class BdBuffer can react to a pu t message only if the actual number of
objects being stored, l eng th (C) is smaller than the capacity max. Sending a g e t
message triggers not only a state change of buffer B but also initiates an answer
message to R which contains the result (an element). Note, that a g e t is only
accepted if the buffer is not empty, i.e., if at t r ibute cont contains a structure
C E indicating that there is at least one element part of the list.

Generally speaking, transition rules specify explicit, asynchronous commu-
nication via message passing: if a message is part of a configuration, a state
transition may happen and new (answer) messages waiting to be processed in
subsequent state transitions may be created as part of the resulting configura-
tion (in the specification given above only one new message is generated). We
could also have more than one object at the left-hand side of a transition rule
and specify thereby a synchronous state transition of several objects [Lec97].

The matching itself is done by a Rewriting Calculus. Examples for rewriting
calculi can be found in [Mes92,Mes96,Lec97,LLNW96]. Note, tha t we consider
in contrast to [Mes96] labeled transition systems, whose labels are the messages
triggering a state transition.

A specification comprises thus a signature, a set of equations and a set of
transition rules. Later, we use the notation Sp = (S,, E, T) for Maude specifica-
tions. The signature itself consists of a set of sorts, a subsort relation and a set
of operators and is written as E = (S, <, OP).

175

3 R e u s e C o n s t r u c t s f o r M a u d e

We have developed a set of three reuse constructs for Maude: (1) Maude's in-
heritance relation, (2) subconfiguration and (3) message algebra. We explain the
constructs briefly and give a typical example for each of them. Sect. 8 contains
the specification code.

According to Maude's inheritance relation [Mes96], an heir inherits all at-
tributes, all equations and all transition rules from all its ancestors. Thus, an
heir reacts at least in all situations in which one of its ancestors was able to react
to a message. A typical example for the use of inheritance is a bounded buffer
that reacts to more messages than BdBuffer.

The construct of subconfiguration is dual to inheritance [LLNW96]. It allows
to restrict the ability of a class encapsulated in a subconfiguration to react
to messages. A typical example is a bounded buffer which is implemented by
reusing an unbounded buffer. The unbounded buffer, providing the facilities to
store elements is encapsulated inside a bounded buffer that restricts the messages
that come into contact with the unbounded buffer [Lec97].

The concept of message algebra is particular to Maude [LLNW96]. We spec-
ify message combinators and their semantics that allows us to construct com-
posed messages from atomic messages. A typical example is a get2 message
implemented as a sequential composition of two get messages. The semantics
of the sequential composition, provides (1) non-interference and (2) that a get2
message is accepted if and only if both its get messages can be accepted in se-
quence. Moreover, we ensure by the semantics of the message combinator that
the answer messages are arranged properly such that they can be transformed
into an answer containing two elements in proper order. Note, that the message
combinators and, their semantics is subject to a Maude specification and thus,
this concept gives us a large amount of freedom and expressivity.

Note, that we employ equations and not only transition rules alone. Thus,
transformations of the state, necessary for implementing a get2 message by
a sequential composition of two get messages, or by modeling the migration
of messages into and out from subconfigurations does not involve additional
"administrative" transitions.

4 T h e D - c a l c u l u s

The #-calculus is used to reason about state transition systems at a property-
oriented level [Koz83,Bra92]. The language of ju-formulas, denoted by s is
constructed from atomic propositions, conjunction and disjunction, modal con-
nectives and fixpoint operators according to the following grammar. Let the set
T be non-empty (but possibly infinite).

p ::= t t I f f I ~pl "o" I "~"
r ::= p l (^i: l E T : r~i) I (v i : i E T : r I (3x~T : r I (VxET : r

] (L)r I [LIe I (vX.r I (#X.r

176

o, respectively m, is a term over a signature E representing an object respec-
tively a message. The double quotes around an object or message represent the
proposition "this object exists" or "this message exists". E.g., s ta te C satisfies
"< B1 : BdBuffer I max = 1 >" if one of its elements is an object with ob-
ject identifier B1 belonging to class BdBuffer (which includes all subclasses of
BdBuffer) whose value of a t t r ibute max is equal to 1.

L is a set of labels. [L]r and (L)r are the labeled modal connectives. Intu-
itively, [L]r holds if r holds immediately after all transitions with labels in L.
Dually, (L)r holds if there is a transition with a label in L such tha t r holds im-
mediately afterwards. We use (-) and [-] as abbreviations for modal connectives
with the label set of all possible labels.

u is the greatest]ixpoint operator used, typically, for invariant (safety, "al-
ways") properties. # is the least fixpoint operator used, typically, for variant
(liveness, "sometime") properties.

We are interested in the t ru th of formulas in a s tructure (A, R) which is
a model of a Mande specification. Let us introduce some notation. Let v be a
valuation and I be an interpretation function which indicates in which structure
formulas are interpreted. I r](A,R),Z v denotes all elements of A, for which r
holds under valuation v and under an interpretation I : s -+ (A, R).

We introduce a set of formula schemata describing the behavior of classes.

D e f i n i t i o n 1 (F o r m u l a s c h e m a t a) . Let C be a class and a t t s resp. a r t s '
denote the a t t r ibutes with their values of class C. Let SIt< B : C I a t t s i >),
r B = c I a t t s i >) a n d r B : C I a t t s i >) b e propositions on the st-
ate of an object B of class C. SI is the state invariant of class C. Let ai be a
message and let p be variables in the formulas with the range P. We define five
formula schemata by closed #-formulas for a class C with n methods:

Persistence(B) = (uX.(VpE P :
"< B : C [-1("< S : C >" ^ X)))

State(B) = (u X . (V p e P :
SIt"< B : C l ar ts >")=~[-](Sl("< B : C I a r t s ' > ")AX)))

Synchronization(B) = (Ai : 1 < i < n : (VpEP :
" m i " A " < B : C I a t t s >"A~bi(< B : C I a r t s >) A (m i) t t))

StateChange(B) = (uX. (VpeP: (^i : 1 < i < n :
"< B : C I ar ts >"A SIt< B : C I a t ts >)Ar B : C I ar ts >)

[m,](r B = C O atts, ' >)^X))))
AnswerMessages(B) = (uX.(VpEP : (^i : 1 < i < n :

"< B : C I arts >"AS/(< B : C I arts >)hr B : C [ar ts >)
A X))))

Each of the formula schemata reflects one particular notion of the object
model of Maude. Persistence describes tha t objects do not disappear, State tha t
a s tate invariant holds, Synchronization under which circumstances an object
reacts to a message, AnswerMessages gives the messages created as a result of a
s tate transit ion of an object and StateChange describes the changes in the s tate
of an object.

177

5 P r o p e r t y P r e s e r v i n g M a p p i n g s

The property-preserving mappings we employ to relate transition systems com-
prise (1) Galois connections as a relation between (sets of) states and (2) (bi)si-
mulation relations parameterized with Galois connections as a relation between
transition systems, whose states are in Galois connection. We rely on [LGS+95]
for notation and formal framework.

Let us introduce some abbreviations and notation: X is the complement of X
in the domain of X. Ia ~ is the identity function on a set Q. The dual of a function

a is ~, defined by ~(X) =def a(X). Let Q be a set of states, X c_ Q, L a set of
labels and R a relation; the set of predecessors in a labeled transition relation R
by transitions with a label in the label set L is represented by pre (R) (L) (X) , the
set of successors respectively by post. Let S1, $2 be two sets of configurations:
S1 ~ $2 =def {C1 62 I C1 e S1, C2 E $2}. (Remember that the multiset union of
configurations is written C1 C2.)

A Galois connection is a relation between sets, which is determined by two
functions a and 7. As the names of the two functions suggest, we refer to them
as the abstraction and concretion function, respectively.

Definition 2 (Galois connection). Let Q1 and Q2 be two sets. A Galois con-
nection (a, 7), from ~(Q1) to ~(Q2) is a pair of continuous functions a : ~(Q1) -+
~(Q2), 7 : ~(Q2) --+ ~(Q1) such that Id Q~ c_ 7 o a and a o 7 C I d Q2.

Note, that a distributes over union of sets, i.e., O~($1 U $2) : O~(S1) U o~(S2).
Galois connections provide the formal framework for relating sets of states.

Let us now define a simulation relation between transition systems whose states
are in a Galois connection.

Definition 3 (E(a,-r) and -~(a,'r))" Let S1 = (Q1,R1) and $2 -- (Q2,R2) be
two transition systems, L1 the set of labels of $1 and (a, 7) a Galois connection
from ~o(Q1) to p(Q2). $2 is an (a,v)-simulation of $1, written $1 u(a,~) $2, if
and only if, for any L C_ L1, ~ 0 pre(R1)(L) 0 7 C_ pre(R2)(a(L)) .

$1 and $2 are (a, 7)-bisimilar, written $1--(a,~) $2, if and only if, $1 (a, 7)-
simulates $2 and $2 (~, ~)-simulates S1, i.e., $1 _U_(a,~) $2 and $2 _U_(~,~) S1.

Note, that a E-homomorphism f : A1 ~ A2, more precisely, its extension to
sets, which we also denote by f , is an abstraction function and induces a simula-
tion relation A1 E(f,f-1) A2 [LGS+95,Lec97]. Note that a (simulation) relation
p C_ A1 x A2 induces a simulation relation A1 U_(posKp),~'~e(p)) A2 [LGS+95,Lec97].

Preservation of a formula by a function a means that, if a formula holds
for a set of states, then it holds for the image of this set under a as well.
Let (A1,R1) and (A2,R2) be two transition systems, r E s a formula, and
I : l:~ -+ p(A1) an interpretation function, f preserves r for I iff for q E Q1,
q E[r](A1,R1),I V implies f (q) C_ [r [(A2,R2)JoI f (v) . A function f is consistent
with an interpretation function I if, for all formulas r f(I(r N f(I(r = 0.

178

Theorem 4 (Preservation of properties) . Let (At, R1) and (A2, R2) be two
transition systems. Let I1 : 1:# --~ A1 and I2 : s --+ A2 be two interpretation
functions.

1. f f (A1, R1) ___(a,7) (A2,R2) then a preserves []-free, positive formulas, and
if a is consistent with I1, then a preserves []-free formulas.

2. / f (AI,R1) ___(a,7) (A2,R2) then ~/ preserves ()-free positive formulas]or I2
and, if ~/ is consistent with 12, then ~ preserves ()-free formulas.

3. ff (A1, R1) ~-(a,7) (A2, R2) then a preserves positive formulas]or 11 and, if
a is consistent with 11, then a preserves all formulas for I1.

Proof. Proof by induction on the size of formulas. See [LGS+95] or [Lee97].

6 C r i t e r i a for R e u s e

Let us sketch briefly our design scenario and the role of our results for the object-
oriented specification of distributed systems. In object-oriented design, the class
hierarchy has to be established with the reuse relations between the different
classes. We provide via our relations information about criteria which classes
are similar so that they can be implemented via a reuse relation. The formal
basis for "similarity" is the property preserving relation introduced in Sect. 5.

The design of the class hierarchy is the first phase: only in the second phase a
system is modeled as a collection of objects. Thus, the properties (and possibly
proofs) whose inheritability one is interested in are properties of single classes.
We axe interested in the inheritability of the instances of the formula schemata
of Def. 1.

In the following, we define relations between classes of algebras, which can
be implemented by reuse relations. The relations consist of two parts: (1) a
relation between the algebras and (2) a relation between transition systems.
Common to the three criteria for reuse is also the function fl (an abbreviation
for filter), which abstracts from the structures of the heir and relates ancestor
states (terms of sort Acz-aonfigurat ion) to heir states. Note that we consider
only specifications with coherent order-sorted signatures [HN96].

Defini t ion 5 (C o m m o n basis for reuse criteria). We consider an "ances-
tor" specification Sp A = (EA, EA,TA) with ~A = (SA, <_A, OPA) and a "heir"
specification SpH ---- (~H, Ett, TH) with ~H = (SH, <H, OPH)" ~A and ,US are
coherent order-sorted signatures. Let a : EA -+ ~H be the canonical injection.

Let fl c_ ~H X ~A be given by
fl(D1D2) = fl(D1) t9 fl(D2)
fl(acz-empty) =
fi(<O: Cl {a = v}>) =
fl(<O: Cl {a = v}>) =

. . . v .)) =

 (m(pl . . . p .)) =
n(v) =

acz-empty
{<0 : Cl{a = w}>lwefl(v)} for C6~A,C liU C~
acz-empty for C6~H\~A,C ~H CH
m(fl@l). . , fl(p.)) for m 6 ZA
acz-empty for rrt 6 ~H \ ~YJA
v for v : s ,s ~ Cf

179

Let us motivate the common basis for the reuse relations. Common to the
reuse relations is that we require that the heir specification has at least the
sorts and function symbols of the ancestor. We ensure this by the existence
of a canonical embedding a : -UA -~ ~H and we require tha t the reduct of a
SpH-algebra is a SpA-algebra, i.e., HI~ = A for some (A, R) E Mod(Spg).

We apply fl to abstract from the new classes and relations and to relate
ancestor and heir configurations of the transition systems.

In Maude, an heir inherits from its ancestor the implementation of the state
and the ability to react to messages. Thus, in order to establish inheritance one
needs a relation in which the heir acts and reacts if the ancestors act and react.
This is captured by a simulation relation.

D e f i n i t i o n 6 (I n h e r i t a n c e C r i t e r i o n) . Let Def. 5 be included. Let CA~ for
1 < i < n be classes in ,UA and CH a class in EH. Sp H is an heir of SpA via
CH ~H CA1,..., CA. if

(V(H, S) E Mod(SpH) : (3(A, R) e Mod(SpA) :
g l~ = A A (A, R) ---(pre(fi),~(fl)) (H, S)))

where for CH, <~H CH
fl(<O : CH, I arts>) = {< O: CA, lattSA, > I

(Va=wE atts, a attr ibute of CA,, Vefl(w) : a=ve attsA~) }

Let us explain and motivate this inheritance relation. We relate in the sim-
ulation relation modeling inheritance those states whose parts belonging to the
ancestor specification are equal. Function fl provides this abstraction for the heir
configurations and induces a simulation relation on states.

The abstraction filters the "new observations", which are particular to the
heir specification, while the reduct excludes "new elements". This difference in
the t reatment of the inheritance relation reflects the difference in the construc-
tion in algebras and observation in transition systems, fl links the two concepts
by abstracting in a way such that behaviorally equal configurations, which are
constructed differently, are related in the inheritance relation. Maude's object
model is the reason why we cannot abstract from the values and consider only
the sorts, since the values of the attributes determine whether and how an object
reacts to a message. Thus, we cannot extend the domain of basic values.

Our second construct and concept for reuse is subconfiguration. Subconfigu-
ration are a means to restrict the ability of the reused classes to act and react.
Thus, subconfiguration and accordingly the simulation relation and the criterion
are dual to inheritance.

D e f i n i t i o n 7 (S u b c o n f i g u r a t i o n C r i t e r i o n) . Let Def. 5 be included. Let ,UA
comprise the classes CA~ for 1 < i < n and let CH with at t r ibute a be a class in Z ~ .
SpH is an heir by subcon]iguration via (CH S u b c o n f i g u r a t i o n of CA1 ... CAN)
of SpA if

(V(H, S) e Mod(SPH) : (3(A, R) e Mod(SPA) :
HI~ = A A (H, S) --(po,t(fi),~-~(fl)) (A, R)))

180

where for CH, <_H CH
fl(<O : CH, I arts>) = < 0 : CA, l attSA, > [

(Va = w 6 atts, a attribute of CA,, v �9 fl(w) : a = v �9 attsA,) }

The criterion for reusability via subconfiguration is that an object of class
CH can be replaced by a number of objects of class CA1 . . . CA= and that this
increases the number of possible transitions. Hereby, the values of the respective
attributes of the ancestor(s) and the heir are identical. When two specifications
for which the criterion holds are implemented by reuse we replace a "normal"
value of an attribute (of class CH) by an object of the reused class (CA,) .

The third reuse construct and concept is the message algebra with which
new message combinators together with their semantics, i.e., the way composed
messages are being processed, are specified. A message combinator such as, e.g.,
sequential composition, does not affect the state changes triggered by these single
messages. Mande provides us with the flexibility to combine less benign message
combinators that allow us to manipulate the states of the objects in a way
which cannot be achieved by processing (uncomposed) messages with the rules
of the rewriting calculus. Such message combinators alter the properties of the
objects involved in an arbitrary way. We are not interested in such a kind of
reuse, which we consider to be dangerous, and we restrict the reuse relation
"via message combinator" to message combinators which compose messages and
transitions only.

Defini t ion 8 (Message Algebra Cri ter ion) . Let Def. 5 be included. Let opl
be message combinators for 1 < i < n such that opi : Messagei-> Message�9 ~H.

Spg inherits via m H combined f rom mo OPx . . . oPnmn f rom SpA if

(V(H, S) �9 Mod(SpH) : (3(A, R) �9 Mod(Spa), f c_ H x A:
H[~ = A

A (H, S) -~(post(f),~V~(0) (A, R)
A (H, S) E(post(n),~-~(fl)) (A, 2)))

where fl(D) D f(D) and
fl(mH(p)) = fl(ml(Pl)) . . . fl(mn(Pn)) for Pi C p.

Let us motivate this relation. We have two different relations, a simulation
and a bisimulation relation, to model the inheritance relation via message alge-
bras. Function fl relates states of the ancestor and the heir specification, provided
they consist of the same objects and the same messages, regardless of whether
they are composed in the reusing specification.

The simulation relation abstracts from the message combinators and relates
all states with the same objects and the same messages, regardless of whether
they are part of a composed message or whether they are "simply" part of the
configuration.

The bisimulation relation relates--like the simulation relation--states, which
consist of the same objects and messages. But, in contrast to a simulation rela-
tion, it also takes into account that the composed messages are accepted, pro-
vided the state of the reused specification accepts the uncomposed messages.

181

Naturally, for this relation there is no purely syntactical criterion like for the
simulation relation and thus, we only know that the bisimulation relation is a
subset of the simulation relation.

7 Inheritance of Properties

Up to now we have considered reuse at the syntactical level with constructs
and at the semantical level with criteria. Constructs and criteria, Maude and
transition systems have all a quite operational "flavor". Now, we reason about
these reuse relations and the objects and classes at the more property-oriented
level of the p-calculus and characterize the properties preserved by simulation
and bisimulation relations modeling the reuse relations.

Proposition 9 (Inher i tance of Proper t ies) . Let SPA and SpH be two spec-
ifications, such that SpH inherits via X from SPA where X is one of the three
reuse relations and P(x,x,) the criterion. Choose (A, R) E Mod(SPA) and (H, S) E
Mod(SPa) such that (A, R)p(x,x,)(H, S).

A property r is called inheritable via X if C El r I(A,R),za~ D E[r I(A,n),tn
for all C E A, D E H, Cp(x,x,)D. Then, the properties inheritable via the reuse
relations are marked by ~/ :

Persistence State Synchronization

Inheritance
Subconfiguration x/
MessageAlgebra (if__) ~/
MessageAlgebra (~)

v/

Answer- State-
Messages Change

Proof. (Sketch) Persistence, State, AnswerMessages and StateChange are ()-
free formulas, which are preserved by simulation relations, more precisely by
the consistent dual of a concretion function. Inheritance and the simulation
relation modeling reuse via Message Algebra are modeled by a simulation relation
employing a Galois connection with a consistent concretion function.

Synchronization is a []-free, positive formula, which is preserved by simula-
tion and bisimulation relations, as defined by Inheritance and Message Algebra.

The proof can be found in [Lec97].

Naturally, one cannot expect to inherit all properties, and, probably all proofs
when reusing code. The correspondence between the operational paradigm with
Maude and the transition system on the one hand and the property-oriented
paradigm with #-calculus on the other hand shows that we have not only con-
structs for a language but concepts which work at different levels of abstraction.

We are interested in properties for single classes, more precisely in the in-
stances of the formula schemata. The reason for this is that those properties are
the ones that are of interest in establishing the class hierarchy. More complex
properties, e.g., involving many objects of different ~ classes are more of interest,
when a system is composed from different objects in a later phase in the design.

182

8 An Example: Buffer, BdBuffer and BdBuffer2

Let us sketch the scenario of our example first. Assume we would like to have
three buffers with different properties (0) an unbounded buffer, (1) a bounded
buffer like BdBuffer of Sect. 2 (2) a bounded buffer BdBuffer2 that accepts put ,
ge t as well as get2, a message that triggers a retrieval of two elements from the
bounded buffer.

Assume that we have finished the phase in the design where we have iden-
tified the classes, the objects and the messages and assume we have given the
system as a Maude specification, which contains now three different, not related
descriptions of the three buffers. Assume furthermore, that we would like to
start with the specification of the unbounded buffer (maybe because it is imple-
mented in the standard library) and implement the other two buffers by reusing
this specification.

The specification BUFFER containing a class Bu f f e r is the starting point.

module BUFFER {

import {

protecting (LIST)

protecting (EXT-ACZ-CONFIGURATION) }

s i g n a t u r e {
c l a s s B u f f e r { cont : L i s t }

op ge t _ replyto _

op to _ answer is _

op put _ into _

: ObjectId ObjectId -> Message

: Objectld Elem -> Message

: Elem 0bjectId -> Message }

axioms {

vars B R : 0 b j e c t I d
var E : Elem

var C : List

var ATTS : Attributes

rl [P] :

=>

(put E into B)

< B : Buffer I cont = C , ATTS >

< B : Buffer i cont = E C, ATTS > .

rl [G] :

=>

(get B replyto R)

< B : Buffer I cont = C E, ATTS >

< B : Buffer I cont = C, ATTS >

(to R answer is E) �9 } }

First, we implement BdBuffer (as it is given in Sect. 2) by reusing Buffe r .
Since the bounded buffer is more restricted to acting and to reacting than the
buffer, we employ subconfiguration for reuse. We establish the relation by:

183

fl(< B : BdBuffer l max = M, cont = C, ATTS >) =

< B : Buffer I cont= C, ATTS >

We have to check that BDBUFFER simulates BUFFER. Thus, class BdBuffer can
be implemented by reusing Buffer , more precisely, the value of attribute cont
of BdBuffer can be replaced by an object of class Buffer . The reuse relation is
BdBuffer c o n t : Subconf igura t ion of Buffer .

Let us deal with the second task, namely to implement a class BdBuffer2,
which accepts put, ge t and get2. First we apply inheritance to let BdBuffer2
inherit put and get from BdBuffer. Hereby, fl is given by

fl(< B : BdBuffer2 I ATTS >) = < B : BdBuffer I ATTS >

Since we do not give the original specification of BdBuffer2 here, we have
to assume that BdBuffer2 and BdBuffer are in the appropriate relation.

The second step is to implement get2 by subconfiguration as a sequential
composition of two get messages. Assume we have a message algebra, called
MSG-ALGEBRA, containing the following fragments of a specification, describing
the message combinator for sequential composition ; ; and its semantics in rule
Seq:

op_ ;; _ : Message Message-> Message

vars ml m2 nl n2 : Message

vars cl c2 dl d2 h : ACZ-Configuration

crl [Seq] (ml;;m2) ci c2 => dl d2 (nl;;n2)

if (ml cl ==> dl h nl) and (m2 c2 h ==> d2 n2) .

Then fl relates all configurations containing a get2 to configurations containing
two get messages. Again, one has to check whether the appropriate simulation
relations can be established. Critical here is that get2 does not provide the
possibility to reach states, that are not reachable by two get messages.

Finally, we give the specification of the three buffers with their reuse relations.

module ALL-BUFFERS {

import {

protecting (BUFFER)

protecting (MSG-ALGEBRA) }

signature {

class BdBuffer {

max : NzNat

cont: ACZ-Configuration }

-- A new bounded buffer

-- Capacity

-- Encapsulating a buffer

class BdBuffer2 [BdBuffer] { } -- BdBuffer2 inherits

-- from BdBuffer

184

op get2 _ replyto _

op to _ answer is _ and

: ObjectId ObjectId -> Message

_ : ObjectId Elem Elem -> Message }

axioms {

vars B R : ObjectId

vars E El E2 : Elem

var C : List

var M : NzNat

vars ATTS A : Attributes

ceq [P] : (put E into B)

< B : BdBuffer I

(cont = < B : Buffer I cont= C, A >), ATTS >

< B : BdBuffer I (max = M),

(cont = < B : Buffer J cont = C, A >

(put E into B)), ATTS >

if length(C) < M .

eq [G]: (get B replyto R)

< B : BdBuffer I (max = M),

(cont = < B : Buffer I cont= C E, A >), ATTS >

= < B : BdBuffer I (max = M),

(cont = < B : Buffer I cont= C E, A >

(get B replyto R)), ATTS > .

eq [A]: < B : BdBuffer I (max = M),

(cont = < B : Buffer I A >

(to R answer is E)), ATTS >

= < B : BdBuffer I (max = M),

(cont = < B : Buffer I A >), ATTS >

(to R answer is E)

eq [E2] : (get2
< B :

= ((get
<B :

B replyto R)
BdBuffer2 I ATTS >

B replyto R);;(get B replyto R))
BdBuffer2 I ATTS > .

eq [A2]: (to R answer is El and E2)

= (to R answer is E);;(to R emswer is E) . } }

Let us discuss this specification. In this example, the specification is not
shorter than the original specification, containing the three entirely different
specification with 7 rules (1 rule for each of the three buffers to implement get,
1 for each buffer for put, and 1 rule to implement get2). However, one can
imagine to applying schemata, in particular, for rules describing the migration
into and out of subconfigurations. This would make our reuse concepts more

185

effective in terms of length of code. However, establishing the class hierarchy
at this abstract level of Maude is much easier than at the concrete level of a
programming language, and it is more concise than it would be based on a
semi-formal design notation only.

9 R e l a t e d W o r k

Object-oriented concurrent language deal differently with the inheritance ano-
maly [MY93]. Languages as, e.g., 7roflA [Jon93], do not provide inheritance at
all. Other languages separate the methods from the synchronization code that
decides which methods are accepted [DH97] and/or provide sophisticated con-
structs to reuse the synchronization code [Fr092].

The formal framework of property-preserving simulation relations [MPW93]
stems from abstract interpretation [CC78,LGS+95,Bru93,SMC96]. Relations be-
tween classes that are based on the behavior respectively (behavioral) subtyping
are [Ame90,HP92,PS94,Vas94]. Roles and views [AB91,ABGO93] could be ex-
pressed within our framework as well. Bisimulation relations are employed in
[Jac96] as the abstraction from the constructive, algebraic, intra-object to the
behavioral, coalgebraic view.

We restrict ourselves to the world of formal specifications and start with the
criteria at a point in the design process where objects and classes are already
specified in Maude. [WK96] integrates Maude and semi-formal object-oriented
design notations.

10 C o n c l u d i n g R e m a r k s

We have established a link from reuse at the syntactic level of Maude and the
reuse constructs, to reuse at the semantic level and reuse at the property-oriented
level. We distinguish three kinds of reuse: (1) via inheritance, (2) via subconfig-
uration and (3) via message algebra.

In [LLNW96], we have already explored the power of these reuse constructs.
Together they are powerful enough to circumvent the inheritance anomaly. The
upshot of our work is that the are also safe kinds of reuse, since we can reflect the
syntactic reuse at the semantic level by an operation on the classes of algebras,
which are the model of our specifications. This suggests that we do not only
have constructs but concepts that work independent from the language and
from the level of abstraction. Thus, our means of reuse are adequate both for
the property-oriented level of a specification language, when one would like to
achieve presumably not reuse of specification text but reuse of properties and for
the concrete level of a programming language with a class hierarchy reflecting
ideas and concepts and not mere reuse of code.

186

Acknowledgments

We are indebted to Christian Lengauer and Martin Wirsing for their support
and for many fruitful discussions.

We would like to thank the anonymous referees for their helpful comments
and detailed suggestions.

Funding was granted by the Grundlagenforschungsfonds of the University of
St. Gallen.

Par t of this work war carried out while Ulrike Lechner was a member of
the Lehrstuhl ffir Programmierung, Fakultiit fiir Mathematik und Informatik,
Universitiit Passau. During that time, funding was granted by the Deutsche For-
schungsgemeinschaft (Project OSIDRIS) and travel support by the ARC and
the DFG.

References

[AB91]

[ABGO93]

[Ame90]

[BJR98]

[Bra92]
[Bru93]

[cc78]

[DH97]

[FN96]

[Fre92]

[HN96]

S. Abiteboul and A. Bonner. Objects and views. In Proc. ACM SIGMOD
Conference on the Management of Data, pages 238-247. ACM, 1991.
A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model

with roles. In Proc. 19th International Conference on Very Large Databases
(VLDB'93), pages 39-51, Dublin, Ireland, 1993.
P. America. Designing an object-oriented programming language with be-
havioural subtyping. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg,
editors, Proc. REX/FOOLS Workshop, Lecture Notes in Computer Science
489, pages 60-90. Springer-Verlag, 1990.
G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User
Guide. Addison-Wesley, 1998.
J.C. Bradfield. Verifying Temporal Properties of Systems. Birkh~user, 1992.
G. Bruns. A practical technique for process abstraction. In E. Best, editor,
4th Int. Conf. on Concurrency Theory (CONCUR'93), Lecture Notes in
Computer Science 715, pages 37-49. Springer-Verlag, 1993.
P. Cousot and R. Cousot. Static determination of dynamic properties of
recursive procedures. In E.J. Neuhold, editor, Proc. 2nd IFIP TC-2 Work-
ing Conf. on Formal Description of Programming Concepts, pages 237-277.
North-Holland, August 1978.
G. Denker and P. Hartel. TROLL - An Object Oriented Formal Method
for Distributed Information System Design: Syntax and Pragmatics (Version
3.0). Technical Report Informatik-Bericht 97-03, TU Braunschweig, 1997.
K. Futatsugi and A. Nakagawa. An overview of Cafe project. In First
CafeOBJ workshop, Yokohama, Japan, 1996. Available at:
http ://Idl-w~rw. j aist. ac. j p: 8080/cafeobj/abstracZs/ocp. html.
S. Fr~lund. Inheritance of synchronisation constraints in concurrent object-
oriented programming languages. In O. Lehrmann Madsen, editor, Euro-
pean Conf. on Object-Oriented Programming (ECOOP'92), Lecture Notes
in Computer Science 615, pages 185-196. Springer-Verlag, 1992.
A.E. Haxthausen and F. Nickl. Pushouts of order-sorted algebraic spec-
ifications. In M. Wirsing and M. Nivat, editors, Algebraic Methodology
and So~ware Technology (AMAST 96), Lecture Notes in Computer Science
1101, pages 132-147. Springer-Verlag, 1996.

187

[HP92]

[Jac96]

[Jon93]

[Koz83]

[Lec97]

[LGS+95]

[LLNW96]

[Mes92]

[Mes96]

[MPW93]

[MY93]

[PS94]

[SMC96]

[vas94]

[W-K96]

M. Hofmann and B.C. Pierce. An abstract view of objects and subtyping.
Technical Report ECS-LFCS-92-226, August, 1992.
B. Jacobs. Inheritance and cofree constructions. In P. Cointe, editor, Euro-
pean Conf. on Object-Oriented Programming (ECOOP'96), Lecture Notes
in Computer Science 1098, pages 210-231. Springer-Verlag, 1996.
C.B. Jones. Reasoning about Interference in an Object-Based Design
Method. In J.C.P. Woodcock and P.G. Larsen, editors, Industrial-Strength
Formal Methods (FME'93), Lecture Notes in Computer Science 670, pages
1-18. Springer-Verlag, 1993.
D. Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333-354, 1983.
U. Lechner. Object-Oriented Specification of Distributed Systems. PhD
thesis, University of Passau, 1997. Technical Report: MIP-9717. Available
at: www. mcm. unisg, ch/'ulechner or www. fmi. uni-passau, de/~ lechner.

C. Loiseaux, A. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstraction for the verification of concurrent systems. Formal
Methods in System Design, 6(1):11-45, 1995.
U. Lechner, C. Lenganer, F. Nickl, and M. Wirsing. (Objects + Concur-

rency) & Reusability - A Proposal to Circumvent the Inheritance Anomaly.
In European Conf. on Object-Oriented Programming (ECOOP'96), Lecture
Notes in Computer Science 1098, pages 232-248. Springer-Verlag, 1996.
J. Meseguer. Conditional rewriting as a unified model of concurrency. The-
oretical Computer Science, 96(1):73-155, 1992.
J. Meseguer. Rewriting logic as a semantic framework for concurrency: a
progress report. In U. Montanari and V. Sassone, editors, 7th Int. Conf. on
Concurrency Theory (CONCUR'96), Lecture Notes in Computer Science
1119, pages 331-372. Springer-Verlag, 1996.
R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes.
Theoretical Computer Science, 25:267-310, 1993.
S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in concur-
rent object-oriented languages. In G. Agha, P. Wegner, and A. Yonezawa,
editors, Research Directions in Concurrent Object-Oriented Programming,
pages 107-150. MIT Press, 1993.
J. Palsberg and M.I. Schwartzbach. Object-Oriented Type Systems. Wiley,
1994.
B. Steffen, T. Margaria, and A. Claflen. Heterogeneous analysis and verifi-
cation for distributed systems. SOFTWARE: Concepts and Tools, 17:13-25,
1996.
V.T. Vasconcelos. Typed concurrent objects. In M. Tokoro and R. Pareschi,
editors, European Conf. on Object Oriented Programming (ECOOP'94),
Lecture Notes in Computer Science 821, pages 100-117. Springer-Verlag,
1994.
M. Wirsing and A. Knapp. A formal approach to object-oriented software
engineering. Electronic Notes in Theoretical Computer Science, 4:321-359,
1996. Proc. First International Workshop on Rewriting Logic and its Ap-
plications.

