Skip to main content

An object-oriented framework for temporal data models

  • Chapter
  • First Online:
Book cover Temporal Databases: Research and Practice

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1399))

Abstract

Most of the database research on modeling time has concentrated on the definition of a particular temporal model and its incorporation into a (relational or object) database management system. This has resulted in quite a large number of different temporal models, each providing a specific set of temporal features. Therefore, the first step of this work is a design space for temporal models which accommodates multiple notions of time, thereby classifying design alternatives for temporal models. The design space is then represented by exploiting object-oriented features to model the different aspects of time. An object-oriented approach allows us to capture the complex semantics of time by representing it as a basic entity. Furthermore, the typing and inheritance mechanisms of object-oriented systems allow the various notions of time to be reflected in a single framework. The framework can be used to accommodate the temporal needs of different applications, and derive existing temporal models by making a series of design decisions through subclass specialization. It can also be used to derive a series of new more general temporal models that meet the needs of a growing number of emerging applications. Furthermore, it can be used to compare and analyze different temporal object models with respect to the design dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Allen. Towards a General Theory of Action and Time. Artificial Intelligence, 23(123):123–154, July 1984.

    Article  MATH  Google Scholar 

  2. A-R. Adl-Tabatabai, T. Gross, and G-Y. Lueh. Code Reuse in an Optimizing Compiler. In Proc. of the Int'l Conf on Object-Oriented Programming: Systems, Languages, and Applications-OOPSLA '96, pages 51–68, October 1996.

    Google Scholar 

  3. E. Bertino, E. Ferrari, and G. Guerrini. T_Chimera-A Temporal Object-Oriented Data Model. Theory and Practice of Object Systems, 3(2):103–125, 1997.

    Article  Google Scholar 

  4. H. Barringer, R. Kuiper, and A. Pnueli. A Really Abstract Concurrent Model and its Temporal Logic. In Proc. of the 13th ACM Symposium on Principles of Programming Languages, pages 173–183, 1986.

    Google Scholar 

  5. F. Barbie and B. Pernici. Time Modeling in Office Information Systems. In Proc. ACM SIGMOD Int'l. Conf. on Management of Data, pages 51–62, May 1985.

    Google Scholar 

  6. T.S. Cheng and S.K. Gadia. An Object-Oriented Model for Temporal Databases. In Proceedings of the International Workshop on an Infrastructure for Temporal Databases, pages N1–N19, June 1993.

    Google Scholar 

  7. J. Chomicki. Temporal Query Languages: A Survey. In D. Gabbay and H. Ohlbach, editors, Proceedings of the International Conference on Temporal Logic, pages 506–534. Lecture Notes in Computer Science, Vol. 827, Springer Verlag, July 1994.

    Google Scholar 

  8. W.W. Chu, I.T. Ieong, R.K. Taira, and CM. Breant. A Temporal Evolutionary Object-Oriented Data Model and Its Query Language for Medical Image Management. In Proc. 18th Int'l Conf. on Very Large Data Bases, pages 53–64, August 1992.

    Google Scholar 

  9. R.H. Campbell, G.M. Johnston, and V.F. Russo. Choices (Class Hierarchical Open Interface for Custom Embedded Systems). Operating Systems Review, 21(3):9–17, 1987.

    Article  Google Scholar 

  10. S. Chakravarthy and S-K. Kim. Resolution of Time Concepts in Temporal Databases. Information Sciences, 80(l–2):91–125, September 1994.

    Article  Google Scholar 

  11. E. Corsetti, A. Montanari, and E. Ratto. Dealing with Different Time Granularities in Formal Specifications of Real-Time Systems. The Journal of Real-Time Systems, 3(2):191–215, 1991.

    Article  Google Scholar 

  12. C. Combi, F. Pinciroli, and G. Pozzi. Managing Different Time Granularities of Clinical Information by an Interval-Based Temporal Data Model. Methods of Information in Medicine, 34(5):458–474, 1995.

    Google Scholar 

  13. C. Combi, F. Pinciroli, and G. Pozzi. Managing Time Granularity of Narrative Clinical Information: The Temporal Data Model TIME-NESIS. In L. Chittaro, S. Goodwin, H. Hamilton, and A. Montanari, editors, Third International Workshop on Temporal Representation and Reasoning (TIME'96), pages 88–93. IEEE Computer Society Press, 1996.

    Google Scholar 

  14. J. Clifford and A. Rao. A Simple, General Structure for Temporal Domains. In C. Rolland, F. Bodart, and M. Leonard, editors, Temporal Aspects in Information Systems, pages 17–30. North-Holland, 1988.

    Google Scholar 

  15. R. Chandra and A. Segev. Managing Temporal Financial Data in an Extensible Database. In Proc. 19th Int'l Conf. on Very Large Data Bases, pages 302–313, August 1993.

    Google Scholar 

  16. R. Chandra, A. Segev, and M. Stonebraker. Implementing Calendars and Temporal Rules in Next-Generation Databases. In Proc. 10th Int'l. Conf. on Data Engineering, pages 264–273, February 1994.

    Google Scholar 

  17. W. Dreyer, A.K. Dittrich, and D. Schmidt. An Object-Oriented Data Model for a Time Series Management System. In Proc. 7th International Working Conference on Scientific and Statistical Database Management, pages 186–195, September 1994.

    Google Scholar 

  18. C.E. Dyreson and R.T. Snodgrass. Valid-time Indeterminacy. In Proc. 9th Int'l. Conf. on Data Engineering, pages 335–343, April 1993.

    Google Scholar 

  19. O. Etzion, A. Gal, and A. Segev. Temporal Active Databases. In Proceedings of the International Workshop on an Infrastructure for Temporal Databases, June 1993.

    Google Scholar 

  20. R. Flowerdew. Geographical Information Systems. John Wiley and Sons, 1991. Volume 1.

    Google Scholar 

  21. I.A. Goralwalla, Yuri Leontiev, M.T. özsu, and Duane Szafron. Modeling Temporal Primitives: Back to Basics. In Proc. Sixth Int'l. Conf. on Information and Knowledge Management, pages 24–31, November 1997.

    Google Scholar 

  22. I.A. Goralwalla, M.T. özsu, and D. Szafron. Modeling Medical Trials in Pharmacoeconomics using a Temporal Object Model. Computers in Biology and Medicine-Special Issue on Time-Oriented Systems in Medicine, 27(5):369–387, 1997.

    Google Scholar 

  23. W.H. Harrison, H. Kilov, H.L. Ossher, and I. Simmonds. From Dynamic Supertypes to Subjects: a Natural way to Specify and Develop Systems. IBM Systems Journal, 35(2):244–256, 1996.

    Article  Google Scholar 

  24. R.E. Johnson and B. Foote. Designing Reusable Classes. Journal of Object-Oriented Programming, l(2):22–35, 1988.

    Google Scholar 

  25. W. Kim, J.F. Garza, N. Ballou, and D. Wolek. Architecture of the ORION Next-Generation Database System. IEEE Transactions on Knowledge and Data Engineering, 2(l):109–124, March 1990.

    Article  Google Scholar 

  26. P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint Query Languages. In Proc. of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 299–313, April 1990.

    Google Scholar 

  27. N. Kline. An Update of the Temporal Database Bibliography. A CM SIGMOD Record, 22(4):66–80, December 1993.

    Article  Google Scholar 

  28. W. Kafer and H. Schoning. Realizing a Temporal Complex-Object Data Model. In Proc. ACM SIGMOD Int'l. Conf. on Management of Data, pages 266–275, June 1992.

    Google Scholar 

  29. J.Y. Lee, R. Elmasri, and J. Won. Specification of Calendars and Time Series for Temporal Databases. In Proc. 15th International Conference on Conceptual Modeling (ER'96), pages 341–356, October 1996. Proceedings published as Lecture Notes in Computer Science, Volume 1157, Bernhard Thalheim (editor), Springer-Verlag, 1996.

    Google Scholar 

  30. R. Maiocchi, B. Pernici, and F. Barbic. Automatic Deduction of Temporal Information. ACM Transactions on Database Systems, 17(4):647–688, 1992.

    Article  MathSciNet  Google Scholar 

  31. M.J. Perez-Luque and T.D.C. Little. A Temporal Reference Framework for Multimedia Synchronization. IEEE Journal on Selected Areas in Communications, 14(1):36–51, January 1996.

    Article  Google Scholar 

  32. N. Pissinou and K. Makki. A Framework for Temporal Object Databases. In Proc. First Int'l. Conf. on Information and Knowledge Management, pages 86–97, November 1992.

    Google Scholar 

  33. P.Z. Revesz. A Closed Form for Datalog Queries with Integer Order. In International Conference on Database Theory, pages 187–201, 1990.

    Google Scholar 

  34. E. Rose and A. Segev. TOODM-A Temporal Object-Oriented Data Model with Temporal Constraints. In Proc. 10th Int'l Conf. on the Entity Relationship Approach, pages 205–229, October 1991.

    Google Scholar 

  35. R. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In Proc. ACM SIGMOD Int'l. Conf. on Management of Data, pages 236–246, May 1985.

    Google Scholar 

  36. S.Y.W. Su and H.M. Chen. A Temporal Knowledge Representation Model OSAM*/T and its Query Language OQL/T. In Proc. 17th Int'l Conf. on Very Large Data bases, pages 431–442, 1991.

    Google Scholar 

  37. E. Sciore. Versioning and Configuration Management in an Object-Oriented Data Model. The VLDB Journal, 3:77–106, 1994.

    Article  Google Scholar 

  38. R. Snodgrass. Research Concerning Time in Databases: Project Summaries. ACM SIGMOD Record, 15(4), December 1986.

    Google Scholar 

  39. R.T. Snodgrass. The Temporal Query Language TQuel. ACM Transactions on Database Systems, 12(2):247–298, June 1987.

    Article  Google Scholar 

  40. R.T. Snodgrass. Temporal Databases. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, pages 22–64. Springer-Verlag, LNCS 639, 1992.

    Google Scholar 

  41. R. Snodgrass. Temporal Object-Oriented Databases: A Critical Comparison. In W. Kim, editor, Modern Database Systems: The Object Model, Interoperability and Beyond, pages 386–408. Addison-Wesley/ACM Press, 1995.

    Google Scholar 

  42. M.D. Soo. Bibliography on Temporal Databases. ACM SIGMOD Record, 20(l):14–23, 1991.

    Article  Google Scholar 

  43. M. Stonebraker, L.A. Rowe, and M. Hirohama. The Implementation of POSTGRES. IEEE Transactions on Knowledge and Data Engineering, 2(1):125–142, March 1990.

    Article  Google Scholar 

  44. R. Stam and R. Snodgrass. A Bibliography on Temporal Databasesl. IEEE Database Engineering, 7(4):231–239, December 1988.

    Google Scholar 

  45. V.J. Tsotras and A. Kumar. Temporal Database Bibliography Update. ACM SIGMOD Record, 25(1):41–51, March 1996.

    Google Scholar 

  46. G. Wuu and U. Dayal. A Uniform Model for Temporal Object-Oriented Databases. In Proc. 8th Int'l. Conf. on Data Engineering, pages 584–593, Tempe, USA, February 1992.

    Google Scholar 

  47. K. Wilkinson, P. Lyngbaek, and W. Hasan. The Iris Architecture and Implementation. IEEE Transactions on Knowledge and Data Engineering, 2(l):63–75, March 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Opher Etzion Sushil Jajodia Suryanarayana Sripada

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goralwalla, I.A., Özsu, M.T., Szafron, D. (1998). An object-oriented framework for temporal data models. In: Etzion, O., Jajodia, S., Sripada, S. (eds) Temporal Databases: Research and Practice. Lecture Notes in Computer Science, vol 1399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0053696

Download citation

  • DOI: https://doi.org/10.1007/BFb0053696

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64519-1

  • Online ISBN: 978-3-540-69799-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics