
A u t o m a t e d  Formal Analysis  of Networks:  
F D R  Models  of Arbitrary Topologies  and 

Flow-Control  Mechanisms * 

JN Reed 1, DM Jackson 2, B Deianov 3, and GM Reed a 

1 Oxford Brooks University, Oxford, UK 
2 Praxis Critical Systems, Ltd, Bath, UK 

3 Cornell University, Ithaca, NY, USA 
4 Oxford University, Oxford, UK 

Abstract .  We present new techniques for formally modeling arbitrary 
network topologies and control-flow schemes, applicable to high-speed 
networks. A novel induction technique suitable for process algebraic, 
finite-state machine techniques is described which can be used to ver- 
ify end-to-end properties of certain arbitrarily configured networks. We 
also present a formal model of an algorithm for regulating burstiness 
of network traffic, which incorporates discrete timing constraints. Our 
models are presented in CSP with automatic verification by FDR. 

1 I n t r o d u c t i o n  

The dynamic nature and arbitrary configuration of advanced network environ- 
ments and network protocols make the problems of their design, control and 
analysis inherently complex. This is particularly the case where timeliness as 
well as correctness of service delivery is a priority. 

This paper presents elements of formal models of networks which capture 
various properties of resource-management and control-flow schemes, of special 
relevance for high-speed, multiservice networks. These models are analysed with 
FDR [FDR94,RGG95], a software package offered by Formal Systems (Europe) 
Ltd, which allows automatic checking of many properties of finite state systems 
and the interactive investigation of processes which fall these checks. It is based 
on the mathematical theory of Communicating Sequential Processes, developed 
at Oxford University and subsequently applied successfully in a number of in- 
dustrial applications. 

Previous CSP/FDR network applications primarily centre on protocols. These 
applications do not specifically address arbitrary network topologies nor rate- 
based, flow-control mechanisms for network traffic. In this paper we describe a 
novel induction technique which used in conjunction with hiding and renaming 
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can be used to establish properties of arbitrary network configurations. This 
technique would prove extremely valuable for verifying livelock and deadlock 
freedom for complex protocols exercised by arbitrary numbers of network nodes. 
We illustrate its applicability with an example patterned after the Resource 
reSerVation Protocol (RSVP) [ZDE93,BZB96], a protocol designed to support 
resource reservation for high-bandwidth multicast transmissions over IP net- 
works. 

We also formalise the leaky bucket algorithm, a scheme for regulating bursti- 
hess (variance of delay) of transmitted traffic at a network node. A key compo- 
nent in this model is a ticking clock capturing aspects of a discrete time model. 

2 F o r m a l  M o d e l s  o f  N e t w o r k  P r o t o c o l s  

CSP/FDR belong to the class of formalisms which combine programming lan- 
guages, and finite state machines. Two similar approaches standardised by ISO 
for specification and verification/validation of distributed services and protocols 
are LOTOS [ISOL] [wwwl] and Estelle [ISOE] [ftpe] These techniques are partic- 
ularly suited for modeling layered protocols, which has come to be a conventional 
approach for formalising computer networks. 

These layered protocols are structured as a fixed number of layers, each with 
fixed service interfaces. Correctness properties for a given layer typically take the 
form of an assumption of correct service from the immediate lower level in order 
to guarantee correct service to the immediate higher level. Properties of the entire 
"protocol stack" are established by chaining together the service specifications 
for the fixed number of intermediate layers, ultimately arriving at the service 
guaranteed by the highest level. The formal layered model naturally reflects 
the specification and implementation structure of these protocols as adopted 
by the network and communications community, such as the seven-layer OSI 
Reference Model developed by the International Standards Organisation. There 
are numerous examples of formalisations of layered protocols, including Ethernet: 
CSMA/CD (in non-automated TCSP [Davgl]) (in non-automated algebraic- 
temporal logic [Jma95]), TCP (in non-automated CSP [GJ94]), DSS1 / ISDN 
SS7 gateway (in LOTOS [LY93]), ISDN Layer 3 (in LOTOS [NM90]), ISDN 
Link Access Protocol (in Estelle [GPB91]), ATM signalling (in TLT, a temporal 
logic/UNITY formalism [BC95]). 

An essential feature of these approaches is that system correctness properties 
are specified in terms of a high-level black box, with a predetermined set of 
intermediate subcomponents. None of these examples incorporate an unspecified 
(nor even arbitrary but fixed) set of intermediate nodes. For example, a useful 
approach for verifying correctness of communication protocols suitable for me- 
chanical support is to prove that an implementation satisfies a variation of what 
is sometimes known as the C O P Y  property, whereby a message is passed by a 
"black box" process from a specific sender to a specific receiver. Examples include 
the alternating bit, sliding window, and multiplexed switches [PS91,FDR94]. In 
all of these examples the black box connecting the sender to the receiver is refined 



241 

by an implementation with a fixed number of subcomponents, each with a fixed 
interface (set of communication channels). 

An arbitrary network topology is modelled with action systems [But92] and 
extended in [Sin97]. The system consists of an (arbitrary but) fixed set of node 
pairs denoting pairwise channels, together with a complete, noncyclic set of 
routes. A correctness property analogous to Copy is straightforwardly established 
for the store and forward network. Such deductive-reasoning techniques are not 
possible for model-checkers such as FDR. 

3 C S P  a n d  F D R  

CSP [Hoa85] models a system as a process which interacts with its environment 
by means of atomic events. Communication is synchronous; that is, an event 
takes place precisely when both the process and environment agree on its occur- 
rence. CSP comprises a process-aigebraic programming language (see appendix), 
together with a related series of semantic models capturing different aspects of 
behaviour. A powerful notion of refinement intuitively captures the idea that 
one system implements another. Mechanical support for refinement checking is 
provided by Formal Systems' FDR refinement checker, which also checks for 
system properties such as deadlock or livelock. 

The simplest semantic model identifies a process as the sequences of events, 
or traces it can perform. We refer to such sequences as behaviours. More sophisti- 
cated models introduce additional information to behaviours which can be used 
to determine liveness properties of processes. 

We say that a process P is a refinement of process Q, written Q _ P, 
if any possible behaviour of P is also a possible behaviour of Q. Intuitively, 
suppose S (for "specification") is a process for which all behaviours are in some 
sense acceptable. If P refines S, then the same acceptability must apply to all 
behaviours of P. S can represent an idealised model of a system's behaviour, or 
an abstract property corresponding to a correctness constraint, such as deadlock 
freedom. 

The theory of refinement in CSP allows a wide range of correctness conditions 
to be encoded as refinement checks between processes. FDR performs a check 
by invoking a normalisation procedure for the specification process, which repre- 
sents the specification in a form where the implementation can be checked against 
it by simple model-checking techniques. When a refinement check fails, FDR 
provides the means to explore the way the error arose. The system provides the 
user with a description of the state of the implementation (and its subprocesses) 
at the point where the error was detected, as well as the sequence of events that 
lead to the error. The definitive sourcebook for CSP/FDR can now be found in 
[Ros97]. 

Unlike most packages of this type, FDR was specifically developed by Formal 
Systems for industrial applications, in the first instance at Inmos where it is 
used to develop and verify communications hardware (in the T9000 Transputer 
and the C104 routing chip). Existing applications include VLSI design, protocol 
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development and implementation, control, signalling, fault-tolerant systems and 
security. Although the underlying semantic models for FDR do not specifically 
address time (in contrast to Timed CSP formalism [RR86,TCSP92,KR93]), work 
has been carried out modeling discrete time with FDR [Sid93,Ros97]. A class of 
embedded real-time scheduler implementations [Jac96] is analysed with FDR by 
extracting numerical information from refinement checks to show not only that 
a timing requirement is satisfied, but also to determine the margin by which it 
is met. 

4 Properties of Arbitrarily Configured Networks 

Certain desirable network properties may not be expressible in terms of pre- 
determined numbers of nodes and interfaces. For example, we might wish to 
establish deadlock-livelock freedom for an end-to-end protocol which operates 
with an arbitrary number of intermediate nodes. We would therefore want to 
express models and properties in a topology dependent manner. To achieve this, 
we base our specification on single network nodes plus immediate neighbours, 
and inductively establish the property for arbitrary chains of such nodes. Further 
discussion of our inductive technique is given in [CR,Cre]. 

Suppose for a single node we can characterise the interface which a sender 
or routing node presents to the next node downstream by a property P. If we 
can demonstrate that under the assumption that all incoming interfaces satisfy 
P then so do all outgoing onees, we have established an inductive step which 
allows arbitrary acyclic graphs to be built up, always presenting an interface 
satisfying P to the nodes downstream. The essential base condition, of course, 
is that an individual data source meets P. The symmetric case starting with 
a property of a receiving node and building back towards a source is equally 
sound. The power of this proof strategy depends on the properties which can 
be proven of particular nodes, and the ability to structure a collection of nodes 
inductively with these nodes. Shankar [Shan] uses an induction scheme for PVS 
model checking for a shared memory algorithm for mutual exclusion, but to our 
knowledge there has been no published work addressing network protocols. 

II 
Fig. 1. Simple Induction Scheme 
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5 R S V P  a n d  C S P  M o d e l s  o f  R e s e r v a t i o n  P r o t o c o l s  

RSVP is a protocol for multicast resource reservation intended for IP based 
networks. The protocol addresses those requirements associated with a new 
generation of applications such as remote video, multimedia conferencing, and 
virtual reality, which are sensitive to the quality of service provided by the 
network. These applications depend on certain levels of resource (bandwidth, 
buffer space, etc.) allocation in order to operate acceptably. The RSVP approach 
is to create and maintain resource reservations along each link of a previously 
determined multicast route, with receivers initiating resource requests. This is 
analogous to a signalling phase prior to packet/cell transmission (such as found 
in ATM networks). 

The technical specification for RSVP as given by its developers appears 
as a working document of the Internet Engineering Task Force [BZB96]. The 
protocol assumes a multicast route, which may consist of multiple senders and 
receivers. RSVP messages carrying reservation requests originate at receivers 
and are passed upstream towards the senders. Along the way if any node rejects 
the reservation, a RSVP reject message is sent back to the receiver and the 
reservation message discarded; otherwise the reservation message is propagated 
as far as the closest point along the way to the sender where a reservation level 
greater than or equal to it has been made. Thus reservations become "merged" 
as they travel upstream; a node forwards upstream only the "maximum" request. 

Receivers can request confirmation messages to indicate that the request 
was (probably) successful. A successful reservation propagates upstream until 
it reaches a node where there is a (pending) smaller or equal request; the 
arriving request is then merged with the request in place and a confirmation sent 
back to the receiver. The receipt of this confirmation is thus a high-probability 
indication rather than a guarantee of a successful reservation. There is no easy 
way for a receiver to determine if the reservation is ultimately successful although 
enhancements involving control packets travelling downstream contain pertinent 
information to predict the result. 

Several interesting aspects emerge from the intuitive description of the RSVP 
protocol. The protocol is defined for arbitrary routing graphs consisting of several 
senders and receivers. Confirmations sent by intermediate nodes to receivers are 
ultimately valid only for the receiver making the largest request; i.e., a requester 
may receive a confirmation although subsequently the end-to-end reservations 
fails because of further upstream denial. Global views involving intermediate 
nodes, (e.g., successful reservations propagate upstream until there are pend- 
ing smaller or equal requests) present problems for building models consisting 
of predetermined sets of components. Clearly we are dealing with end-to-end 
properties inherently defined for arbitrary configurations of intermediate nodes. 

We note some interesting design decisions distinctive to RSVP but which 
are not explicit in [BZB96]. Acknowledgements returned to receivers are only a 
reflection of a full path back to the specified source for the receiver which has 
made the (globally) largest request - other receivers may receive acknowledge- 
ments when reservations are in place along part of the path. Acknowledgements 
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from different sources are considered independently: a receiver requesting an 
acknowledgement which is greater than any existing one will receive an acknowl- 
edgement from each data  source. Receivers making smaller reservations may 
receive acknowledgements from intermediate nodes or from sources, depending 
on the partial  ordering among requests. 

Extending RSVP to provide more exact information for sender/receiver pairs 
would involve algorithmic changes, including maintaining more state at inter- 
mediate nodes. An interesting technical consideration arises in the context of 
mechanical verification, where we might identify a hierarchy of approaches: if we 
maintain state for each reservation, then the system will be potentially infinite, 
as duplicate reservations must be counted; if we maintain confirmation state 
for only a single request for each interface, we lose the ability to provide exact 
acknowledgements. As a compromise, we maintain a record of the confirmed 
status of each unique request, and ignore duplicates. 

5.1 CSP Models for Reservation Protocols 

We build a general model of a network node, and inductively establish appropri- 
ate properties desirable from a receiver's perspective. We illustrate here a very 
simple model (immediate acknowledgements for previously accepted requests). 
Similar properties amenable to inductive argument but  requiring more complex 
models include automatic rejection of requests exceeding those previously re- 
jected upstream and filtering requests according to selected sources. 

The general communications convention used is that  a node has access to two 
channels, one upstream to toward the source, and another downstream towards 
the sender. We model resources as small integers and define a single type to 
distinguish acknowledgements from errors, and define internal channels to relay 
messages and implement a voting protocol. 

MAX_RESOUCE = 3 

RESOURCE = {0 . . MAX_RESOURCE} 

datatype RESULT = accept l reject 

datatype MESSAGE = request . RESOURCE 

I reply . RESOURCE . RESULT 

channel upstream, downstream: MESSAGE 

d a t a t y p e  I N T E R N A L  = m s g  . MESSAGE I 

s y n c  . RESOURCE t v o t e  . RESOURCE . R E S U L T  

cbA-~el internal : INTERNAL 

- PROTOCOL NODE: To avoid state explosion, a node is structured as a series 
of "slices" each maintaining one value of the resource. In practice this would be 
implemented by fewer processes sharing state. The "down" section of a node manages 
downstream communications with receivers. Each slice has a parameter v indicating 
which resource value it is concerned with, and maintains a current reservation state, 
and an idle flag which indicates if a request is pending. 
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DownSlice(curr, v, idle) = 

idle & downstream . request . v -> 

(if curt >= v 

then DownSlice(curr, v, false) 

else (internal . msg . request ! v -> DownSlice(curr, v, false) 

I'I 
downstream . reply ) v ! reject-> DownSlice(curr, v, true))) 

[] 
not idle and curr >= v & downstream . reply ! v ! accept -> 

DownSlice(currj v, true) 
[] 
internal . msg . reply .7 vv ! reject -> 

(if vv --= v and not idle 

then downstream . reply ! v ! reject -> DownSlice(curr, v, true) 

else DownSlice(curr, v, idle)) 
[] 

internal . roSE . reply .7 vv ! accept -> DownSlice(max(curr,vv), v, idle) 

- Requests which cannot be trivially satisfied are forwarded on the internal message 
channel. The whole receiver interface is a combination of such slices: 

Down -- ]I v: RESOURCE @ [{l internal . msg . reply , 

internal, msg. request, v, 
downstream, request, v, 

downstream.reply.v~ }] DownSlice (0, v, true) 

- The interface to a sender is similarly structured: In the RSVP wild-card model, 
it simply relays requests upstream and then votes on the returned status value. If a 
reservation succeeds, it will allow both synchronisation's to happen without intervening 
events. Otherwise, it will insist that  the rejection is recorded. Different upstream 
interfaces all synchronise on sync but  interleave on vote. 

UpSlice (v) -- 

internal . roSE . request . v-> upstream . request ! v-> 

upstream . reply . v 7 result -> internal . sync ) v -> 

if result == accept 

then internal . sync ! v -> UpSlice(v) 

else internal . vote ) v ! reject -> 

internal . sync ! v -> UpSlice(v) 

- Instantiation: 

Up = I] v: RESOURCE @ [{linternal . rasg . request.v, 

internal, vote. v, 

internal, sync.v, 

upstream, request, v, 

upstream, reply, v I }] UpSlice (v) 

- The final part of the node is a central co-ordinator which is responsible for 

monitoring the results of propagated requests and passing the resulting vote down to 
the receiver components. All upstream interfaces should register their vote on sync, 
with only rejecting also choosing to vote r e j e c t .  
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- T h i s r a t h e r  complex voting structureaccommodatesmult iple upstream interfaces; 
a downstream request is u~imatelyaccepted only if all upstream inteffacesaccept. 

Coord ina to rS l i ce (v )  ffi 
l e t  

Accept ffi i n t e r n a l  . s y n c  . v -> 
i n t e r n a l  . msg . r ep ly  ! v ! accept  -> 
Coord ina to rS l i ce (v )  

[] 
i n t e r n a l  . vote . v . r e j e c t  -> Rejec t  

R e j e c t  ffi i n t e r n a l  . s y n c  . v -> 
internal . msg . reply ! v ! reject -> 

CoordinatorSlice(v) 
[] 
internal . vote . v . reject -> Reject 

within internal . sync . v -> Accept 

- In this case there is no communication between co-ordinator slices. 

Coordinator = [[[ v : RESOURCE @ CoordinatorSlice(v) 

- The simplest possible node hasasingle  upstream andsingle downstream interface, 
and a coordinator (see Fig. 2): 

SimpleNode ffi ((Up 
[l{]internal.vote,internal.sync[}[] 

Coordinator \ {[internal.vote,internal.syncl}) 

[[~[internal[}[] 

Down \{[internal[>) 

Up . . . . .  i.~ffi~a 

'~r~"~ "'" "[~ reply I 

I Down I SimpleNode 

Fig.  2. Simple Node 

- The following specification for a receiver access point has two principle properties: 
acknowledgements are issued only for previously observed request values, and requests 
for values which have not yet been seen axe always accepted. 
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RA0 = 

let 
SPEC({}) = downstream.recluest?v -> SPEC({v}) 
SPEC (seen) = 

(downstream.request?v -> SPEC(union(seen,{v}))) 

I'I 
downstream, request?v: diff (RESOURCE, seen) -> 

SPEC (union (seen~ {v} ) ) 

I'I 
(I'I h : seen~ v: RESULT @ 

downstream . reply ! h ! v -> SPEC(seen)) 
within SPEC ({}) 

- The simplest specification that a sender must satisfy is that it must present an 
interface satisfies this condition; we achieve this by using RA0. We can then connect 
such an abstract source to a simple protocol node as follows: 

SimpleSystem = (RAO[[ downstream <- upstream ]] 
[I {lupstreaml} I] 
SimpleNode) \ {I upstream I} 

- This should preserve the RA0 property (see Figure 3): 

assert RA0 [FD= SimpleSystem 

V- tl 
Sim~l�9 Node 

Fig. 3. Receiver's perspective 

- To a d d  a second  receiver  interface,  we i n t roduce  a second d o w n s t r e a m  channe l ,  
a n d  a d d  a n  a p p r o p r i a t e l y  r e n a m e d  in ter face  process.  

channel down' : MESSAGE 
channel localreq : RESOURCE 
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- A new local request channel is introduced to allow requests from the two down- 
s tream channels to be interleaved. The i n t r n a l ,  msg. r e que s t  channel seen by the first 
down node (down') is renamed to l o c a l r e q  before it becomes hidden (and thus unavail- 
able to the second down node). Then this l o c s l r e q  is renamed back to in t e rna l  .msg.request 
in order to open it up to the second down node. This clever technique enables the 
synchronised parallel operator ([]  ]] ) with both synchronous ( i n t e r n a l . m s g . r e p l y )  
and asynchronous channels ( i n t e r n a l . m s g . r e q u e s t ) .  

DualNode = ((( (normal(((Up 
[l{linternal.vote,internal.syncl}l] 
Coordinator \ {linternal.vote,internal.syncl}) 

[[ internal.msg.request <- localreq, 
internal.msg.request <- internal.msg.request ]] 

[]{linternall}l] 
Down[[do,nstream <- down~]]) \ {linternal.msg.requestl}) 

[[ localreq <- internal.msg.request ]]) 
[l{linternal.msg.replyl}l] 

Down)) \ {]internall}) 

I ~ upstream Dual No& 

I up I 

 -,tl -41 
Fig .  4. Node with two downstream channels 

- Again we can add a pseudo-sender (see Figures 4 and 5). The system should 
present the same interface on both downstream and down': : 

DualSystem -- (RAO[[ downstream <- upstream ]] 
[l {lupstreaml} I] 
DualNode) \ {l upstream l} 

assert RAO IF= DualSystem \ {Idown' l} 
assert RAO[[downstream <- down']] [F= DualSystem \ {Idownstreaml} 

In the refinement above we employ the CSP hiding operator \ ,  bu t  a stronger 
criteria is obtained if we use lazy evaluation [Ros97]. The assertions i l lustrated in Fig 
5 inductively establishing properties for, in this instance, any network made up of nodes 
with downstream branching degree of two. Thus we can prove correctness for finite but  
unbounded topologies. 
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DualSys~m\{ ktown'l} 

RAO 

DualSystem~{ k~ownsue.aml 

//, ,  
1~0 

Fig. 5. Each downstream channel satisfies RA0 

6 Leaky Bucket 

Traffic congestion caused by burstiness of da ta  transmission presents problems for 
today 's  mult imedia networks, part icularly for video and audio which do not tolerate 
variable rates of flow well. One approach to congestion management in ATM networks 
is called traffic shaping, which a t tempts  to regulate the average rate and burstiness of 
network traffic. If senders agree to certain transmission patterns,  then the network can 
agree to provide a certain quality of service. Monitoring a traffic flow for conformance 
of transmission pat tern  is called traffic policing. 

The leaky bucket algorithm [Tur86] a t tempts  to regulate traffic burstiness at  a 
network node. I t  does not preclude buffer overflow nor guarantee an upper  bound on 
packet delay; but  with proper choice of bucket parameters,  overflow and delay can be 
reduced. 

Our model utilises an idiom introduced in [Ros97] which was applied very effec- 
tively to the verification of t iming requirements of a reai-time embedded scheduler 
[Jac96]. Passing of t ime is marked by a clock process synchronising with other system 
components. However because of CSP's  part icular t reatment  of internal events, care 
must be taken to prevent the system from diverging (livelocking). 

O v e r v i e w  o f  A l g o r i t h m  
This description is adapted from Tanenbanm [Tan96]. Imagine a bucket with ca- 

paci ty L which holds packets and leaks them at a given rate I when not empty  and 
rate  0 when empty. Arriving packets join the bucket if the bucket is not full and are 
marked conforming. If the bucket is full, arriving packets do not join and are marked 
as nonconforming. This mechanism can be used to smooth out burstiness to a more 
even flow. 

For example, assume tha t  we want to achieve a transmission rate of 2MB/sec, and 
assume tha t  da t a  is coming in at a rate of 25MB/sec for the first 40 msec of a 1 second 
period. If the bucket has capacity 1MB, and leaks packets at a rate of 2 MB/sec, then 
the described burst  of 1MB/sec is conforming. However an additional 25MB/sec over 
the next 10 msec would be marked as nonconforming. 

The first example below models a policing function using a leaky buffer. The second 
example contains an additional space controller which a t tempts  to smooth burstiness 
by buffering incoming cells. 

We outline a model indicated in Fig 7 of the Leaky-Bucket algorithm, with and 
without  a Space Controller. We omit the code for most of the components,  but  explicitly 
give tha t  for the crucial modules Space Controller and the Timer. 



250 

arriving packets 

L , l l , ,  I 

bucket leaks at a given rate 0 
0 
0 
Y 

if bucket is full, 
packets marked 

nonconforming 

if room packets join bucket 
and are marked 

conforming 

F 
Leaky Bucket parameters : 

size of bucket, 
rate of leak 

Fig .  6. Leaky Bucket 

k 
o u t  

Fig.  7. Leaky Bucket with Space Controller 

DATA = { 0 , 1 }  
c h a n n e l  i n , o u t , m , m l  : DATA 
c h a n n e l  c e l l , y e s , n o , e r r o r , t o c k , i d l e  

A tock event indicates that  one unit  of time has passed. A process performing the 
idle event will not change state until  some non-rock event takes place. BUFF(B) is a 
B place buffer. 

LB(I,L) models a leaky bucket with parameters I (agreed rate) and L (toler- 
ance/bucket size); it remembers the current value of the bucket. With each rock, when 
the bucket is not empty, leak one otherwise indicate that the bucket is idle. A cell event 
is non-conforming (output no) if the bucket is too full and conforming (yes) otherwise; 
put  I more in the bucket. The significance of a no event is that a non-conforming cell 
will cause the system to fall the specification. The bucket is initially empty. 

The UPC process simply relays out those cells which are nonconforming. It must 
always listen to tock events. 

A space controller with parameters I (release rate) and B (buffer size); s is the 
current contents of the buffer; t is the time since the last cell was released. If enough 
time has passed release the next cell - otherwise record the passage of time. The space 
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controller is idle only if its buffer has been empty for I units of time. If there is space 
in the buffer, store cells when they arrive - i f  not, release a cell even if it is too early, 
to prevent the buffer from overflowing. 

SC(I,B) = let 

SCl(s,t) = if t == 0 and not null(s) 

then ml!head(s) -> SCl(tail(s),I) 

else (tock -> if t > 0 

then SCl(s,t-l) 

else if null(s) 

then idle -> SCI(<>,O) 

else SCI(s,O)) 
[] 
(m?c -> if #s < B 

then SCl(s'<c>,t) 

else ml!head(s) -> SCl(tail(s)'<c>,I)) 

within SCl (<>,0) 

A transmit ter  process ST(I,B) inputs cells from the environment and puts  them 
into the  system, but  no more than B every I*B units of t ime (overall rate 1 every 
I tocks); it maintains a value b i t s  as a binary record of the last I*B+B events: a 
bit  is 1 if the event was a cell put  into the system, 0 if i t  was a tock; count is the  
number of l s  in bits. If  no cells have been t ransmi t ted  recently, the t ransmit ter  is idle 
- otherwise change the state with the passage of time. If no more than B cells have 
been t ransmi t ted  in the last B*I tocks t ransmit  the next cell and record that .  

The purpose of T IMER is to stop time when the system is idle - this stops the 
system from diverging as it can ' t  perform the tock event an infinite number of times 
without  engaging in external communication. N is the number of components in the 
system; M is the number of components that  are still not idle, when 0 t ime stops. An 
input  from the t imer wakes up the clock. Only allow the rock event if the system is not 
idle. 

TIMER(N) -- let 

TIMERI(M) -- M !-- 0 k (rock -> TIMERI(N) 
[] 
idle -> TIMER1 (M-l)) 

[] 
in?c -> TIMER1 (N) 

within TIMER1 (N) 

A c o m p l e t e  s y s t e m  ( w i t h o u t  s p a c e  c o n t r o l l e r )  with parameters  I1 (trans- 
mission rate),  B1 (burstiness), I2  (agreed rate),  L2 (bucket size/tolerance). 

SYS(I1 ,BI , I2 ,L2)  = (ST(I1,B1) [ l { Im , tock l } l ]  LB(I2,L2) \ { Iml})  
[l{lin,tock,idlel}l] 

T I ~ R ( 2 )  \ { I t o c k , i d l e J }  

A c o m p l e t e  s y s t e m  ( w i t h  s p a c e  c o n t r o l l e r ) .  Additional parameter:  B2 (space 
controller buffer size). 
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= ((ST(II,BI) []{im,tock]}]] 
SC(I2,B2) \ {Im[}) [l{[ml,tockl}[] 

LB(I2,L2) [[m <- ml]] \ {lmll}) 
[[{[in,tock,idlel}l] 
TIMER(3) \ {Itock,idlel} 

a s s e r t  BUFF(l) [FD= SYS(5,1,5,3) - -  C h e c k s  ! 

- Transmission is at agreed rate with equal delay between cells; all cells are con- 
forming. 

assert BUFF(2) [FD= SYS(5,3,5,8) -- Fails ! 

- Transmission at the agreed rate, but the traffic is bursty; the bucket is too small and 
the third cell is non-conforming. 

assert BUFF(3) [FD= SYSC(5,3,5,8,2) -- Checks ! 

- Same as above, but with a space controller; all cells are now conforming. 

assert BUFF(6) [FD= SYSC(4,1,5,8,5) -- Fails ! 

- Transmission is too fast and eventually both the buffer of the space controller and 
the leaky bucket overflow. 

7 Conclus ions  

We described an induction technique for proving properties of arbi t rary configu- 
rations of nodes. This technique was illustrated with RSVP, a resource reserva- 
tion protocol which is intended for and most naturally described using arbi t rary 
network topologies. Whilst unspecified topologies are straightforwardly han- 
dled by state-based formal methods such as action systems or Z, corresponding 
methods for automated model-checking approaches such as FDR have not been 
identified. Our contribution is to identify induction schemes which require no 
extension to the underlying theory, but  which have not been used in previous 
applications and rely on various "coding tricks" which have not been illustrated 
in previously published works. Such techniques would prove especially valuable 
for proving deadlock/livelock freedom for complex protocols among arbitrary 
numbers of nodes, provided that  we can model the protocol using an inductive 
structure. 

We have also presented an FDR model incorporating discrete time which is 
applied to the leaky bucket algorithm for traffic policing. FDR is not immediately 
associated with applications dealing with time, but the t reatment  of discrete time 
proves very effective in this case. 
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Appendix A. The CSP Language 

The CSP language is a means of describing components of systems, processes whose 
external  actions are the communication or refusal of instantaneous atomic events. All 
the part icipants  in an event must agree on its performance. The CSP processes tha t  
we use are constructed from the following (overview from [Jac96D: 

ST0P is the simplest CSP process; it never engages in any action, and never terminates.  
SKIP similarly never performs any action, but  instead terminates successfully, passing 

control to the next process in sequence (see ; below). 
a -> P is the most basic program constructor. I t  waits to perform the event a and 

after this has occurred subsequently behaves as process P. The same notat ion is 
used for outputs  ( c !v  -> P ) and inputs (c?x -> P(x) ) of values along named 
channels. 

P I - I  Q represents nondeterministic or internal choice. I t  may behave as P or Q arbi- 
trarily. 

P [3 Q represents external or deterministic choice. I t  will offer the initial actions 
of both  P and Q to its encironment at  first; its subsequent behaviousr is like 
P if the initial action chosen was possible only for P, and like Q if the action 
selected Q. If  both P and Q have common initial actions, its subsequent behaviour 
is nondeterministic (like I '1 ) .  A deterministic choice between ST0P and another 
process, ST0P [] P is identical to P. 

P ] [ A ] ] Q represents parallel (concurrent) composition. P and Q evolve separately, 
except tha t  events in A occur only when P and Q agree (i.e. synchronise) to perform 
them. 

P I I I  Q represents the interleaved parallel composition. P and Q evolve separately, 
and do not synchronize on their events. 

P ; Q is a sequential, rather than parallel, composition. I t  behaves as P until and unless 
P terminates successfully: its subsequent behaviour is tha t  of Q. 

P \ A is the  CSP abstraction or hiding operator. This process behaves as P except that  
events in set A are hidden from the environment and are solely determined by P; 
the environment can neither observe nor influence them. 

P [ [ a <- b ] ] represents the process P with a renamed to b. 

There are also straighforward generalisations of the choice operators over non-empty 
sets, wri t ten [ ' [  x:X @ P(x) and [] x:X @ P(x) .  


