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Abstract .  For reuse in concurrent object-oriented languages we present 
a set of reuse constructs. We give criteria for relations between classes 
that can be implemented by those reuse constructs, characterize the 
properties inherited via the constructs and explore that we have not 
only constructs but concepts for reuse. 
We demonstrate the concepts and constructs with the object-oriented 
concurrent language Maude. We employ the p-calculus to reason about 
these specifications and (bi)simulation relations parameterized with Ga- 
lois connections to model reuse. 
Keywords :  Reuse, Object orientation, Concurrency, Rewriting, Mande, 
p-calculus, Abstract Interpretation, Inheritance Anomaly. 

1 I n t r o d u c t i o n  

Reusability is considered to be one of the distinguishing advantages of object 
orientation. However, Matsuoka and Yonezawa demonstrated in their seminal 
paper on the inheritance anomaly that  reuse in object-oriented concurrent lan- 
guages is hardly feasible with inheritance alone [MY93]. 

To facilitate reuse in object-oriented concurrent languages more precisely in 
a particular language Maude we have developed a set of reuse constructs and we 
demonstrated that  this set of reuse constructs is powerful enough to circumvent 
the inheritance anomaly [LLNW96]. 

However, reuse of code alone is not satisfactory, in particular, not at the level 
of a specification language, where inheritance o/ properties must have preference 
over mere reuse o] code. We characterize the classes of properties tha t  are in- 
herited via our reuse constructs. We employ the modal #-calculus [Koz83,Bra92] 
to reason about  Maude specifications and we employ property preserving map- 
pings, namely (hi-)simulation relations parameterized with Galois connections 
[LGS+95], for relations between classes and to characterize the properties tha t  
are inherited via the reuse relations. 

We go one step further and give criteria for reuse relations, i.e., criteria, ac- 
cording to which classes can be implemented with a reuse relation. The scenario, 
we have in mind is object-oriented analysis and design of which establishing 
an appropriate class hierarchy is an essential part  [WK96,BJR98]. In sequential 
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object-oriented languages, the information stored inside the classes together with 
the methods determine possible reuse relation [HP92]. The more concurrency a 
language admits, the more the behavior of classes becomes relevant in reuse and 
for relations between classes. We provide with our relations between classes of 
algebras criteria about  which classes can be in a "reuse relation". 

Maude Transition System #-calculus 

Ancestors SPA I = Mod(SPA) ~ formula schema 

H e i r  SPH I L Mod(SpH) ~ formula schema 

Constructs Criteria Concepts  

Let us explain this diagram. X is one of the three reuse relations. Note that  
w e  are able to have more than one ancestor. We have three different levels at 
which we explore reuse. The first level is our specification language, Maude with 
its reuse constructs. Maude specifications can be interpreted and the semantics 
of Maude specifications are classes of algebras. For those classes of algebras, we 
develop relations, which can be implemented as reuse constructs at the level of 
Mande. The second level, which we consider in this paper, is thus the semantic 
level of transition systems. The third level is the #-calculus. Properties of objects 
can be phrased in the #-calculus and we can prove whether those properties hold 
for a transition system [Lec97]. We characterize the classes of properties tha t  are 
inherited via our reuse constructs. 

This paper is organized as follows. We introduce in Sect. 2 our specification 
language Maude and in Sect. 3 our constructs for reuse. In Sect. 4, we give a brief 
introduction to the #-calculus and the formula schemata. Sect. 5 contains the 
framework of property-preserving mappings. In Sect. 6, we explore the criteria 
for reuse and in Sect. 7 we characterize the properties tha t  are inherited. Sect. 8 
contains an example. We give a brief overview of related work in Sect. 9 and 
conclude our results in Sect. 10. 
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2 M a u d e  

This section provides a brief introduction to our specification language, Maude 
[Mes96]. Note, that  we employ the notation implemented in the CafeObj System 
[FN96]. E.g., [Mes96,Lec97] provide a more detailed introduction to Maude. 

Maude [Mes96] has two parts: one which defines the basic data  types using 
order-sorted equational specification and another which specifies states (so-called 
configurations) and state changes. 

In the state-dependent part of Maude one writes object-oriented specifica- 
tions consisting of an import list, a number of class declarations, message declara- 
tions, equations and transition rules. An object of a class is represented by a term 
comprising an object identifier (of sort 0b jec t Id ) ,  a class identifier and a set 
of attributes with their values; e.g., < B : BdBuffer  I cen t  = C, max = M > 
represents an object of class BdBuffer  with identifier B and attributes cont  and 
max with values C and M, respectively. A message is a term of sort Message (in 
mixfix notation) that  consists of the message's name, the identifiers of the ob- 
jects the message is addressed to and, possibly, parameters; e.g., the term (put 
E i n t o  B) is a message. A configuration (of sort ACZ-Configuration) is a mul- 
tiset of objects and messages. Multiset union is denoted by juxtaposition. State 
changes are specified by transition rules (keyword r l  or c r l ) .  

As an example of a specification let us give the specification of bounded 
buffers and explain it subsequently. The specification EXT-ACZ-C0NFIGURATION 
specifies the basic data  types of objects, messages and configurations (for a 
formal definition see [Mes96,Lec97]). The empty state, i.e., the element of sort 
ACZ-C0NFIGURATION is denoted by acz-empty. LIST specifies the sort L i s t  of 
finite sequences together with a juxtaposition operation where adding an element 
E to a list C on the left is written E C and a list consisting of a list and a single 
element is written C E. NAT contains the specification of natural numbers (Nat) 
and the sort NzNat for natural numbers strictly greater than zero.  

module BD-BUFFER { 

import { 

protecting (NAT) 

protecting (LIST) 

protecting (EXT-ACZ-CONFIGUPATION) } 

signature { 

class BdBuffer { 
max : NzNat 

cont : List } 

op get _ replyto _ 

op to _ answer is _ 

op put _ into _ 

: Objectld Objectld -> Message 
: ObjectId Elem -> Message 
: Elem ObjectId -> Message } 

axioms { 
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vats B R : Objectld 

vat E : Elem 

var C : List 

var M : NzNat 

vat ATTS : Attributes 

crl 

rl 

[P]: (put E into B) 

< B : BdBuffer i cont = C, max = M, ATTS > 

=> < B : BdBuffer i cont= E C, max = M, ATTS > 

if length(C) < M . 

[G]: (get B replyto R) 

< B : BdBuffer J cont = C E, max = M, ATTS > 

=> < B : BdBuffer J cont = C , max = M, ATTS > 

(to R answer is E) . } } 

The class BdBuffer  has two attributes, max is the capacity of a bounded 
buffer and con t  stores the buffered elements. The variable ATTS collects--accor- 
ding to the syntax supported by the CafeObj system [FN96]--attributes not 
mentioned in a rule or additional attributes particular to heirs of BdBuffer .  

A bounded buffer may react to two messages: pu t  and ge t .  Put  stores an 
element in the buffer, ge t  removes the oldest element being stored in the buffer 
and sends it to a "receiver". The transition rule with rule label P says that  an 
object of class BdBuffer  can react to a pu t  message only if the actual number of 
objects being stored, l eng th (C)  is smaller than the capacity max. Sending a g e t  
message triggers not only a state change of buffer B but  also initiates an answer 
message to R which contains the result (an element). Note, that  a g e t  is only 
accepted if the buffer is not empty, i.e., if at t r ibute cont  contains a structure 
C E indicating that  there is at least one element part  of the list. 

Generally speaking, transition rules specify explicit, asynchronous commu- 
nication via message passing: if a message is part  of a configuration, a state 
transition may happen and new (answer) messages waiting to be processed in 
subsequent state transitions may be created as part  of the resulting configura- 
tion (in the specification given above only one new message is generated). We 
could also have more than one object at the left-hand side of a transition rule 
and specify thereby a synchronous state transition of several objects [Lec97]. 

The matching itself is done by a Rewriting Calculus. Examples for rewriting 
calculi can be found in [Mes92,Mes96,Lec97,LLNW96]. Note, tha t  we consider 
in contrast to [Mes96] labeled transition systems, whose labels are the messages 
triggering a state transition. 

A specification comprises thus a signature, a set of equations and a set of 
transition rules. Later, we use the notation Sp = (S,, E,  T)  for Maude specifica- 
tions. The signature itself consists of a set of sorts, a subsort relation and a set 
of operators and is written as E = (S, <, OP). 
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3 R e u s e  C o n s t r u c t s  f o r  M a u d e  

We have developed a set of three reuse constructs for Maude: (1) Maude's in- 
heritance relation, (2) subconfiguration and (3) message algebra. We explain the 
constructs briefly and give a typical example for each of them. Sect. 8 contains 
the specification code. 

According to Maude's inheritance relation [Mes96], an heir inherits all at- 
tributes, all equations and all transition rules from all its ancestors. Thus, an 
heir reacts at least in all situations in which one of its ancestors was able to react 
to a message. A typical example for the use of inheritance is a bounded buffer 
that reacts to more messages than BdBuffer. 

The construct of subconfiguration is dual to inheritance [LLNW96]. It allows 
to restrict the ability of a class encapsulated in a subconfiguration to react 
to messages. A typical example is a bounded buffer which is implemented by 
reusing an unbounded buffer. The unbounded buffer, providing the facilities to 
store elements is encapsulated inside a bounded buffer that restricts the messages 
that come into contact with the unbounded buffer [Lec97]. 

The concept of message algebra is particular to Maude [LLNW96]. We spec- 
ify message combinators and their semantics that allows us to construct com- 
posed messages from atomic messages. A typical example is a get2 message 
implemented as a sequential composition of two get  messages. The semantics 
of the sequential composition, provides (1) non-interference and (2) that a get2 
message is accepted if and only if both its get  messages can be accepted in se- 
quence. Moreover, we ensure by the semantics of the message combinator that 
the answer messages are arranged properly such that they can be transformed 
into an answer containing two elements in proper order. Note, that the message 
combinators and, their semantics is subject to a Maude specification and thus, 
this concept gives us a large amount of freedom and expressivity. 

Note, that we employ equations and not only transition rules alone. Thus, 
transformations of the state, necessary for implementing a get2 message by 
a sequential composition of two get  messages, or by modeling the migration 
of messages into and out from subconfigurations does not involve additional 
"administrative" transitions. 

4 T h e  D - c a l c u l u s  

The #-calculus is used to reason about state transition systems at a property- 
oriented level [Koz83,Bra92]. The language of ju-formulas, denoted by s is 
constructed from atomic propositions, conjunction and disjunction, modal con- 
nectives and fixpoint operators according to the following grammar. Let the set 
T be non-empty (but possibly infinite). 

p ::= t t  I f f  I ~pl  "o" I "~" 
r ::= p l (^i:  l E T :  r~i) I (v i :  i E T :  r I ( 3x~T  : r I (VxET : r 

] (L)r I [LIe I (vX.r I (#X.r 
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o, respectively m,  is a term over a signature E representing an object  respec- 
tively a message. The double quotes around an object or message represent the 
proposition "this object  exists" or "this message exists". E.g., s ta te  C satisfies 
"< B1 : BdBuffer  I max = 1 >" if one of its elements is an object  with ob- 
ject identifier B1 belonging to class BdBuffer  (which includes all subclasses of 
BdBuffer )  whose value of a t t r ibute  max is equal to 1. 

L is a set of labels. [L]r and (L)r  are the labeled modal  connectives. Intu- 
itively, [L]r holds if r holds immediately after all transitions with labels in L. 
Dually, (L)r  holds if there is a transition with a label in L such tha t  r holds im- 
mediately afterwards. We use ( - )  and [ - ]  as abbreviations for modal connectives 
with the label set of all possible labels. 

u is the greatest ]ixpoint operator  used, typically, for invariant (safety, "al- 
ways") properties. # is the least fixpoint operator  used, typically, for variant 
(liveness, "sometime") properties. 

We are interested in the t ru th  of formulas in a s tructure (A, R) which is 
a model of a Mande specification. Let us introduce some notation. Let v be a 
valuation and I be an interpretation function which indicates in which structure 
formulas are interpreted. I r ](A,R),Z v denotes all elements of A, for which r 
holds under valuation v and under an interpretation I : s -+ (A, R). 

We introduce a set of formula schemata describing the behavior of classes. 

D e f i n i t i o n  1 ( F o r m u l a  s c h e m a t a ) .  Let C be a class and a t t s  resp. a r t s '  
denote the a t t r ibutes  with their values of class C. Let SIt< B : C I a t t s i  >), 
r  B = c I a t t s i  > ) a n d  r B : C I a t t s i  > ) b e  propositions on the st- 
ate  of an object B of class C. SI is the state invariant of class C. Let ai be  a 
message and let p be variables in the formulas with the range P.  We define five 
formula schemata  by closed #-formulas for a class C with n methods: 

Persistence(B) = (uX.(VpE P : 
"< B : C [-1("< S : C >" ^ X ) ) )  

State(B) = ( u X . ( V p e P  : 
SIt"< B : C l ar ts >")=~[-](Sl("< B : C I a r t s '  > " )AX) ) )  

Synchronization(B) = (Ai : 1 < i < n : (VpEP : 
" m i " A " <  B : C I a t t s  >"A~bi(< B : C I a r t s  > ) A ( m i ) t t ) )  

StateChange(B) = (uX. (VpeP:  (^i  : 1 < i < n : 
"< B : C I ar ts  >"A SIt< B : C I a t ts  >)Ar B : C I ar ts  >) 

[m,](r B = C O atts, '  > )^X) ) ) )  
AnswerMessages(B) = (uX.(VpEP : (^i  : 1 < i < n : 

"< B : C I arts  >"AS/(< B : C I arts  >)hr B : C [ ar ts  >) 
A X)))) 

Each of the formula schemata  reflects one particular notion of the object  
model of Maude. Persistence describes tha t  objects do not disappear,  State tha t  
a s tate  invariant holds, Synchronization under which circumstances an object 
reacts to a message, AnswerMessages gives the messages created as a result of a 
s tate  transit ion of an object and StateChange describes the changes in the s tate  
of an object.  
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5 P r o p e r t y  P r e s e r v i n g  M a p p i n g s  

The property-preserving mappings we employ to relate transition systems com- 
prise (1) Galois connections as a relation between (sets of) states and (2) (bi)si- 
mulation relations parameterized with Galois connections as a relation between 
transition systems, whose states are in Galois connection. We rely on [LGS+95] 
for notation and formal framework. 

Let us introduce some abbreviations and notation: X is the complement of X 
in the domain of X. Ia ~ is the identity function on a set Q. The dual of a function 

a is ~, defined by ~(X) =def a(X). Let Q be a set of states, X c_ Q, L a set of 
labels and R a relation; the set of predecessors in a labeled transition relation R 
by transitions with a label in the label set L is represented by pre (R) (L) (X) ,  the 
set of successors respectively by post. Let S1, $2 be two sets of configurations: 
S1 ~ $2 =def {C1 62 I C1 e S1, C2 E $2}. (Remember that the multiset union of 
configurations is written C1 C2.) 

A Galois connection is a relation between sets, which is determined by two 
functions a and 7. As the names of the two functions suggest, we refer to them 
as the abstraction and concretion function, respectively. 

Definition 2 (Galois connection). Let Q1 and Q2 be two sets. A Galois con- 
nection (a, 7), from ~(Q1) to ~(Q2) is a pair of continuous functions a : ~(Q1) -+ 
~(Q2), 7 : ~(Q2) --+ ~(Q1) such that Id  Q~ c_ 7 o a and a o 7 C I d  Q2. 

Note, that a distributes over union of sets, i.e., O~($1 U $2) : O~(S1) U o~(S2). 
Galois connections provide the formal framework for relating sets of states. 

Let us now define a simulation relation between transition systems whose states 
are in a Galois connection. 

Definition 3 (E(a,-r) and  -~(a,'r))" Let S1 = (Q1,R1) and $2 -- (Q2,R2) be 
two transition systems, L1 the set of labels of $1 and (a, 7) a Galois connection 
from ~o(Q1) to p(Q2). $2 is an (a,v)-simulation of $1, written $1 u(a,~) $2, if 
and only if, for any L C_ L1, ~ 0 pre(R1)(L) 0 7 C_ pre(R2)(a(L)) .  

$1 and $2 are (a, 7)-bisimilar, written $1--(a,~) $2, if and only if, $1 (a, 7)- 
simulates $2 and $2 (~, ~)-simulates S1, i.e., $1 _U_(a,~) $2 and $2 _U_(~,~) S1. 

Note, that a E-homomorphism f : A1 ~ A2, more precisely, its extension to 
sets, which we also denote by f ,  is an abstraction function and induces a simula- 
tion relation A1 E(f,f-1) A2 [LGS+95,Lec97]. Note that a (simulation) relation 
p C_ A1 x A2 induces a simulation relation A1 U_(posKp),~'~e(p)) A2 [LGS+95,Lec97]. 

Preservation of a formula by a function a means that, if a formula holds 
for a set of states, then it holds for the image of this set under a as well. 
Let (A1,R1) and (A2,R2) be two transition systems, r E s a formula, and 
I : l:~ -+ p(A1) an interpretation function, f preserves r for I iff for q E Q1, 
q E[ r ](A1,R1),I V implies f (q)  C_ [ r [(A2,R2)JoI f ( v ) .  A function f is consistent 
with an interpretation function I if, for all formulas r f(I(r  N f(I(r  = 0. 
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Theorem 4 (Preservation of  properties) .  Let (At, R1) and (A2, R2) be two 
transition systems. Let I1 : 1:# --~ A1 and I2 : s --+ A2 be two interpretation 
functions. 

1. f f  ( A1, R1) ___(a,7) (A2,R2) then a preserves []-free, positive formulas, and 
if a is consistent with I1, then a preserves [ ]-free formulas. 

2. / f  (AI,R1) ___(a,7) (A2,R2) then ~/ preserves ( )-free positive formulas ]or I2 
and, if ~/ is consistent with 12, then ~ preserves ( )-free formulas. 

3. ff  (A1, R1) ~-(a,7) (A2, R2) then a preserves positive formulas ]or 11 and, if 
a is consistent with 11, then a preserves all formulas for I1. 

Proof. Proof by induction on the size of formulas. See [LGS+95] or [Lee97]. 

6 C r i t e r i a  for R e u s e  

Let us sketch briefly our design scenario and the role of our results for the object- 
oriented specification of distributed systems. In object-oriented design, the class 
hierarchy has to be established with the reuse relations between the different 
classes. We provide via our relations information about criteria which classes 
are similar so that they can be implemented via a reuse relation. The formal 
basis for "similarity" is the property preserving relation introduced in Sect. 5. 

The design of the class hierarchy is the first phase: only in the second phase a 
system is modeled as a collection of objects. Thus, the properties (and possibly 
proofs) whose inheritability one is interested in are properties of single classes. 
We axe interested in the inheritability of the instances of the formula schemata 
of Def. 1. 

In the following, we define relations between classes of algebras, which can 
be implemented by reuse relations. The relations consist of two parts: (1) a 
relation between the algebras and (2) a relation between transition systems. 
Common to the three criteria for reuse is also the function fl (an abbreviation 
for filter), which abstracts from the structures of the heir and relates ancestor 
states (terms of sort Acz-aonfigurat ion)  to heir states. Note that we consider 
only specifications with coherent order-sorted signatures [HN96]. 

Defini t ion 5 ( C o m m o n  basis for reuse criteria). We consider an "ances- 
tor" specification Sp A = (EA, EA,TA) with ~A = (SA, <_A, OPA) and a "heir" 
specification SpH ---- (~H, Ett, TH) with ~H = (SH, <H, OPH)" ~A and ,US are 
coherent order-sorted signatures. Let a : EA -+ ~H be the canonical injection. 

Let fl c_ ~H X ~A be given by 
fl(D1D2) = fl(D1) t9 fl(D2) 
fl(acz-empty) = 
fi(<O: Cl {a = v}>) = 
fl(<O: Cl {a = v}>) = 

. . . v . ) )  = 

 (m(pl . . . p . ) )  = 
n(v) = 

acz-empty 
{<0 : Cl{a = w}>lwefl(v)} for C6~A,C liU C~ 
acz-empty for C6~H\~A,C ~H CH 
m(fl@l). . ,  fl(p.)) for m 6 ZA 
acz-empty for rrt 6 ~H \ ~YJA 
v for v : s ,s  ~ Cf 
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Let us motivate the common basis for the reuse relations. Common to the 
reuse relations is that  we require that  the heir specification has at least the 
sorts and function symbols of the ancestor. We ensure this by the existence 
of a canonical embedding a : -UA -~ ~H and we require tha t  the reduct of a 
SpH-algebra is a SpA-algebra, i.e., HI~ = A for some (A, R) E Mod(Spg). 

We apply fl to abstract from the new classes and relations and to relate 
ancestor and heir configurations of the transition systems. 

In Maude, an heir inherits from its ancestor the implementation of the state 
and the ability to react to messages. Thus, in order to establish inheritance one 
needs a relation in which the heir acts and reacts if the ancestors act and react. 
This is captured by a simulation relation. 

D e f i n i t i o n  6 ( I n h e r i t a n c e  C r i t e r i o n ) .  Let Def. 5 be included. Let CA~ for 
1 < i < n be classes in ,UA and CH a class in EH. Sp H is an heir of SpA via 
CH ~H CA1,..., CA. if 

(V(H, S) E Mod(SpH) : (3(A, R) e Mod(SpA) : 
g l~  = A A (A, R) ---(pre(fi),~(fl)) (H, S))) 

where for CH, <~H CH 
fl(<O : CH, I arts>) = {< O: CA, lattSA, > I 

(Va=wE atts, a attr ibute of CA,, Vefl(w) : a=ve attsA~) } 

Let us explain and motivate this inheritance relation. We relate in the sim- 
ulation relation modeling inheritance those states whose parts belonging to the 
ancestor specification are equal. Function fl provides this abstraction for the heir 
configurations and induces a simulation relation on states. 

The abstraction filters the "new observations", which are particular to the 
heir specification, while the reduct excludes "new elements". This difference in 
the t reatment  of the inheritance relation reflects the difference in the construc- 
tion in algebras and observation in transition systems, fl links the two concepts 
by abstracting in a way such that  behaviorally equal configurations, which are 
constructed differently, are related in the inheritance relation. Maude's object 
model is the reason why we cannot abstract from the values and consider only 
the sorts, since the values of the attributes determine whether and how an object 
reacts to a message. Thus, we cannot extend the domain of basic values. 

Our second construct and concept for reuse is subconfiguration. Subconfigu- 
ration are a means to restrict the ability of the reused classes to act and react. 
Thus, subconfiguration and accordingly the simulation relation and the criterion 
are dual to inheritance. 

D e f i n i t i o n  7 ( S u b c o n f i g u r a t i o n  C r i t e r i o n ) .  Let Def. 5 be included. Let ,UA 
comprise the classes CA~ for 1 < i < n and let CH with at t r ibute a be a class in Z ~ .  
SpH is an heir by subcon]iguration via (CH S u b c o n f i g u r a t i o n  of  CA1 ... CAN) 
of SpA if 

(V(H, S) e Mod(SPH) : (3(A, R) e Mod(SPA) : 
HI~ = A A (H, S) --(po,t(fi),~-~(fl)) (A, R))) 
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where for CH, <_H CH 
fl(<O : CH, I arts>) = < 0 : CA, l attSA, > [ 

(Va = w 6 atts, a attribute of CA,,  v �9 fl(w) : a = v �9 attsA,) } 

The criterion for reusability via subconfiguration is that an object of class 
CH can be replaced by a number of objects of class CA1 . . .  CA= and that this 
increases the number of possible transitions. Hereby, the values of the respective 
attributes of the ancestor(s) and the heir are identical. When two specifications 
for which the criterion holds are implemented by reuse we replace a "normal" 
value of an attribute (of class CH) by an object of the reused class (CA,) .  

The third reuse construct and concept is the message algebra with which 
new message combinators together with their semantics, i.e., the way composed 
messages are being processed, are specified. A message combinator such as, e.g., 
sequential composition, does not affect the state changes triggered by these single 
messages. Mande provides us with the flexibility to combine less benign message 
combinators that allow us to manipulate the states of the objects in a way 
which cannot be achieved by processing (uncomposed) messages with the rules 
of the rewriting calculus. Such message combinators alter the properties of the 
objects involved in an arbitrary way. We are not interested in such a kind of 
reuse, which we consider to be dangerous, and we restrict the reuse relation 
"via message combinator" to message combinators which compose messages and 
transitions only. 

Defini t ion 8 (Message Algebra  Cri ter ion) .  Let Def. 5 be included. Let opl 
be message combinators for 1 < i  < n  such that opi : Messagei-> Message�9 ~H. 

Spg inherits  via m H  combined f rom mo OPx . . . oPnmn f rom SpA if 

(V(H, S) �9 Mod(SpH) : (3(A, R) �9 Mod(Spa), f c_ H x A:  
H[~ = A 

A (H, S) -~(post(f),~V~(0) (A, R) 
A (H, S)  E(post(n),~-~(fl) ) (A, 2 ) ) )  

where fl(D) D f(D) and 
fl(mH(p)) = fl(ml(Pl)) . . .  fl(mn(Pn)) for Pi C p. 

Let us motivate this relation. We have two different relations, a simulation 
and a bisimulation relation, to model the inheritance relation via message alge- 
bras. Function fl relates states of the ancestor and the heir specification, provided 
they consist of the same objects and the same messages, regardless of whether 
they are composed in the reusing specification. 

The simulation relation abstracts from the message combinators and relates 
all states with the same objects and the same messages, regardless of whether 
they are part of a composed message or whether they are "simply" part of the 
configuration. 

The bisimulation relation relates--like the simulation relation--states, which 
consist of the same objects and messages. But, in contrast to a simulation rela- 
tion, it also takes into account that the composed messages are accepted, pro- 
vided the state of the reused specification accepts the uncomposed messages. 
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Naturally, for this relation there is no purely syntactical criterion like for the 
simulation relation and thus, we only know that the bisimulation relation is a 
subset of the simulation relation. 

7 Inheritance of Properties 

Up to now we have considered reuse at the syntactical level with constructs 
and at the semantical level with criteria. Constructs and criteria, Maude and 
transition systems have all a quite operational "flavor". Now, we reason about 
these reuse relations and the objects and classes at the more property-oriented 
level of the p-calculus and characterize the properties preserved by simulation 
and bisimulation relations modeling the reuse relations. 

Proposition 9 ( Inher i tance  of  Proper t ies ) .  Let SPA and SpH be two spec- 
ifications, such that SpH inherits via X from SPA where X is one of the three 
reuse relations and P( x,x,) the criterion. Choose ( A, R) E Mod( SPA ) and (H, S) E 
Mod(SPa ) such that (A, R)p(x,x,)(H, S). 

A property r is called inheritable via X if C El r I(A,R),za~ D E[ r I(A,n),tn 
for all C E A, D E H, Cp(x,x,)D. Then, the properties inheritable via the reuse 
relations are marked by ~/ : 

Persistence State Synchronization 

Inheritance 
Subconfiguration x/ 
MessageAlgebra (if__) ~/ 
MessageAlgebra ( ~ ) 

v/ 

Answer-  State- 
Messages Change 

Proof. (Sketch) Persistence, State, AnswerMessages and StateChange are ( )- 
free formulas, which are preserved by simulation relations, more precisely by 
the consistent dual of a concretion function. Inheritance and the simulation 
relation modeling reuse via Message Algebra are modeled by a simulation relation 
employing a Galois connection with a consistent concretion function. 

Synchronization is a [ ]-free, positive formula, which is preserved by simula- 
tion and bisimulation relations, as defined by Inheritance and Message Algebra. 

The proof can be found in [Lec97]. 

Naturally, one cannot expect to inherit all properties, and, probably all proofs 
when reusing code. The correspondence between the operational paradigm with 
Maude and the transition system on the one hand and the property-oriented 
paradigm with #-calculus on the other hand shows that we have not only con- 
structs for a language but concepts which work at different levels of abstraction. 

We are interested in properties for single classes, more precisely in the in- 
stances of the formula schemata. The reason for this is that those properties are 
the ones that are of interest in establishing the class hierarchy. More complex 
properties, e.g., involving many objects of different ~ classes are more of interest, 
when a system is composed from different objects in a later phase in the design. 
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8 An Example: Buffer, BdBuffer and BdBuffer2 

Let us sketch the scenario of our example first. Assume we would like to have 
three buffers with different properties (0) an unbounded buffer, (1) a bounded 
buffer like BdBuffer  of Sect. 2 (2) a bounded buffer BdBuffer2 that  accepts put ,  
ge t  as well as get2,  a message that  triggers a retrieval of two elements from the 
bounded buffer. 

Assume that  we have finished the phase in the design where we have iden- 
tified the classes, the objects and the messages and assume we have given the 
system as a Maude specification, which contains now three different, not related 
descriptions of the three buffers. Assume furthermore, that  we would like to 
start  with the specification of the unbounded buffer (maybe because it is imple- 
mented in the standard library) and implement the other two buffers by reusing 
this specification. 

The specification BUFFER containing a class Bu f f e r  is the starting point. 

module BUFFER { 

import { 

protecting (LIST) 

protecting (EXT-ACZ-CONFIGURATION) } 

s i g n a t u r e  { 
c l a s s  B u f f e r  { cont  : L i s t  } 

op ge t  _ replyto _ 

op to _ answer is _ 

op put _ into _ 

: ObjectId ObjectId -> Message 

: Objectld Elem -> Message 

: Elem 0bjectId -> Message } 

axioms { 

vars B R : 0 b j e c t I d  
var E : Elem 

var  C : List 

var ATTS : Attributes 

rl [P] : 

=> 

(put E into B) 

< B : Buffer I cont = C , ATTS > 

< B : Buffer i cont = E C, ATTS > . 

rl [G] : 

=> 

(get B replyto R) 

< B : Buffer I cont = C E, ATTS > 

< B : Buffer I cont = C, ATTS > 

(to R answer is E) �9 } } 

First, we implement BdBuffer  (as it is given in Sect. 2) by reusing Buffe r .  
Since the bounded buffer is more restricted to acting and to reacting than the 
buffer, we employ subconfiguration for reuse. We establish the relation by: 
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fl(< B : BdBuffer l max = M, cont = C, ATTS >) = 

< B : Buffer I cont= C, ATTS > 

We have to check that BDBUFFER simulates BUFFER. Thus, class BdBuffer can 
be implemented by reusing Buffer ,  more precisely, the value of attribute cont  
of BdBuffer can be replaced by an object of class Buffer .  The reuse relation is 
BdBuffer c o n t :  Subconf igura t ion  of Buffer .  

Let us deal with the second task, namely to implement a class BdBuffer2, 
which accepts put, ge t  and get2. First we apply inheritance to let BdBuffer2 
inherit put  and get  from BdBuffer. Hereby, fl is given by 

fl(< B : BdBuffer2 I ATTS >) = < B : BdBuffer I ATTS > 

Since we do not give the original specification of BdBuffer2 here, we have 
to assume that BdBuffer2 and BdBuffer are in the appropriate relation. 

The second step is to implement get2 by subconfiguration as a sequential 
composition of two get  messages. Assume we have a message algebra, called 
MSG-ALGEBRA, containing the following fragments of a specification, describing 
the message combinator for sequential composition ; ; and its semantics in rule 
Seq: 

op_ ;; _ : Message Message-> Message 

vars ml m2 nl n2 : Message 

vars cl c2 dl d2 h : ACZ-Configuration 

crl [Seq] (ml;;m2) ci c2 => dl d2 (nl;;n2) 

if (ml cl ==> dl h nl) and (m2 c2 h ==> d2 n2) . 

Then fl relates all configurations containing a get2 to configurations containing 
two get  messages. Again, one has to check whether the appropriate simulation 
relations can be established. Critical here is that get2 does not provide the 
possibility to reach states, that are not reachable by two get  messages. 

Finally, we give the specification of the three buffers with their reuse relations. 

module ALL-BUFFERS { 

import { 

protecting (BUFFER) 

protecting (MSG-ALGEBRA) } 

signature { 

class BdBuffer { 

max : NzNat 

cont: ACZ-Configuration } 

-- A new bounded buffer 

-- Capacity 

-- Encapsulating a buffer 

class BdBuffer2 [BdBuffer] { } -- BdBuffer2 inherits 

-- from BdBuffer 
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op get2 _ replyto _ 

op to _ answer is _ and 

: ObjectId ObjectId -> Message 

_ : ObjectId Elem Elem -> Message } 

axioms { 

vars B R : ObjectId 

vars E El E2 : Elem 

var C : List 

var M : NzNat 

vars ATTS A : Attributes 

ceq [P] : (put E into B) 

< B : BdBuffer I 

( cont = < B : Buffer I cont= C, A > ), ATTS > 

< B : BdBuffer I ( max = M ), 

( cont = < B : Buffer J cont = C, A > 

(put E into B) ), ATTS > 

if length(C) < M . 

eq [G]: (get B replyto R) 

< B : BdBuffer I ( max = M ), 

( cont = < B : Buffer I cont= C E, A > ), ATTS > 

= < B : BdBuffer I ( max = M ), 

( cont = < B : Buffer I cont= C E, A > 

(get B replyto R) ), ATTS > . 

eq [A]: < B : BdBuffer I ( max = M ), 

(cont = < B : Buffer I A > 

(to R answer is E) ), ATTS > 

= < B : BdBuffer I ( max = M ), 

(cont = < B : Buffer I A > ), ATTS > 

(to R answer is E) 

eq [E2] : (get2 
< B  : 

= ( (get  
<B  : 

B replyto R) 
BdBuffer2 I ATTS > 

B replyto R);;(get B replyto R)) 
BdBuffer2 I ATTS > . 

eq [A2]: (to R answer is El and E2) 

= (to R answer is E);;(to R emswer is E) . } } 

Let us discuss this specification. In this example, the specification is not 
shorter than the original specification, containing the three entirely different 
specification with 7 rules (1 rule for each of the three buffers to implement get, 
1 for each buffer for put, and 1 rule to implement get2). However, one can 
imagine to applying schemata, in particular, for rules describing the migration 
into and out of subconfigurations. This would make our reuse concepts more 
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effective in terms of length of code. However, establishing the class hierarchy 
at this abstract level of Maude is much easier than at the concrete level of a 
programming language, and it is more concise than it would be based on a 
semi-formal design notation only. 

9 R e l a t e d  W o r k  

Object-oriented concurrent language deal differently with the inheritance ano- 
maly [MY93]. Languages as, e.g., 7roflA [Jon93], do not provide inheritance at 
all. Other languages separate the methods from the synchronization code that 
decides which methods are accepted [DH97] and/or provide sophisticated con- 
structs to reuse the synchronization code [Fr092]. 

The formal framework of property-preserving simulation relations [MPW93] 
stems from abstract interpretation [CC78,LGS+95,Bru93,SMC96]. Relations be- 
tween classes that are based on the behavior respectively (behavioral) subtyping 
are [Ame90,HP92,PS94,Vas94]. Roles and views [AB91,ABGO93] could be ex- 
pressed within our framework as well. Bisimulation relations are employed in 
[Jac96] as the abstraction from the constructive, algebraic, intra-object to the 
behavioral, coalgebraic view. 

We restrict ourselves to the world of formal specifications and start with the 
criteria at a point in the design process where objects and classes are already 
specified in Maude. [WK96] integrates Maude and semi-formal object-oriented 
design notations. 

10 C o n c l u d i n g  R e m a r k s  

We have established a link from reuse at the syntactic level of Maude and the 
reuse constructs, to reuse at the semantic level and reuse at the property-oriented 
level. We distinguish three kinds of reuse: (1) via inheritance, (2) via subconfig- 
uration and (3) via message algebra. 

In [LLNW96], we have already explored the power of these reuse constructs. 
Together they are powerful enough to circumvent the inheritance anomaly. The 
upshot of our work is that the are also safe kinds of reuse, since we can reflect the 
syntactic reuse at the semantic level by an operation on the classes of algebras, 
which are the model of our specifications. This suggests that we do not only 
have constructs but concepts that work independent from the language and 
from the level of abstraction. Thus, our means of reuse are adequate both for 
the property-oriented level of a specification language, when one would like to 
achieve presumably not reuse of specification text but reuse of properties and for 
the concrete level of a programming language with a class hierarchy reflecting 
ideas and concepts and not mere reuse of code. 
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