
A u t o m a t e d Formal Analysis of Networks:
F D R Models of Arbitrary Topologies and

Flow-Control Mechanisms *

JN Reed 1, DM Jackson 2, B Deianov 3, and GM Reed a

1 Oxford Brooks University, Oxford, UK
2 Praxis Critical Systems, Ltd, Bath, UK

3 Cornell University, Ithaca, NY, USA
4 Oxford University, Oxford, UK

Abstract . We present new techniques for formally modeling arbitrary
network topologies and control-flow schemes, applicable to high-speed
networks. A novel induction technique suitable for process algebraic,
finite-state machine techniques is described which can be used to ver-
ify end-to-end properties of certain arbitrarily configured networks. We
also present a formal model of an algorithm for regulating burstiness
of network traffic, which incorporates discrete timing constraints. Our
models are presented in CSP with automatic verification by FDR.

1 I n t r o d u c t i o n

The dynamic nature and arbitrary configuration of advanced network environ-
ments and network protocols make the problems of their design, control and
analysis inherently complex. This is particularly the case where timeliness as
well as correctness of service delivery is a priority.

This paper presents elements of formal models of networks which capture
various properties of resource-management and control-flow schemes, of special
relevance for high-speed, multiservice networks. These models are analysed with
FDR [FDR94,RGG95], a software package offered by Formal Systems (Europe)
Ltd, which allows automatic checking of many properties of finite state systems
and the interactive investigation of processes which fall these checks. It is based
on the mathematical theory of Communicating Sequential Processes, developed
at Oxford University and subsequently applied successfully in a number of in-
dustrial applications.

Previous CSP/FDR network applications primarily centre on protocols. These
applications do not specifically address arbitrary network topologies nor rate-
based, flow-control mechanisms for network traffic. In this paper we describe a
novel induction technique which used in conjunction with hiding and renaming

* This work was supported by the US Office of Naval Research and a research grant
from Oxford Brookes University. Technical staff at Formal Systems (Europe) Ltd
provided valuable advice on the use of FDR.

240

can be used to establish properties of arbitrary network configurations. This
technique would prove extremely valuable for verifying livelock and deadlock
freedom for complex protocols exercised by arbitrary numbers of network nodes.
We illustrate its applicability with an example patterned after the Resource
reSerVation Protocol (RSVP) [ZDE93,BZB96], a protocol designed to support
resource reservation for high-bandwidth multicast transmissions over IP net-
works.

We also formalise the leaky bucket algorithm, a scheme for regulating bursti-
hess (variance of delay) of transmitted traffic at a network node. A key compo-
nent in this model is a ticking clock capturing aspects of a discrete time model.

2 F o r m a l M o d e l s o f N e t w o r k P r o t o c o l s

CSP/FDR belong to the class of formalisms which combine programming lan-
guages, and finite state machines. Two similar approaches standardised by ISO
for specification and verification/validation of distributed services and protocols
are LOTOS [ISOL] [wwwl] and Estelle [ISOE] [ftpe] These techniques are partic-
ularly suited for modeling layered protocols, which has come to be a conventional
approach for formalising computer networks.

These layered protocols are structured as a fixed number of layers, each with
fixed service interfaces. Correctness properties for a given layer typically take the
form of an assumption of correct service from the immediate lower level in order
to guarantee correct service to the immediate higher level. Properties of the entire
"protocol stack" are established by chaining together the service specifications
for the fixed number of intermediate layers, ultimately arriving at the service
guaranteed by the highest level. The formal layered model naturally reflects
the specification and implementation structure of these protocols as adopted
by the network and communications community, such as the seven-layer OSI
Reference Model developed by the International Standards Organisation. There
are numerous examples of formalisations of layered protocols, including Ethernet:
CSMA/CD (in non-automated TCSP [Davgl]) (in non-automated algebraic-
temporal logic [Jma95]), TCP (in non-automated CSP [GJ94]), DSS1 / ISDN
SS7 gateway (in LOTOS [LY93]), ISDN Layer 3 (in LOTOS [NM90]), ISDN
Link Access Protocol (in Estelle [GPB91]), ATM signalling (in TLT, a temporal
logic/UNITY formalism [BC95]).

An essential feature of these approaches is that system correctness properties
are specified in terms of a high-level black box, with a predetermined set of
intermediate subcomponents. None of these examples incorporate an unspecified
(nor even arbitrary but fixed) set of intermediate nodes. For example, a useful
approach for verifying correctness of communication protocols suitable for me-
chanical support is to prove that an implementation satisfies a variation of what
is sometimes known as the C O P Y property, whereby a message is passed by a
"black box" process from a specific sender to a specific receiver. Examples include
the alternating bit, sliding window, and multiplexed switches [PS91,FDR94]. In
all of these examples the black box connecting the sender to the receiver is refined

241

by an implementation with a fixed number of subcomponents, each with a fixed
interface (set of communication channels).

An arbitrary network topology is modelled with action systems [But92] and
extended in [Sin97]. The system consists of an (arbitrary but) fixed set of node
pairs denoting pairwise channels, together with a complete, noncyclic set of
routes. A correctness property analogous to Copy is straightforwardly established
for the store and forward network. Such deductive-reasoning techniques are not
possible for model-checkers such as FDR.

3 C S P a n d F D R

CSP [Hoa85] models a system as a process which interacts with its environment
by means of atomic events. Communication is synchronous; that is, an event
takes place precisely when both the process and environment agree on its occur-
rence. CSP comprises a process-aigebraic programming language (see appendix),
together with a related series of semantic models capturing different aspects of
behaviour. A powerful notion of refinement intuitively captures the idea that
one system implements another. Mechanical support for refinement checking is
provided by Formal Systems' FDR refinement checker, which also checks for
system properties such as deadlock or livelock.

The simplest semantic model identifies a process as the sequences of events,
or traces it can perform. We refer to such sequences as behaviours. More sophisti-
cated models introduce additional information to behaviours which can be used
to determine liveness properties of processes.

We say that a process P is a refinement of process Q, written Q _ P,
if any possible behaviour of P is also a possible behaviour of Q. Intuitively,
suppose S (for "specification") is a process for which all behaviours are in some
sense acceptable. If P refines S, then the same acceptability must apply to all
behaviours of P. S can represent an idealised model of a system's behaviour, or
an abstract property corresponding to a correctness constraint, such as deadlock
freedom.

The theory of refinement in CSP allows a wide range of correctness conditions
to be encoded as refinement checks between processes. FDR performs a check
by invoking a normalisation procedure for the specification process, which repre-
sents the specification in a form where the implementation can be checked against
it by simple model-checking techniques. When a refinement check fails, FDR
provides the means to explore the way the error arose. The system provides the
user with a description of the state of the implementation (and its subprocesses)
at the point where the error was detected, as well as the sequence of events that
lead to the error. The definitive sourcebook for CSP/FDR can now be found in
[Ros97].

Unlike most packages of this type, FDR was specifically developed by Formal
Systems for industrial applications, in the first instance at Inmos where it is
used to develop and verify communications hardware (in the T9000 Transputer
and the C104 routing chip). Existing applications include VLSI design, protocol

242

development and implementation, control, signalling, fault-tolerant systems and
security. Although the underlying semantic models for FDR do not specifically
address time (in contrast to Timed CSP formalism [RR86,TCSP92,KR93]), work
has been carried out modeling discrete time with FDR [Sid93,Ros97]. A class of
embedded real-time scheduler implementations [Jac96] is analysed with FDR by
extracting numerical information from refinement checks to show not only that
a timing requirement is satisfied, but also to determine the margin by which it
is met.

4 Properties of Arbitrarily Configured Networks

Certain desirable network properties may not be expressible in terms of pre-
determined numbers of nodes and interfaces. For example, we might wish to
establish deadlock-livelock freedom for an end-to-end protocol which operates
with an arbitrary number of intermediate nodes. We would therefore want to
express models and properties in a topology dependent manner. To achieve this,
we base our specification on single network nodes plus immediate neighbours,
and inductively establish the property for arbitrary chains of such nodes. Further
discussion of our inductive technique is given in [CR,Cre].

Suppose for a single node we can characterise the interface which a sender
or routing node presents to the next node downstream by a property P. If we
can demonstrate that under the assumption that all incoming interfaces satisfy
P then so do all outgoing onees, we have established an inductive step which
allows arbitrary acyclic graphs to be built up, always presenting an interface
satisfying P to the nodes downstream. The essential base condition, of course,
is that an individual data source meets P. The symmetric case starting with
a property of a receiving node and building back towards a source is equally
sound. The power of this proof strategy depends on the properties which can
be proven of particular nodes, and the ability to structure a collection of nodes
inductively with these nodes. Shankar [Shan] uses an induction scheme for PVS
model checking for a shared memory algorithm for mutual exclusion, but to our
knowledge there has been no published work addressing network protocols.

II
Fig. 1. Simple Induction Scheme

243

5 R S V P a n d C S P M o d e l s o f R e s e r v a t i o n P r o t o c o l s

RSVP is a protocol for multicast resource reservation intended for IP based
networks. The protocol addresses those requirements associated with a new
generation of applications such as remote video, multimedia conferencing, and
virtual reality, which are sensitive to the quality of service provided by the
network. These applications depend on certain levels of resource (bandwidth,
buffer space, etc.) allocation in order to operate acceptably. The RSVP approach
is to create and maintain resource reservations along each link of a previously
determined multicast route, with receivers initiating resource requests. This is
analogous to a signalling phase prior to packet/cell transmission (such as found
in ATM networks).

The technical specification for RSVP as given by its developers appears
as a working document of the Internet Engineering Task Force [BZB96]. The
protocol assumes a multicast route, which may consist of multiple senders and
receivers. RSVP messages carrying reservation requests originate at receivers
and are passed upstream towards the senders. Along the way if any node rejects
the reservation, a RSVP reject message is sent back to the receiver and the
reservation message discarded; otherwise the reservation message is propagated
as far as the closest point along the way to the sender where a reservation level
greater than or equal to it has been made. Thus reservations become "merged"
as they travel upstream; a node forwards upstream only the "maximum" request.

Receivers can request confirmation messages to indicate that the request
was (probably) successful. A successful reservation propagates upstream until
it reaches a node where there is a (pending) smaller or equal request; the
arriving request is then merged with the request in place and a confirmation sent
back to the receiver. The receipt of this confirmation is thus a high-probability
indication rather than a guarantee of a successful reservation. There is no easy
way for a receiver to determine if the reservation is ultimately successful although
enhancements involving control packets travelling downstream contain pertinent
information to predict the result.

Several interesting aspects emerge from the intuitive description of the RSVP
protocol. The protocol is defined for arbitrary routing graphs consisting of several
senders and receivers. Confirmations sent by intermediate nodes to receivers are
ultimately valid only for the receiver making the largest request; i.e., a requester
may receive a confirmation although subsequently the end-to-end reservations
fails because of further upstream denial. Global views involving intermediate
nodes, (e.g., successful reservations propagate upstream until there are pend-
ing smaller or equal requests) present problems for building models consisting
of predetermined sets of components. Clearly we are dealing with end-to-end
properties inherently defined for arbitrary configurations of intermediate nodes.

We note some interesting design decisions distinctive to RSVP but which
are not explicit in [BZB96]. Acknowledgements returned to receivers are only a
reflection of a full path back to the specified source for the receiver which has
made the (globally) largest request - other receivers may receive acknowledge-
ments when reservations are in place along part of the path. Acknowledgements

244

from different sources are considered independently: a receiver requesting an
acknowledgement which is greater than any existing one will receive an acknowl-
edgement from each data source. Receivers making smaller reservations may
receive acknowledgements from intermediate nodes or from sources, depending
on the partial ordering among requests.

Extending RSVP to provide more exact information for sender/receiver pairs
would involve algorithmic changes, including maintaining more state at inter-
mediate nodes. An interesting technical consideration arises in the context of
mechanical verification, where we might identify a hierarchy of approaches: if we
maintain state for each reservation, then the system will be potentially infinite,
as duplicate reservations must be counted; if we maintain confirmation state
for only a single request for each interface, we lose the ability to provide exact
acknowledgements. As a compromise, we maintain a record of the confirmed
status of each unique request, and ignore duplicates.

5.1 CSP Models for Reservation Protocols

We build a general model of a network node, and inductively establish appropri-
ate properties desirable from a receiver's perspective. We illustrate here a very
simple model (immediate acknowledgements for previously accepted requests).
Similar properties amenable to inductive argument but requiring more complex
models include automatic rejection of requests exceeding those previously re-
jected upstream and filtering requests according to selected sources.

The general communications convention used is that a node has access to two
channels, one upstream to toward the source, and another downstream towards
the sender. We model resources as small integers and define a single type to
distinguish acknowledgements from errors, and define internal channels to relay
messages and implement a voting protocol.

MAX_RESOUCE = 3

RESOURCE = {0 . . MAX_RESOURCE}

datatype RESULT = accept l reject

datatype MESSAGE = request . RESOURCE

I reply . RESOURCE . RESULT

channel upstream, downstream: MESSAGE

d a t a t y p e I N T E R N A L = m s g . MESSAGE I

s y n c . RESOURCE t v o t e . RESOURCE . R E S U L T

cbA-~el internal : INTERNAL

- PROTOCOL NODE: To avoid state explosion, a node is structured as a series
of "slices" each maintaining one value of the resource. In practice this would be
implemented by fewer processes sharing state. The "down" section of a node manages
downstream communications with receivers. Each slice has a parameter v indicating
which resource value it is concerned with, and maintains a current reservation state,
and an idle flag which indicates if a request is pending.

245

DownSlice(curr, v, idle) =

idle & downstream . request . v ->

(if curt >= v

then DownSlice(curr, v, false)

else (internal . msg . request ! v -> DownSlice(curr, v, false)

I'I
downstream . reply) v ! reject-> DownSlice(curr, v, true)))

[]
not idle and curr >= v & downstream . reply ! v ! accept ->

DownSlice(currj v, true)
[]
internal . msg . reply .7 vv ! reject ->

(if vv --= v and not idle

then downstream . reply ! v ! reject -> DownSlice(curr, v, true)

else DownSlice(curr, v, idle))
[]

internal . roSE . reply .7 vv ! accept -> DownSlice(max(curr,vv), v, idle)

- Requests which cannot be trivially satisfied are forwarded on the internal message
channel. The whole receiver interface is a combination of such slices:

Down --]I v: RESOURCE @ [{l internal . msg . reply ,

internal, msg. request, v,
downstream, request, v,

downstream.reply.v~ }] DownSlice (0, v, true)

- The interface to a sender is similarly structured: In the RSVP wild-card model,
it simply relays requests upstream and then votes on the returned status value. If a
reservation succeeds, it will allow both synchronisation's to happen without intervening
events. Otherwise, it will insist that the rejection is recorded. Different upstream
interfaces all synchronise on sync but interleave on vote.

UpSlice (v) --

internal . roSE . request . v-> upstream . request ! v->

upstream . reply . v 7 result -> internal . sync) v ->

if result == accept

then internal . sync ! v -> UpSlice(v)

else internal . vote) v ! reject ->

internal . sync ! v -> UpSlice(v)

- Instantiation:

Up = I] v: RESOURCE @ [{linternal . rasg . request.v,

internal, vote. v,

internal, sync.v,

upstream, request, v,

upstream, reply, v I }] UpSlice (v)

- The final part of the node is a central co-ordinator which is responsible for

monitoring the results of propagated requests and passing the resulting vote down to
the receiver components. All upstream interfaces should register their vote on sync,
with only rejecting also choosing to vote r e j e c t .

2 4 6

- T h i s r a t h e r complex voting structureaccommodatesmult iple upstream interfaces;
a downstream request is u~imatelyaccepted only if all upstream inteffacesaccept.

Coord ina to rS l i ce (v) ffi
l e t

Accept ffi i n t e r n a l . s y n c . v ->
i n t e r n a l . msg . r ep ly ! v ! accept ->
Coord ina to rS l i ce (v)

[]
i n t e r n a l . vote . v . r e j e c t -> Rejec t

R e j e c t ffi i n t e r n a l . s y n c . v ->
internal . msg . reply ! v ! reject ->

CoordinatorSlice(v)
[]
internal . vote . v . reject -> Reject

within internal . sync . v -> Accept

- In this case there is no communication between co-ordinator slices.

Coordinator = [[[v : RESOURCE @ CoordinatorSlice(v)

- The simplest possible node hasasingle upstream andsingle downstream interface,
and a coordinator (see Fig. 2):

SimpleNode ffi ((Up
[l{]internal.vote,internal.sync[}[]

Coordinator \ {[internal.vote,internal.syncl})

[[~[internal[}[]

Down \{[internal[>)

Up i.~ffi~a

'~r~"~ "'" "[~ reply I

I Down I SimpleNode

Fig. 2. Simple Node

- The following specification for a receiver access point has two principle properties:
acknowledgements are issued only for previously observed request values, and requests
for values which have not yet been seen axe always accepted.

247

RA0 =

let
SPEC({}) = downstream.recluest?v -> SPEC({v})
SPEC (seen) =

(downstream.request?v -> SPEC(union(seen,{v})))

I'I
downstream, request?v: diff (RESOURCE, seen) ->

SPEC (union (seen~ {v}))

I'I
(I'I h : seen~ v: RESULT @

downstream . reply ! h ! v -> SPEC(seen))
within SPEC ({})

- The simplest specification that a sender must satisfy is that it must present an
interface satisfies this condition; we achieve this by using RA0. We can then connect
such an abstract source to a simple protocol node as follows:

SimpleSystem = (RAO[[downstream <- upstream]]
[I {lupstreaml} I]
SimpleNode) \ {I upstream I}

- This should preserve the RA0 property (see Figure 3):

assert RA0 [FD= SimpleSystem

V- tl
Sim~l�9 Node

Fig. 3. Receiver's perspective

- To a d d a second receiver interface, we i n t roduce a second d o w n s t r e a m channe l ,
a n d a d d a n a p p r o p r i a t e l y r e n a m e d in ter face process.

channel down' : MESSAGE
channel localreq : RESOURCE

248

- A new local request channel is introduced to allow requests from the two down-
s tream channels to be interleaved. The i n t r n a l , msg. r e que s t channel seen by the first
down node (down') is renamed to l o c a l r e q before it becomes hidden (and thus unavail-
able to the second down node). Then this l o c s l r e q is renamed back to in t e rna l .msg.request
in order to open it up to the second down node. This clever technique enables the
synchronised parallel operator ([]]]) with both synchronous (i n t e r n a l . m s g . r e p l y)
and asynchronous channels (i n t e r n a l . m s g . r e q u e s t) .

DualNode = ((((normal(((Up
[l{linternal.vote,internal.syncl}l]
Coordinator \ {linternal.vote,internal.syncl})

[[internal.msg.request <- localreq,
internal.msg.request <- internal.msg.request]]

[]{linternall}l]
Down[[do,nstream <- down~]]) \ {linternal.msg.requestl})

[[localreq <- internal.msg.request]])
[l{linternal.msg.replyl}l]

Down)) \ {]internall})

I ~ upstream Dual No&

I up I

 -,tl -41
Fig . 4. Node with two downstream channels

- Again we can add a pseudo-sender (see Figures 4 and 5). The system should
present the same interface on both downstream and down': :

DualSystem -- (RAO[[downstream <- upstream]]
[l {lupstreaml} I]
DualNode) \ {l upstream l}

assert RAO IF= DualSystem \ {Idown' l}
assert RAO[[downstream <- down']] [F= DualSystem \ {Idownstreaml}

In the refinement above we employ the CSP hiding operator \ , bu t a stronger
criteria is obtained if we use lazy evaluation [Ros97]. The assertions i l lustrated in Fig
5 inductively establishing properties for, in this instance, any network made up of nodes
with downstream branching degree of two. Thus we can prove correctness for finite but
unbounded topologies.

249

DualSys~m\{ ktown'l}

RAO

DualSystem~{ k~ownsue.aml

//, ,
1~0

Fig. 5. Each downstream channel satisfies RA0

6 Leaky Bucket

Traffic congestion caused by burstiness of da ta transmission presents problems for
today 's mult imedia networks, part icularly for video and audio which do not tolerate
variable rates of flow well. One approach to congestion management in ATM networks
is called traffic shaping, which a t tempts to regulate the average rate and burstiness of
network traffic. If senders agree to certain transmission patterns, then the network can
agree to provide a certain quality of service. Monitoring a traffic flow for conformance
of transmission pat tern is called traffic policing.

The leaky bucket algorithm [Tur86] a t tempts to regulate traffic burstiness at a
network node. I t does not preclude buffer overflow nor guarantee an upper bound on
packet delay; but with proper choice of bucket parameters, overflow and delay can be
reduced.

Our model utilises an idiom introduced in [Ros97] which was applied very effec-
tively to the verification of t iming requirements of a reai-time embedded scheduler
[Jac96]. Passing of t ime is marked by a clock process synchronising with other system
components. However because of CSP's part icular t reatment of internal events, care
must be taken to prevent the system from diverging (livelocking).

O v e r v i e w o f A l g o r i t h m
This description is adapted from Tanenbanm [Tan96]. Imagine a bucket with ca-

paci ty L which holds packets and leaks them at a given rate I when not empty and
rate 0 when empty. Arriving packets join the bucket if the bucket is not full and are
marked conforming. If the bucket is full, arriving packets do not join and are marked
as nonconforming. This mechanism can be used to smooth out burstiness to a more
even flow.

For example, assume tha t we want to achieve a transmission rate of 2MB/sec, and
assume tha t da t a is coming in at a rate of 25MB/sec for the first 40 msec of a 1 second
period. If the bucket has capacity 1MB, and leaks packets at a rate of 2 MB/sec, then
the described burst of 1MB/sec is conforming. However an additional 25MB/sec over
the next 10 msec would be marked as nonconforming.

The first example below models a policing function using a leaky buffer. The second
example contains an additional space controller which a t tempts to smooth burstiness
by buffering incoming cells.

We outline a model indicated in Fig 7 of the Leaky-Bucket algorithm, with and
without a Space Controller. We omit the code for most of the components, but explicitly
give tha t for the crucial modules Space Controller and the Timer.

250

arriving packets

L , l l , , I

bucket leaks at a given rate 0
0
0
Y

if bucket is full,
packets marked

nonconforming

if room packets join bucket
and are marked

conforming

F
Leaky Bucket parameters :

size of bucket,
rate of leak

Fig . 6. Leaky Bucket

k
o u t

Fig. 7. Leaky Bucket with Space Controller

DATA = { 0 , 1 }
c h a n n e l i n , o u t , m , m l : DATA
c h a n n e l c e l l , y e s , n o , e r r o r , t o c k , i d l e

A tock event indicates that one unit of time has passed. A process performing the
idle event will not change state until some non-rock event takes place. BUFF(B) is a
B place buffer.

LB(I,L) models a leaky bucket with parameters I (agreed rate) and L (toler-
ance/bucket size); it remembers the current value of the bucket. With each rock, when
the bucket is not empty, leak one otherwise indicate that the bucket is idle. A cell event
is non-conforming (output no) if the bucket is too full and conforming (yes) otherwise;
put I more in the bucket. The significance of a no event is that a non-conforming cell
will cause the system to fall the specification. The bucket is initially empty.

The UPC process simply relays out those cells which are nonconforming. It must
always listen to tock events.

A space controller with parameters I (release rate) and B (buffer size); s is the
current contents of the buffer; t is the time since the last cell was released. If enough
time has passed release the next cell - otherwise record the passage of time. The space

251

controller is idle only if its buffer has been empty for I units of time. If there is space
in the buffer, store cells when they arrive - i f not, release a cell even if it is too early,
to prevent the buffer from overflowing.

SC(I,B) = let

SCl(s,t) = if t == 0 and not null(s)

then ml!head(s) -> SCl(tail(s),I)

else (tock -> if t > 0

then SCl(s,t-l)

else if null(s)

then idle -> SCI(<>,O)

else SCI(s,O))
[]
(m?c -> if #s < B

then SCl(s'<c>,t)

else ml!head(s) -> SCl(tail(s)'<c>,I))

within SCl (<>,0)

A transmit ter process ST(I,B) inputs cells from the environment and puts them
into the system, but no more than B every I*B units of t ime (overall rate 1 every
I tocks); it maintains a value b i t s as a binary record of the last I*B+B events: a
bit is 1 if the event was a cell put into the system, 0 if i t was a tock; count is the
number of l s in bits. If no cells have been t ransmi t ted recently, the t ransmit ter is idle
- otherwise change the state with the passage of time. If no more than B cells have
been t ransmi t ted in the last B*I tocks t ransmit the next cell and record that .

The purpose of T IMER is to stop time when the system is idle - this stops the
system from diverging as it can ' t perform the tock event an infinite number of times
without engaging in external communication. N is the number of components in the
system; M is the number of components that are still not idle, when 0 t ime stops. An
input from the t imer wakes up the clock. Only allow the rock event if the system is not
idle.

TIMER(N) -- let

TIMERI(M) -- M !-- 0 k (rock -> TIMERI(N)
[]
idle -> TIMER1 (M-l))

[]
in?c -> TIMER1 (N)

within TIMER1 (N)

A c o m p l e t e s y s t e m (w i t h o u t s p a c e c o n t r o l l e r) with parameters I1 (trans-
mission rate), B1 (burstiness), I2 (agreed rate), L2 (bucket size/tolerance).

SYS(I1 ,BI , I2 ,L2) = (ST(I1,B1) [l { Im , tock l } l] LB(I2,L2) \ { Iml})
[l{lin,tock,idlel}l]

T I ~ R (2) \ { I t o c k , i d l e J }

A c o m p l e t e s y s t e m (w i t h s p a c e c o n t r o l l e r) . Additional parameter: B2 (space
controller buffer size).

S Y S C (I i , B I , I 2 , L 2 , B 2)

252

= ((ST(II,BI) []{im,tock]}]]
SC(I2,B2) \ {Im[}) [l{[ml,tockl}[]

LB(I2,L2) [[m <- ml]] \ {lmll})
[[{[in,tock,idlel}l]
TIMER(3) \ {Itock,idlel}

a s s e r t BUFF(l) [FD= SYS(5,1,5,3) - - C h e c k s !

- Transmission is at agreed rate with equal delay between cells; all cells are con-
forming.

assert BUFF(2) [FD= SYS(5,3,5,8) -- Fails !

- Transmission at the agreed rate, but the traffic is bursty; the bucket is too small and
the third cell is non-conforming.

assert BUFF(3) [FD= SYSC(5,3,5,8,2) -- Checks !

- Same as above, but with a space controller; all cells are now conforming.

assert BUFF(6) [FD= SYSC(4,1,5,8,5) -- Fails !

- Transmission is too fast and eventually both the buffer of the space controller and
the leaky bucket overflow.

7 Conclus ions

We described an induction technique for proving properties of arbi t rary configu-
rations of nodes. This technique was illustrated with RSVP, a resource reserva-
tion protocol which is intended for and most naturally described using arbi t rary
network topologies. Whilst unspecified topologies are straightforwardly han-
dled by state-based formal methods such as action systems or Z, corresponding
methods for automated model-checking approaches such as FDR have not been
identified. Our contribution is to identify induction schemes which require no
extension to the underlying theory, but which have not been used in previous
applications and rely on various "coding tricks" which have not been illustrated
in previously published works. Such techniques would prove especially valuable
for proving deadlock/livelock freedom for complex protocols among arbitrary
numbers of nodes, provided that we can model the protocol using an inductive
structure.

We have also presented an FDR model incorporating discrete time which is
applied to the leaky bucket algorithm for traffic policing. FDR is not immediately
associated with applications dealing with time, but the t reatment of discrete time
proves very effective in this case.

References

[BC95] D Barnard and Simon Crosby, The Specification and Verification of an
Experimental ATM Signalling Protocol, Proc. IFIP WG6.1 International
Symposium on Protocol Specification, Testing and Verification XV, Dembrinski
and Sredniawa, eds,Warsaw, Poland, June 1995, Chapman Hall.

253

[But92] R Butler. A CSP Approach to Action Sysems, DPhil Thesis, University of
Oxford, 1992.

[BZB96] R Braden, L Zhang, S. Berson, S. Herzog and S. Jamin. Resource reSerVation
Protocol (RSVP) - Version 1, Functional Specification. Internet Draft, Internet
Engineering Task Force. 1996.

[Cre] S Creese, An inductive technique for modelling arbitrarily configured networks,
MSc Thesis, University of Oxford, 1997.

[CR] S Creese and J Reed, Inductive Properties and Automatic Proof for Computer
Networks, (to appear).

[Dav91] J Davies, Specification and Proof in Reai-time Systems, D.Phil Thesis, Univ.
of Oxford, 1991.

[FDR94] Formal Systems (Europe) Ltd. Failures Divergence Refinement. User Manual
and Tutorial, version 1.4 1994.

[ftpe] Estelle Specifications, ftp://louie.udel.edu/pub/grope/esteUe-specs
[GJ94] JD Guttman and DM Johnson, Three Applications of Formal Methods at

MITRE, Formal Methods Europe, LNCS 873, M Naftolin, T Denfir, eds,
Barcelona 1994.

[GPB91] R Groz, M Phalippou, M Brossard, Specification of the ISDN Linc
Access Protocol for D-channel (LAPD), CCITT Recommendation Q.921,
ftp : / /louie.udel.edu /pub /grope / estelle-specs /lapd.e

[Hoa85] CAR Hoare. Communicating Sequential Processes. Prentice-Hall 1985.
[ISOE] ISO Recommendation 9074, The Extended State Transition Language (Es-

telle), 1989.
[ISOL] ISO: Information Processing System - Open System Interconnection - LOTOS -

A Formal Description Technique based on Temporal Ordering of Observational
Behavior, IS8807, 1988.

[Jac96] DM Jackson. Experiences in Embedded Scheduling. Formal Methods Europe,
Oxford, 1996.

[Jma95] M Jmail, An Algebraic-temporal Specification of a CSMA/CD Protocol, Proe.
IFIP WG6.1 International Symposium on Protocol Specification, Testing and
Verification XV, Dembrinski and Sredniawa, eds,Warsaw, Poland, June 1995,
Chapman Hall.

[KR93] A Kay and JN Reed. A Rely and Guarantee Method for TCSP, A Specification
and Design of a Telephone Exchange. IEEE Trans. Soft. Eng.. 19,6 June 1993,
pp 625-629.

[LY93] G Leon, JC Yelmo, C Sanchez, FJ Carrasco and JJ Gil, An Industrial
Experience on LOTOS-based Prototyping for Switching Systems Design,
Formal Methods Europe, LNCS 670, JCP Woodcock and DG Larsen, eds.,
Odense Denmark, 1993.

[NM90] J Navarro and P s Martin, Experience in the Development of an ISDN Layer 3
Service in LOTOS, Proc. Formal Description Techniques III, J Quemada, JA
Manas, E Vazquez, eds, North-Holland, 1990.

[PS91] K Paliwoda and JW Sanders. An Incremental Specification of the Sliding-
window Protocol. Distributed Computing. May 1991, pp 83-94.

[RGG95] AW Roscoe, PHB Gardiner, MH Goldsmith, JR Hulance, DM Jackson, JB
Scattergood. H ierarchical compression for model-checking CSP or How to
check 1020 dining philosphers for deadlock, Springer LNCS 1019.

[Ros97] AW Roscoe. The CSP Handbook, Prentice-Hall International, 1997.
[RBB6] GM Reed and AW Roscoe, A timed model for communicating sequential

processes, Proceedings of ICALP'86, Springer LNCS 226 (1986), 314-323;
Theoretical Computer Science 58, 249-261.

254

[Shan] N Shankar, Machine-Assisted Verification Using Automated Theorm Proving
and Model Checking, Math. Prod. Meothodology, ed. M Broy.

[Sid93] K Sidle, Pi Bus, Formal Methods Europe, Barcelona, 1993.
[Sin97] J Sinclair, Action Systems, Determinism, and the Development of Secure

Systems, PHd Thesis, Open University, 1997.
[Ta~96] AS Tanenbaum. Computer Networks. 3rd edition. Prentice-Hall 1996.
[TCSP92] J Davies, DM Jackson, GM Reed, JN Reed, AW Roscoe, and SA Schneider,

Timed CSP: Theory and practice. Proceedings of REX Workshop, Nijmegen,
LNCS 600, Springer-Verlag, 1992.

[Tur86] JS Turner. New Directions in Communications (or Which Way to the
Information Age). IEEE Commun. Magazine. vol 24, pp 8 -15, Oct 1986.

[wwwl] LOTOS Bibliography, h t tp : / /www.cs . s t i r . ac .uk /k j t / research /wel l /b ib .h tml
[ZDE93] L Zhang, S Deering, D Estrin, S Shenker and D. Zappala. RSVP: A New

Resource ReSerVation Protocol. IEEE Network, September 1993.

Appendix A. The CSP Language

The CSP language is a means of describing components of systems, processes whose
external actions are the communication or refusal of instantaneous atomic events. All
the part icipants in an event must agree on its performance. The CSP processes tha t
we use are constructed from the following (overview from [Jac96D:

ST0P is the simplest CSP process; it never engages in any action, and never terminates.
SKIP similarly never performs any action, but instead terminates successfully, passing

control to the next process in sequence (see ; below).
a -> P is the most basic program constructor. I t waits to perform the event a and

after this has occurred subsequently behaves as process P. The same notat ion is
used for outputs (c !v -> P) and inputs (c?x -> P(x)) of values along named
channels.

P I - I Q represents nondeterministic or internal choice. I t may behave as P or Q arbi-
trarily.

P [3 Q represents external or deterministic choice. I t will offer the initial actions
of both P and Q to its encironment at first; its subsequent behaviousr is like
P if the initial action chosen was possible only for P, and like Q if the action
selected Q. If both P and Q have common initial actions, its subsequent behaviour
is nondeterministic (like I '1) . A deterministic choice between ST0P and another
process, ST0P [] P is identical to P.

P] [A]] Q represents parallel (concurrent) composition. P and Q evolve separately,
except tha t events in A occur only when P and Q agree (i.e. synchronise) to perform
them.

P I I I Q represents the interleaved parallel composition. P and Q evolve separately,
and do not synchronize on their events.

P ; Q is a sequential, rather than parallel, composition. I t behaves as P until and unless
P terminates successfully: its subsequent behaviour is tha t of Q.

P \ A is the CSP abstraction or hiding operator. This process behaves as P except that
events in set A are hidden from the environment and are solely determined by P;
the environment can neither observe nor influence them.

P [[a <- b]] represents the process P with a renamed to b.

There are also straighforward generalisations of the choice operators over non-empty
sets, wri t ten [' [x:X @ P(x) and [] x:X @ P(x) .

