Backtracking-Free Design Planning
by Automatic Synthesis in METAFrame

Tiziana Margaria Bernhard Steffen

Universitit Passau* (D) Universitit Dortmund** (D)

Abstract. We present an environment supporting the flexible and applica-
tion-specific construction of design plans, which avoids the insurgence of
unsuccessful design plans at design time, and is thus backtracking-free.
During a planning phase the collection of all complete, executable design
plans is automatically synthesized on the basis of simple constraint-like
specifications and the library of available tools. The designer’s choice of
the best alternative is eased by a user friendly graphical interface and by
hypertext support for the generation and management of plans, as illus-
trated along a user session. Example application field is the generation
of design plans in a CAD environment for hardware design.

1 Motivation

To master the complexity and variety of system-level design, flexible environ-
ments are required, which efficiently support reuse, ‘design in the large’ strate-
gies and teamwork. In particular, a rich collection of design tools with different
application profiles is needed to allow an application-specific treatment of com-
plex design tasks. We focus here on a concrete application domain, and consider
the functionality of CAD Frameworks. Themselves large and complex software
systems, frameworks like e.g. NELSIS [17], CADLAB {10}, or the Jessi CAD
Framework [11] have succeeded to provide VLSI designers with sophisticated
and user friendly project management wrt. data and design execution flow. As
such, they are widely used, mainly to enforce standard design plans, i.e. prede-
fined successions of activities (e.g. synthesis, verification, simulation, test pattern
generation, and - at the physical design level - placement, routing, binding, etc...)
which are carried out to get from a circuit specification through many successive
design steps to the corresponding layout masks for physical realization on chips.

CAD frameworks are good at enforcing a prescribed plan of design activities,
but they still offer little support for advanced, application-specific synthesis of
design plans involving a flezible use and combination of available tools. Flexibility
is however increasingly needed, since projects become larger, tool functionalities

* Fakultdt fiir Mathematik und Informatik, Universitat Passau, Innstr. 33, D-94032
Passau (Germany), tiziana@fmi.uni-passau.de
** Lehrstuhl fiir Programmiersysteme, Universitit Dortmund, GB IV, Baroper Str. 301,
D-44221 Dortmund (Germany), steffen@cs.uni-dortmund.de

189

more complex, and therefore standard plans need to be increasingly comple-
mented or substituted by ad-hoc design planning on a case by case basis.

Related Work. Some flexibilization of tool management was first offered by de-
sign environments like ULYSSES (3], ADAM (8] and later Cadweld [4]. In these
systems, tools are either directly chosen according to hardwired criteria or they
are dynamically proposed at design-time according to the remaining design task.
Hercules [1,7] and recent versions of NELSIS [18] enhance these methods to a
workflow management which captures both tool and design management as-
pects. However, as a consequence of their implicit treatment of design planning,
during design execution, all these systems detect unsuccessful design attempts
only after some unsuccessful design step has already been concretely carried out.
This requires complex and expensive backtrackings to undo wrong runtime plan-
ning decisions. Since in hardware design tool executions typically generate huge
amounts of data!, the files containing intermediate and previous results are usu-
ally destroyed after carrying out successive design steps. Therefore the amount of
work wasted through backtracking is increased by the frequent need of ‘undoing’
many more steps, in order to start the redesign from a data consistent point.
Here the frameworks’ data management functionality helps in keeping track of
data completeness and consistency (design plan recovery), but it would be much
more efficient to avoid backtrackings at all.

Our Contribution. With CAP-METAFrame we propose the introduction of a
Computer-Aided Planning phase prior to design execution, where design plans
are generated from loose formal descriptions of the desired design tasks. Our ap-
proach to the synthesis of (linear) design plans from goal-oriented specifications
is novel in its intent and its solution. Intuitively, our synthesis procedure can be
regarded as a mechanism to explore the future development of plans prior to any
execution, in a depth that allows designers to detect traps early enough to avoid
backtracking. The generation of the collection of complete, executable design
plans on the basis of simple but powerful constraint-like specifications (given
in a temporal logic) and of the library of available CAD tools is completely
automatic. Once the set of solutions is available, they can be investigated and
executed. Of course this feature comes at the price of some structural restrictions
on the side of the considered plans. However, linearity is no vital constraint and'
concurrency could be dealt with along the lines of a serialization (i.e. interleav-
ing) semantics.

_ The distinctive feature of our specifications is their global character, i.e., in
our context, their ability to express required interdependencies between tools
(like orderings, precedences, eventualities, and conditional occurrences) when
striving to solve a complex task. Exactly such interdependencies are responsible

! To give an idea, the now popular Binary Decision Diagrams were initially devised
for use in hardware design, to cope with the huge state spaces of gate-level circuit
descriptions.

190

for the expensive backtrackings at design time, since they cannot be captured by
formalisms describing properties of single tools, and thus cannot be taken into
account while proposing tools “on the fly” as in the common local approaches.

More concretely, constraints in the logic capture the following significant
classes of global properties:

— general ordering properties, like this design step must be executed some time
before this other,

— abstract liveness properties, like a certain design step is required to be exe-
cuted eventually, and

— abstract safety properties, like two certain design steps must never be exe-
cuted simultaneously.

Being implemented on top of METAFrame, a general purpose environment for
the systematic and structured computer aided generation of application-specific
complex objects from collections of reusable components, CAP-METAFrame ad-
ditionally supports the flexible tool integration into a CAD environment. More-
over its hypertext system, graphical user interface and local checking routines
provide a strong basis for local design decisions. Thus the formalism behind
the global planning can be introduced incrementally with CAP-METAFrame: if
no formal constraints are used, local design decision are supported, however,
the more constraints are used the better is the automatic support [14]. In fact,
playing with the synthesis algorithm by successively strengthening and loosing
specifications, its feedback via the solution graph is a good guidance even during
the requirement engineering phase [2] (cf. Sec. 5).

The next section will give an overview of METAFrame, Section 3 presents the
synthesis component, Section 4 defines our specification language SLTL, and
Sections 5 and 6 illustrate the computer-aided synthesis of design plans.

2 The METAFrame Environment

METAFrame [15] is a meta-level framework designed to offer a sophisticated sup-
port for the systematic and structured computer aided generation of application-
specific complex objects from collections of reusable components. Special care
has been taken in the design of an intuitive specification language, of a user-
friendly graphical interface, of a hypertext based navigation and documentation
tool, and in the automation of the synthesis process (our planner).

This application-independent core is complemented by application-specific
libraries of components, which constitute the objects of the synthesis. The prin-
ciple of separating the component implementation from its description is sys-
tematically enforced: for each application we have a distinct meta-data reposi-
tory containing a logical view of the components, comprising information which
includes what shown in [4] (basically, a collection of module signatures and clas-
sification keywords), but also links to a rich documentation. This information

191

is accessible via hypertext. Components’ implementations and their documenta-
tion are available in different repositories. This organization offers a maximum
of flexibility since the synthesis core is independent of the direct physical avail-
ability of the tools and can work on a library including wvirtual components.

METAFrame [15] has been successfully used since 1995 both in-house, e.g. for
the construction of heterogenous analysis and verification algorithms {13], but
also in several joint projects with industrial partners (Siemens Nixdorf Munich
[16,14], Siemens AG, Telemedia-Bertelsmann, and the Springer Verlag [12]).

3 Synthesizing Plans in CAP-METAFrame

The novelty of our approach consists of introducing a declarative specification
layer, which is used for the construction of the desired plans according to global
properties guaranteeing executability, tool compatibility, and other consistency
conditions. Accordingly, CAP-METAFrame can be regarded as a global planner
where

~ the Repository contains a collection of basic reusable components which
are considered as atomic on this level. Components include elementary CAD
tools, but also transformation components to bridge the gap between differ-
ent representations or I/0 formats.

— Design Tasks are (combinations of) instantiated reusable components avail-
able in the repository, where instantiation means that multifunctional tools
are separately configured for each specific function.

— Specifications of design plans express constraints of admissible plans. They
may be input in a domain level formulation, which is automatically trans-
lated into a temporal logic, SLTL (see Section 4).

— Synthesized plans are hierarchically structured: design plans are them-
selves considered as {complex) design tasks on a higher level of the design
hierarchy. Plans are directly executable, as they are written in a high-level
programming language for the combination of complex component programs,
which may even be written in different programming languages.

Figure 1 illustrates the interplay of the CAP-METAFrame components during
the synthesis process. Given a design-plan specification, our system synthesizes
a graph representing the set of all, all minimal or all shortest tool compositions
satisfying the specification, which can be built on the basis of the underlying
repository. Each path is a design plan consistent with the specification. Pro-
posed tool compositions may differ in the techniques they use, their application
profiles, and, because of the potential looseness of specifications, in their overall
behaviour. This overview allows designers to choose their most appropriate de-
sign on the basis of a complete graphical description of all possibilities offered
by the underlying library of tools. Whereas global aspects of this collection are
represented in form of a graph, we rely on hypertext support for 1) the investiga-
tion of the characteristics of single tools and data structures, 2) information on

192

SLTL-Specification

Graph of
Design Plans

Repository of
Design Tools

Fig. 1. The METAFrame Design Plan Synthesis Process

the current state of the tool repository, and 3) the classification scheme (called
taxonomy) characterizing the application profile of each available tool.

Besides proposing the set of all successful plans, our system also provides
diagnostic information highlighting the reason of failure of other plans. We will
illustrate the features of our tool in Section 5 along the lines of the motivating
example for Cadweld [4]. This allows a direct comparison with the most similar
approach. A more detailed discussion of related work can be found in [1,13].

Our synthesis component works by model construction roughly along the lines
of [9]. In general global constraints lead to an exponential worst-case complexity,
which is not surprising for a global search problem. However, as confirmed by
our experience in a joint project with Siemens Nixdorf, typical specifications
consist of a number of well-defined subgoals which must be met successively.
These subgoals can be treated independently. Together with our limitation to
linear design plans, i.e., plans which only require sequential compositions of tools,
this leads to a good performance in practice. General compositions require user
interaction for treating branches and joins, as described in Section 6 for the
synthesis-based design plan editor.

Advanced data and project management features offered by object oriented
CAD frameworks as NELSIS or Cadweld, or the task management of Hercules
are orthogonal and could be integrated too.

4 The Metalevel Specification Language

Plans are generated by the synthesis component of METAFrame by determining
the set of solutions to specifications given in terms of global and local constraints.
These constraints can uniformly and elegantly be formulated within the tempo-
ral logic SLTL (Semantic Linear-Time Temporal Logic), which combines type,

193

i A R T T o e

[5 By — - —— |

| P N i :

5 £ P

o @

c WY & ——

Interpreter [S/ RE i R . S W - AT
tz:g;m {bes Graph Layout Oplions : Help
toading 171~ Description | @ movable

Loading ./l

=» | pr—

L
o -

cad_formats|

7 A

Fig. 2. Main Window and Type Taxonomy

module, and ordering constraints to a specification language with a coherent
semantics. Given an SLTL specification, all legal (design task) compositions sat-
isfying these constraints are synthesized.

CAD tools and algorithms are seen as transformations that take an input
and produce the corresponding output. Thus they can abstractly be described
as a triple (input-type, operation, output-type). There can be more than one
input/output combination for an operation, thus allowing polymorphism?.

Our goal is the specification and automatic synthesis of legal plans, i.e. of ex-
ecutable finite sequences of design tasks realizable within the underlying library.
Two tasks can be sequentially combined iff they are neighbours, i.e. the output
type of the first is compatible with the input type of the second. Legal plans are
simply sequential compositions of successively neighbouring design tasks.

A core issue is the abstract characterization of the tools and algorithms avail-
able in the library. Each of them has an associated abstract description in terms

2 Each combination can be seen as a separate design task, i.e. an instantiation of the
functionality of the tool.

194

|

OTFAXFUN
=i 3Tnsex

PR
Vo .ibﬁﬂ
® ST ST

; AN it g BRI, ST EROR B :uondusseq)

Fig. 3. Module Taxonomy and a Hypertext Card

195

of a taxonomic classification which establishes its application profile in terms of
properties. Figure 3 shows the module taxonomy used in the following sections as
presented by the hypertext system. It classifies the subset of tools available in the
library that is relevant for the example. A tazonomy is a directed acyclic graph.
Sinks represent concrete modules (labelled with the concrete tool names), which
are atomic entities in the taxonomy, and intermediate nodes represent groups,
i.e., sets of tools satisfying some basic property (expressed by predicates). Simi-
larly, we have a taxonomy on the input/output types induced by the tools. This
guarantees the flexible and efficient selectivity of the specifications and thus the
good algorithmic performance of the synthesis component. Figure 2 shows the
type taxonomy used in the example.

Our languages for expressing local constraints, capturing interfacing and sin-
gle tool specifications, and global constraints, restricting the ordering between
tools along a design plan, are presented in the next two paragraphs.

Local Constraints: The Static Aspect. Local constraints are the selection criteria
for single components, i.e., single design steps allowed to appear in the final plan.
They are based on the taxonomic classification of the repository components,
whose design is the crucial part of the METAFrame instantiation for a specific
application. We distinguish

~ Interface or Type constraints, which describe the ‘neighbourhood’ of single
elements of the repository in terms of type compatibility. They range over
the type taxonomy, and

—~ Module constraints, which restrict the set of legal elementary tools which
may appear in the design plan. They range over the module taxonomy.

Both forms of local constraints are formulated as simple propositional logic for-
mulas over the respective taxonomies, which are regarded as definitions of sets
of basic predicates (atoms). As an example, in the module taxonomy of Figure 3
the module constraint relative to placement tools

global and not robust

individuates the set { TimberWolfMC, TimberWolfSC.4, VPNR }, which are tools
for global placement that are not considered robust.
Similarly, in the type taxonomy of Figure 2 the type constraint

cadformats and hw.descr lang

returns the empty set, since none of the types classified under cad _formats is
also a hardware description language.

The task schemata approach in Hercules’'workflow management [1] captures
exactly local constraints. Information on functional and data dependencies be-
tween tools, there represented in a task schema, is found in CAP-METAFrame’s
module and type taxonomy. Hercules’ task schemata are stepwise constructed by
designers by means of successive Ezpansion and selection steps. (Type correct)
expansion is equivalent to a type constraint for an atomic type, which retrieves

196

all the neighbouring modules to a given one®. Selection corresponds to choosing
one of them, which is then included in the task schema. Plans are therefore
interactively constructed as type-correct successions of single modules.

The next paragraph describes the innovative features of our specification
language, which allow automatic construction of plans from global constraints.

Global Constraints: The Temporal Aspect. Global constraints are the innovative
feature of our planner. They allow users to specify a relative ordering between
(some of) the components that form a solution. Using a temporal logic as a
framework, we extend the two local kinds of specifications to an elegant and
uniform specification language for global constraints, which is defined as follows:

Definition 1 (SLTL).
The syntax of Semantic Linear-Time Temporal Logic (SLTL) is given by:

@ u=tt| type(te) | "B | PAP | <m> $ | GP | PUY
where ¢, and m, represent type and module constraints, respectively.

The logic can be regarded as a variant of PTL [9] or a linear-time variant of CTL
[5]- The predicate ‘semantic’ accounts for the fact that atomic propositions and
actions are interpreted over their own logics.

SLTL formulas are interpreted over the set of all finite legal design plans, i.e.
all the sequences of design tasks where the output type (signature) of each task
coincides with the input type (signature) of its successor. Intuitively,

— it (meaning true) is satisfied by every plan.

type(t.) is satisfied by every design plan whose first tool satisfies the type

constraint %..

Negation — and conjunction A are interpreted in the usual fashion.

— <m.> @ is satisfied by plans whose first module satisfies m, and whose con-
tinuation® satisfies $. In particular, <.> @ is satisfied by every plan whose
continuation satisfies &.

— G requires that & is satisfied for every suffix of the program composition.
As we are dealing with finite paths only, certain properties of this kind will
never hold. This operator is useful e.g. to express global type constraints: in
our setting G-bitmap excludes from the solution all the plans that feature
modules reading/generating data of type { tiff, jpeg, gif }

— PUV expresses that a property ¢ holds for all components of the plan, until
we reach a border position where the corresponding continuation satisfies a
property ¥. Note that $UV guarantees that the property ¥ holds eventually
(strong until). This is the most interesting construct of SLTL, since it allows
to specify different properties to be met by different portions of a plan.

3 An example for a user’s local constraint query in CAP-meta is contained in Section 5.
4 This continuation is simply the plan starting from the second module.

197

The last three operators are responsible for the global character of SLTL specifi-
cations. In particular, specifications can capture the interdependencies of neigh-
bouring design tasks by means of the < > operator, and of distant design tasks
by means of the U operator.

The on-line introduction of derived operators allows a modular and intu-
itive formulation of complex properties. In fact, as can be seen in Section 5, our
built-in macro facility allows intuitive domain level specifications. As examples
we introduce the dual operators

False : bij =g =it

Disjunction: ®VY¥ =g (- A -V¥)

Boz: me]® =g ~<me> (—P)
Eventually: F & =g G(-%) = U

Weak Until: @ WU ¥ =g (-0 U ~($ V ¥))
and convenient synonyms and derived operators which occur in the examples:

W=y PV U =y PAV
use & =4 Fo finally ¢ =4 F (3 A [

We give three further examples of constraints specified in SLTL:

1. <VPNR> ff
imposes all legal design plans to use the VPNR tool as last module®.

2. F(< place > tt)
This SLTL formula intuitively means: “place occurs eventually”, i.e. a place-
ment algorithm has to be used now or at a later design step.

3. Specification of a liveness property:
G ((<place>tt) = F(< show>it))
This SLTL formula intuitively means: “Whenever place occurs, then show
occurs at the same time or later”.

Note that users do not need to master the basic syntax of SLTL. They can define
their constraints by means of the simpler derived operators, like in the examples
of the next section.

Using a temporal logic like SLTL especially allows the formulation of incom-
plete (loose) specifications. In our setting this means in particular that SLTL
enables the specification of a partial order on design tasks. This possibility is
quite helpful, since there often exist situations where the order in which design
tasks have to be executed is not known or irrelevant. This situation is precisely
captured by the partial orders.

The next two sections illustrate the central features of our approach following
a user session for the development of a new, complex special-purpose design tool,
which we solve by synthesizing a corresponding design plan.

5 The continuation ffis in fact not satisfiable by any module.

198

5 Working with the Synthesis Component

To illustrate the ‘pure’ synthesis process sketched in Figure 1, we revisit the
Lassie task presented in [4] for the illustration of a user session with Cadweld.

The Lassie Task. In a context of ‘physical level’ design of VLSI chips, this task
automatically creates a data path for a partially specified design. The design is
partially specified since it is given as list of (functional) components, without any
information neither on the physical realization of each of them (this is contained
in a library within the framework) nor on the final spatial arrangement for the
final chip. These mappings are computationally very intensive, have to be carried
out in several steps with several tools, and their computational efficiency as well
as the quality of the resulting layout (placement of each single transistor and
of the necessary wirings) may vary greatly depending on the choice among the
available tools and among the algorithms offered by the tools. The ideal goal is
a fast computation of a compact layout with low power consumption from the
given gate-level netlist. In [4] the design task was described as follows:

The Lassie task uses a design that consists only of logical components and
their required connections and creates a VLSI chip with the appropriate inter-
connections completed. To achieve this, the Lassie task needs a design specified
in the DIF language® from which to start. It then determines the structural
binding between logical components and actual physical realizations. Lassie
then attempts a global place and route to determine where the parts of the
design should be placed in the final chip. Once this is done, the actual wires
are added to the design specification and the chip is transformed into its final
representation (here, CIF).

The remainder of this section presents the required ingredients and steps for the
treatment of this task.

The Repository. The required fragment of our repository is shown in Figures 2
and 3. It has been reconstructed from the data in [4], e.g., the number and
names of tools responding to a query, and has been added to our usual library
of tools and algorithms for analysis and verification of distributed systems (as
indicated e.g. by entries like verification.tools in the module taxonomy and
by similar entries in the type taxonomy}).

The taxonomic classification which defines groups over the atomic modules
is shown in Figure 3 as it is displayed by our hypertext system, together with
the card for the atom TimberWolfSC. Cards contain a concise textual description
(expandable to full documentation via hypertext links), which may also include
important warnings, links to examples of application and information about
the collocation in the taxonomy (here, the parent groups are listed). For the
atoms, the card also contains their input and output types, which serve as on-
line links to the type taxonomy. In this card the types are dif and gpc, an abstract

S DIF and CIF are standard hardware Interchange Formats.

199

type indicating that the global placement has been completed. Taxonomies can
reflect very different classification criteria: in the module taxonomy, not only the
functionality of the tools has been captured (by means of predicates like route,
place, cad_tools), but also the orthogonal robustness criterion, which plays an
important role in the development of this example.

The Specification. Already the formulation of the Lassie task shown in Figure 4
(middle) is understood by the system. The formula largely consists of the high-
lighted keywords contained in the plain text description above. This formula is
expanded in terms of primary SLTL operators to give

type(dif) A
F(bind A structure) A F(place Aglobal) A F route A
F(type(cif) A []f)

which is passed to the synthesis algorithm. Note the looseness of the formula: no
temporal constraints concern orderings between the modules. The only precise
requirements are to start with type dif and to terminate with type cif.

The Solution Space. Given this formula, the system returns the set of shortest
design plans in graph representation: every path from the start to the success
node in the graph of Figure 4(left) is a possible shortest (i.e. minimal length,
in terms of number of tools involved) solution to our synthesis problem. In the
solution graph, nodes represent modules (atoms) labelled by their name, and
edges are labelled by type information. The correct sequencing of the modules
along each path is ensured by type correctness. Solutions can be investigated by
means of the hypertext browser, which provides information about single mod-
ules and types as well as about the type and module taxonomies. The hypertext
system offers via a mouse click a card for each node or edge of the graph.

The Ezecution. All the proposed solutions are directly executable. In fact, each
path in the graph corresponds to a target program in our high-level program-
ming language, which is implemented in C++. In order to invoke a solution, its
corresponding path must be selected by means of the mouse. The system offers
the option for execution, as soon as the selection is unambiguous. Input required
during execution can either be typed in a pop-up window or loaded from a file.

In the original Cadweld session, only one of these plans could be constructed
at a time. Moreover, this happened “on the fly”, at design time. Unfortunately,
the constructed plan did not meet the expectations of the designer, since addi-
tional properties (e.g. the ‘robustness’ of the placement tools) were interactively
discovered to play a central role for a satisfactory completion of the task. That
meant interrupting the design after having already run the ‘wrong’ placement
tool, and trying to backtrack stepwise to an earlier (data safe and complete)
stage, from which to resume the design under stricter plan requirements.

This time and resource consuming backtracking can be completely avoided
if a global solution space is available, which is not the case in the common
CAD frameworks.

200

Fig. 4. Synthesis from the Original Specification

On the contrary, we have just shown that CAP-METAFrame offers the automatic
generation and visualization of such a global solution space. Underspecifications
are here easily detectable by inspection: domain experts may in fact notice that
continuations of global plans after some operation do not meet their intuitive
expectations. In this example a quick look at the proposed solutions lets a hard-
ware designer immediately discover that some of the placement tools appearing
there are not robust enough. Therefore the need for an additional requirement
to the design plan is immediately detected, prior to any erecution, and thus in
particular without any run-time backtracking.

Ezploring the Library. In our solution, looking at the graph of proposed design
plans, experienced designers may know that there are still more global placement
tools available in the library, and may ask METAFrame to show all of them via
the local constraint

use global

This local constraint is similar to the placement of a request on the blackboard of
a tool like Cadweld, or to asking for an expansion step in the course of construct-

201

ing a task schema in Hercules. The tools corresponding to this description are
the six shown in Figure 4(right). puppy did not appear in the previous solutions
because it only accepts the .oct input format, which requires a format conversion
via an additional translation step. Thus the design path through puppy would
be one step longer than the ones in Figure 4(left), thus not shortest. In order
to consider such plans we use the option for synthesis of minimal’ rather than
shortest solutions.

Modifying the Query. In the prototyping phase, the user approaches the desired
plan by successively refining or relaxing an initial (usually loose) specification
on the basis of some hypertext investigation, or experiments with automatically
generated prototypes.

Most additional requirements do not really need running the tools in order
to be discovered, but can be easily captured by a well-designed taxonomy and
by inspection of the cards of the tools appearing in the proposed solutions. As
an example, the warning in the description field relative to TimberWolfSC (see
Figure 3(right)) suffices to rule out any path through this tool in case CPU-
friendliness is important.

In the original Cadweld session it turned out that the previous specification
was still insufficient. It was necessary to (1) start from a .ALL file, and (2) addi-
tional constraints (e.g. robustness, one-dimensional placement) on the placement
tool emerged stepwise. The resulting layout (. CIF file) was also (3) wished to be
successively inspected via MAGIC or plotted via CPLOT. The availability of global
plans for inspection would have sufficed to spot the corresponding inadequacies,
without requiring any run-time information.

In our setting, this domain-level knowledge immediately leads to the new
specification of Figure 5. The result is shown in the same figure, this time af-
ter configuration of the synthesis algorithm in the minimal solutions mode. The
two leftmost solutions would have been found in the shortest path mode too,
however the solution through puppy is only minimal and not shortest. The three
paths to the failure node, highlighted on the screen, indicate failing attempts.
This indication has proved valuable for locating errors and to debug specifi-
cations without running the tools. E.g., although the module taxonomy shows
that TimberWolfSC_4 is even more robust than required, it fails to satisfy the
one-dimensional placement.

Note that solutions contain (necessary) modules which are not mentioned
in the loose specification. They are automatically introduced by the synthesis
algorithm as type correct (sequences of) modules which bridge gaps between
different parts of the specification. Here the globality of the constraints comes
into play. As an example, we are starting now with a .ALL file, but the binder
Sbind needs a .DIF input. A call to the SAW_Extractor tool is therefore appro-
priately introduced in the design plan as a necessary type transformer. If we
made extensive use of this completion feature, already the following, much more
concise specification

7 Minimal means that no sub-plan is a solution. It means in particular also cycle-free.

202

f!:_r,s A RS RS R 2

Graph Layout Options

dit ’ N

dif_2_oct TinberWolfne

TiabexVolfic_4

pe F?

\\“,\ Modal DB Query:
Magic type all,

H/u
slet | sagic
. o use (bind and structure),
lot use(place,global,robust,
one_dim),
use show after type cif

creen

1
| success

~ OK | Cancsl

o sl TN

Fig. 5. Synthesis with the Additional Constraints

type all, use (global, robust, one_dim), finally show

would deliver the same set of solutions in the given taxonomy.

The Compilation. Satisfactory plans can be made persistent through compilation
into a new module that can be saved in the repository for later reuse. Repository
updates are supported by the hypertext system by automatically associating
with each new module a new card, which by default contains appropriately
precomputed taxonomic criteria and a short textual description. These criteria
are generated by the system from the corresponding criteria of its components.
Thus the consistency of the taxonomies is automatically maintained. The user
only needs to provide a new name for the new component, then the repository
and taxonomies are updated automatically. Of course, the proposed content of
the new hypertext card can be modified interactively too.

6 A Synthesis-Based Interactive Editor

The good performance of our global synthesis procedure is due to its restriction
to linear compositions. More complex control structures glueing the linear por-

203

tions together must be realized by hand, as it is the case in all the other design
planning tools. Still, being able to synthesize linear plans improves drastically
over previous methods, where only single components can be retrieved from the
underlying repository along local criteria. The advantage of our method is al-
ready present if a designer is only interested in the functionality of single tools,
because our synthesis algorithm will automatically determine (linear composi-
tions of) required interfacing modules.

CAP-METAFrame can be regarded as a sophisticated editor for the interactive
composition of reusable design plans on the large to huge grain level, which
allows the automatic synthesis of the required linear portions. Altogether our

synthesis-based editor works in a three-step rhythm:

1. decompose the problem into non-linear context components and their linear
portions,

2. synthesize solutions to each linear subproblem along the lines of the previous
section. In this step interaction allows to successively refine the specifications
in order to obtain optimized solutions, and finally

3. construct the global implementation from the partial solutions synthesized
in the previous steps.

7 Perspectives

The experience with CAP-METAFrame is very promising: not only is it unique
in making available to the users an unprecedented wealth of possibilities, but
it also efficiently helps them in mastering the corresponding diversity according
to specific application profiles. This feature is essential in order to encourage
experimentation with the new generation of tools, which often lack acceptance
by practitioners because of their high complexities.

Our approach exactly meets the description expressed by Goguen and Lugi
in [6] for the emerging paradigm of Domain Specific Formal Methods, which
requires formal methods to be introduced also on a large or huge grain level, to
support programming with whole subroutines, modules and tools as elementary
building blocks. This is precisely what METAFrame is designed for. In our setting,
this is reflected in the application of formal methods as a powerful aid in the
coordination and combination of complex tasks, as in our synthesis of design
plans which organize complex tools along formally described criteria.

Key factor to the acceptance of our methods in the industrial environment
was, however, the incremental formalization approach [14] of METAFrame, rang-
ing from ‘no specification’, which results in the old-fashioned development style,
to ‘detailed specification’ with full tool support. This accounts for full compati-
bility with existing practice, and for offering (rather than demanding) a shift in
the accustomed habits of individual developers.

The same principles and algorithms underlying the design planning facility
of CAP-METAFrame are now being used as tool coordination engine in the Elec-
tronic Tool Integration platform (ETI) of the Springer Journal on Software Tools
Jor Technology Transfer [12].

204

Acknowledgement We are grateful to Andreas ClaBien for his constructive cooper-
ation in the design and implementation of CAP-METAFrame.

References

1.

2.

10.

11.
12.

13.

14.

15.

16.

17.

18.

J. Brockman, S. Director: “The Schema-Based Approach to Workflow manage-
ment’, IEEE Trans. on Comp.-Aided Design Vol.14(10), Oct. 1995, pp. 1257-1267.
M. von der Beeck, T. Margaria, B. Steffen: “A Formal Requirements Engineering
Method Combining Specification, Synthesis, and Verification,” Proc. IEEE SEE’97,
Cottbus (D), April 1997, IEEE Comp. Soc. Press, pp.131-144.

. M. Bushnell, S. Director: “ULYSSES - A knowledge based VLSI design environ-

ment’, Int. J. AI Eng., Vol.2, N.1, January 1987.

. J. Daniell, S. Director: “An Object Oriented Approach to CAD Tool C’ontrol ?

Trans. on Computer-Aided Design, Vol.10, N.6, June 1991, pp.698-713.

. A. Emerson, E. Clarke: “Using branching time temporal logic to synthesize syn-

chonization skeletons,” Sc. of Computer Progr., Vol.2, pp.241-266, 1982.

. J.A. Goguen, Luqi: “Formal Methods and Social Contexst in Software Develop-

ment,” Proc. TAPSOFT’95, Aarhus (DK), May 1995, LNCS N.915, pp.62-81.

. E. Johnson, J. Brockman: “Incorporating design schedule Management into a flow

management system”, Proc. 32nd ACM/IEEE DAC, June 1995.

. D. Knapp, A. Parker: “A design utility manager: the ADAM planning engine’,

Proc. DAC’86, IEEE, 1986, pp. 48-54.

. Z. Manna, P. Wolper: “Synthesis of Communicating Processes from Temporal Logic

Specifications,” ACM TOPLAS Vol.6, N.1, Jan. 1984, pp.68-93.

J. Miller, K. Groening, G. Schulz, C. White: “The object-oriented integration
methodology ogf the Cadlab workstation design environment’, Proc. ACM/IEEE
26th Design Automation Conference, 1989.

“Jessi Common Frame V2.0 - Desktop User’s Guide,” SNI AG, 1993.

B. Steffen, T. Margaria, V. Braun: The Electronic Tool Integration Platform: Con-
cepts and Design, Int. Jour. on Softw. Tools for Techn. Transfer, Vol.1, Springer V.,
Dec. 1997. See http://eti.cs.uni-dortmund.de for informations on this service.
B. Steffen, T. Margaria, A. Clafien: “Heterogeneous Analysis and Verification for
Distributed Systems”, Software: Concepts and Tools 17(1), pp.13-25, March 1996,
Springer Verl.

B. Steffen, T. Margaria, A. Claflen, V. Braun: “Incremental Formalization: a Key
to Industrial Success”, Software: Concepts and Tools 17(2), pp.78-91, Springer V.,
July 1996.

B. Steffen, T. Margaria, A. Claen, V. Braun: “The METAFrame’95 Environment”,
Proc. CAV’96, Aug. 1996, New Brunswick, NJ, USA, LNCS, Springer Verlag.

B. Steffen, T. Margaria, A. Claflen, V. Braun, M. Reitenspie: “An Environment
for the Creation of Intelligent Network Services”, in “The Advanced Intelligent
Network: A Comprehensive Report”, Int. Engin. Consort., Chicago, Dec. 1995.

P. van der Wolf, P. Bingley, P. Dewilde: “On the Architecture of a CAD Framework:
The NELSIS Approach,” Proc. EDAC’90, IEEE Comp. Soc. Press, pp.29-33.

P. van der Wolf, O. ten Bosch, A. van der Hoeven: “An enhanced flow model for con-
straint handling in hierarchical multi-view design environments”, Proc. ICCAD’94,
IEEE, Nov. 1994.

