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Abstract

In order for neural networks to learn complex languages or grammars, they must have sufficient computational
power or resources to recognize or generate such languages. Though many approaches to effectively utilizing the com-
putational power of neural networks have been discussed, an obvious one is to couple a recurrent neural network with
an external stack memory - in effect creating a neural network pushdown automata (NNPDA). This NNPDA general-
izes the concept of a recurrent network so that the network becomes a more complex computing structure. This paper
discusses in detail a NNPDA - its construction, how it can be trained and how useful symbolic information can be ex-
tracted from the trained network.

To effectively couple the external stack to the neural network, an optimization method is developed which uses
an error function that connects the learning of the state automaton of the neural network to the learning of the operation
of the external stack: push, pop, and no-operation. To minimize the error function using gradient descent learning, an
analog stack is designed such that the action and storage of information in the stack are continuous. One interpretation
of a continuous stack is the probabilistic storage of and action on data. After training on sample strings of an unknown
source grammar, a quantization procedure extracts from the analog stack and neural network a discrete pushdown au-
tomata (PDA). Simulations show that in learning deterministic context-free grammars - the balanced parenthesis

language, 10", and the deterministic Palindrome - the extracted Pariectin the sense that it can correctly rec-
ognize unseen strings of arbitrary length. In addition, the extracted PDAs can be shown to be identical or equivalent
to the PDAs of the source grammars which were used to generate the training strings.

|.INTRODUCTION

Recurrent neural networks are dynamical network structures which have the capabilities of processing and gen-
erating temporal information. To our knowledge the earliest neural network model that processed temporal
information was that of McCulloch and Pitts [McCulloch43]. Kleene [Kleene56] extended this work to show the
equivalence of finite automata and McCulloch and Pitts’ representation of nerve net activity. Minsky [Minsky67
showed that any hard-threshold neural network could represent a finite state automata and developed a method for ac-
tually constructing a neural network finite state automata. However, many different neural network models can be
defined as recurrent; for example see [Grossberg82] and [Hopfield82]. Our focus is on discrete-time recurrent neural
networks that dynamically process temporal information and follows in the tradition of recurrent network models ini-
tially defined by [Jordan86] and more recently by [EIman90] and [Pollack91]. In particular this paper develops a neural



network pushdown automaton (NNPDA¢brid system that couples a recurrent network to an external stack mem-
ory. More importantly, a NNPDA should be capable of learning and recognizing some class of Context-free grammars.
As such, this model is a significant extension of previous work where neural network finite state automata simulated
and learned regular grammars. We explore the capabilities of such a model by inferring automata from sample strings
- the problem of grammatical inference. It is important to note that our focus is only on that of inference, not of pre-
diction or translation. We will be concerned with problem of inferring an unknown system model based on observing
sample strings and not on predicting the next string element in a sequence.

1.1 Motivation

To enhance the computational power of a recurrent neural network finite state automaton to ihéihitéana-
chine[Minsky67]requires an expansion of resources. One way to achieve this goal is to introduce a potentially infinite
number of neurons but a finite set of uniformly distributed local connection weights per neuron. [Sun91] is an example
of this approach and shows the Turing equivalence by construction. Another way to construct a neurahfiatteork
machines to allow infinite precision of neuron units but keep a finite size network (finite number of neurons and con-
nection weights) [Siegelmann91, Pollack87]. Doing so is equivalent to constructing a more general nonlinear dynamic
system with a set of continuous, recurrent state variables. Such a system in general would have rich dynamical behav-
ior: fixed points, limit cycles, strange attractors and chaos, etc. However, how easily is such a system trained? In
general, without additional knowledge it is almost impossible to train an infinite neural system to learn a desired be-
havior. In effect, putting constraints aadpriori knowledge in learning systems has been shown to significantly
enhance the practical capabilities of those systems.

The model we introduce has this flavor. It enhances the neural network by giving it an infinite memory - a stack
- and constrains the learning model by permitting the network to operate on the stack in the standard pre-specified way
- push pop or no-operation(no-op. As such, this model can be viewed as: (1) a neural network system with some
special constraints on an infinite neural memory, or (2) a hybrid system which couples an external stack memory (con-
ventionally a discrete memory, but here a continuous stack) with a finite size neural network state automaton. There
are many issues in connecting and training an external computational structure such as stack to a neural network. For
example what form does the objective function take; when and how are the push/pop/no-op operations of the stack
incorporated into the neural net; and after training how are can learned rules extracted? We provide a complete proce-
dure for training such a neural network pushdown automata.

1.2 Grammars and Grammatical | nference

Because this paper is concerned with new models of neural networks, we give only a brief explanation of gram-
mars and grammatical inference. For more details, please see the enclosed references. Grammatical inference is the
problem of inferring an unknown grammar from only grammatical string samples [Angluin83, Fu82, Gold78, Mi-
clet90]. In the Chomsky hierarchy of phrase structured grammars [Harrison78, Hopcroft79, Partee90], the simplest
grammars and its associated automata are regular grammars and finite state automata (FSA). Moving up in complexity
in the Chomsky hierarchy, the next class is the context-free grammars (CFGs) and their associated recognizer - the
pushdown automata (PDA), where a finite state automaton has to control an external stack memory in addition to its
own state transition rules. For all classes of grammars, the grammatical inference problem is in the worst case at least
NP [Angluin83]. Because of the difficulty of this problem, we feel that training a neural network to learn grammars is
a good testbed for exploring the networks computational capabilities. However, comparison of a neural network push-
down automata with other methods for grammatical inference is not discussed. Our concern has only been with how
such an architecture can be constructed, how it is trained and how it learns grammars from grammatical strings.

1.3 Outline of Paper

In next section, we review some of the previous work on recurrent neural network finite state automata and work
that extends the power of recurrent neural network beyond that of a finite state automata. We show that from the stand-
point of representation, it is more computationally efficient to use a “real” external stack instead of the neural network
emulator of stack memory [Pollack90. Section 1l we systematically introduce the model of the Neural Network
Pushdown Automata (NNPDA), the structure, the dynamics and the optimization (learning) algorithms. This model is
substantiated by means of theoretical analysis of many of the related issues regarding its construction. The attempt
there is to give a rigorous mathematical description of the NNPDA struéferthen illustrate the model by correctly



learning the context-free languages: balanced parentheses aR@th& modified version of NNPDA is then intro-

duced to learn the more difficult Palindrome grammar. The conclusion covers enhancements and further directions. In
the Appendices, a detailed mathematical derivation of the crucial formula necessary for the training equations of NNP-
DA is discussed. The key point is that in order to use real-time recurrent learning (RTRL) algorithm [Williams89], we
have to assume a recursion relation for all variables, which means that the NNPDA model must be approximated by a
finite state automaton. In the Appendices, we discuss this paradox and show one solution to this problem.

II.RELATED WORK

In this section we review previous work related to the NNPDA. However, the general area of grammatical infer-
ence and language processing will not be covered; see for example [Angluin83, Fu82, Miclet90] and more recently the
proceedings of the workshop on grammatical inference [Lucas93]. We only focus on neural network related research
and, even there, only on work directly related to our model.

2.1 Recurrent Neural Network - Connectionist State M achine

Recurrent neural networks have been explored as models for representing and learning formal and natural lan-
guages. The basic structure of the recurrent networks, shown in Fig. 1, is that of a neural network finite state automaton
(NNFSA) [Allen90, Cleeremans89, Giles92a, Horne92, Liu90, Mozer90, Noda92, Pollack91, Sanfeliu92, Wa-
trous92]. More recently, [Nerrand93] formalizes recurrent networks in a finite-state canonical form. We will not
directly discuss neural network finite state machines, i.e. NNFSA which have additional output symbols, see for ex-
ample [Das91, Chen92]. The computational capabilities of recurrent networks were discussed more recently by
[Giles92a, Pollack91, Siegelmann92].
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Fig. 1
Fig.1 A simple structure of a recurrent neural network, wHesad $
represent the current input and state, dAtliSthe next state.

All of the recurrent network models discussed will be higher-order. We and others have found that these models
can be extremely useful and more powerful for representing specific computational constructs in neural networks; for
a discussion of their use see the following papers [Lee86, Goudreau94, Miller93, Pao89, Perantonis92, Pollack87,
Psaltis88, Watrous92]. (It is easy to see that higher order terms are more general than sigma-pi [Rumelhart86a] or
pi-sigma [Ghosh92] expressions.) Using second order connection weights, the recurrent dynamics of the state neurons
can be given by

St = g(ZwﬁﬁIhem (1)

whereS! is the activity of théy, Stateneuron at time stepl,! is theky, component of the input symbol at time step t,

g is the nonlinear operator, usually the sigmoid funagioh= 1 / (1+exQ(-X)) and®; is the bias term for thig, neuron.

When a temporal sequence of len@itkil 2, 12, 13,......) T} is fed into the recurrent net, the input symbait each time



step together with the current st&tk(initial state is assigned) are the “input” to the network and the “output” would

be the next time sta®'*L. The recurrent network therefore acts like a state automata. At the end of an input string, an
end symbol is given to the network and the output in the last state neuron is checked to determine the classification
category of the input string. This neural network finite state automaton (NNFSA) can be used to recognize strings that
belong to a regular grammar. The work of [Cleeresman89, Giles92a, Giles92b, Liu90, Omlin92, Pollack91, Wa-
trous92, Zeng93] has shown the possibility of using neural networks to perform grammatical inference on regular
grammar, i.e. to find a “useful set” of production rufesom only a finite set of sample training strings.

One of the limitations of NNFSA is its difficulty in processing higher level languages. A “brute-force” method to
enhance the computational power of a NNFSA is to increase the size of the existing neural network structure (or in-
crease the precision of the neuron units in the network) while training on a more complex language, say a context-free
grammar [Allen90]. The assumption is that the size of the neural networks has no bound, but the knowledge gained as
the network grows gives clues to the representation of the underlying grammar and it associated machine ([Crutch-
field91] uses this approach to show that context-free grammars are generated by a nonlinear system on the edge of
chaos). But in practice gaining this knowledge is difficult. What usually happens is that the trained NNFSA will only
recognize the language up to a certain string length (in effect, a regular grammar). For the NNFSA to generalize cor-
rectly on longer unseen strings, the NNFSA needs to be re-trained on those strings. Thus, we argue that this method of
knowledge representation is in itself inefficient.

2.2 Recurrent Neural Network - Beyond the Finite State Automaton

There has been a great deal of effort to enhance the power of recurrent neural networks by increasing the precision
or size of the network or by coupling it with an external, potentially infinite, memory. The work of [Williams89] cou-
pled a recurrent neural network to a memory tape to emulate a Turing machine and to learn the state automaton
controller for the balanced-parentheses grammar (a context-free grammar). More specifically, a recurrent network was
trained to be the correct finite-state controller of a given Turing machine by supervising the input-output pairs, where
the input is the tape reading from a target Turing machine and the output is the desired action of the finite controller.
The important distinction between NNPDA model and that of [Williams89] is in the training - particularly, the behav-
ior of their target controller was knovenpriori and not learnedin the most general case of grammatical inference
the transition rules of the target machine are not known beforehand; only the classification for each training sequence
is known. The NNPDA model we describe allows the NNPDA itself to “figure out” how to construct a neural net con-
troller that knows both the state transition rules and, in addition, how to use and manipulate the tape or stack.
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Fig. 2

Fig.2 A neural network emulator of a stack proposed by [Pollack90]. (a) C
process emulates a “push” action onto a stack. (b) Decoding process emulates
action from a stack.

Closely related work is the RAAM model of [Pollack90], which proposed an “internal” neural network model of
stack memory as a plausible model for cognitive processing. Let us consider using this model to build a NNPDA. As
shown in Fig. 2,lte “push” and “pop” actions onto the stack are emulated by a coder and a decoder separately, where
the “STACK1", “STACK?2”, and “STACKS3” are the neuron arrays with the same size and the “TOP” represents the
symbol(s) on the top of the stack. The training can be performed by concatenating the network in Fig2(b) with the net-
work in Fig2(a) and using error back-propagation. The desired outcome requires “STACK3” to be identical to
“STACK1". This recursive distributed representation of a stack memory may be of particular interest to cognitive
models of language processing. Howewasra computational model this structure has drawbacks. First, this recursive



structure is identical to a NNFSA, where t8 ACK’s” configurations correspond to internal neural stétesther

words, this model transfers the complexity of a stack manipulation to NNFSA state tranSdranstack with limited

length, this model is equivalent to training a FSA with a small number of states. But in general, such a model will be
limited since, theoreticallyhe stack represents a potentially infinite number of states for a limited length stack,

this model is inefficient. To illustrate this, consider a stack with length L and number of symbolstbtal hember

of possible configurations of tletackis

L L+1
I N -1
N. = N = -

If we wish to build a distributed memory of internal states that behaves like a stack, we need to construct (or learn) a

NNFSA with N- internal states. The required memory sizeeurons (or weights) will scale as\s which severely
limits the usefulness of the internal neural network stack.

Other closely related work is the connectionist Turing machine models of [Siegalmann92, Pollack87]. They
showed that a stack can be simulated in terms of binary representations of a fractional number which are manipulated
by neural network generated actions. The focus of this work was initially on “representational” issues and not on a
“practical” learning system. Their proposed stacks use a fractional number represented in terms of a sequence of binary
symbols “0” and “1”. A “pop” action removes the leading bit from the fraction and can be simulated by two consecu-
tive numerical operations: multiplication by two and subtraction of the leading bit. A “push” is represented by adding
“0” or “1” to the original stack and dividing the sum by two. This stack model is clearly as efficient as the conventional
discrete stack. An additional feature is its simple representation -- a fractional number. However, for learning, these
stack models have the problem that they are not easily coupled to gradient-based learning algorithms. This is because,
although a fractional number is continuous, any small perturbation of the fraction causes a discrete change of the stack
content that this fraction is representing.

Finally, an interesting model developed by [Lucas90] proposes an entirely different method for learning contex-
t-free grammars with a neural network. [Lucas90] maps directly the production rules of the CFG, both terminals and
nonterminals, directly in neural networks and shows some preliminary results for character recognition. ([Frasconi93,
Giles93, Sanfeliu92] illustrate similar techniques for mapping regular grammars into recurrent networks.)

The original NNPDA model with an external continuous stack and its learning algorithm were originally proposed
in short papers [Giles90, Sun90a, Sun90b]. Recently [Das92] showed benchmark experiments with different order
connection weights of NNPDA and pointed out that third order weights were better than first or second order. [Das93]
showed the advantage of using hints in learning CFGs. Recent work of [Mozer93] also shows that the continuous stack
can be used to manipulate the “continuous rewrite rules” necessary to parse context-free grammars. [Zeng94] showed
that when a recurrent network controlling an external stack is trained by a pseudo-gradient method and discretized dur-
ing training, the trained NNPDA can successfully classify strings of arbitrarily long length.

I[11. NEURAL NETWORK PUSHDOWN AUTOMATA

In this section, the NNPDA model is thoroughly described. The schematic diagram of the neural network push-
down automata (NNPDA) is shown in Fig. 3. This NNPDA, after being trained, will hopefully be able to represent the
underlying grammar of the given training set (we assume that for each of our training sets there is a unique underlying
grammar) and be able to correctly classify all unseen input strings generated by an unknown CFG. To use the NNPDA
as a classifier, input strings are fed into the NNPDA one character a time, and the “error function” at the end of each
string sequence decides the classification. It is important to note that all grammars and automata discussed in this paper
are deterministic.

The proposed NNPDA consists of two major components: a recurrent neural network controller and an external
continuous stack memory. The structure and working mechanism of these two components will be described in detalil
in subsections 3.1 and 3.2. A brief introduction of the NNPDA dynamics follows. The neural network controller con-
sists of four types of neurons: input neurons, state neurons, action neurons and stack reading neurons; and the stack is
simply a conventional stack with analog symbol “length”. At each time step, the recurrent neural network can be con-
sidered an input-output mapping. The input to the mapping is: the current interr@l| statet symbol ' and the stack

readingR'. And the output are the next time internal sgité and the stack actioh™™. This action will be performed
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Fig.3 The schematic diagram of the Neural Network Pushdown Automata NNPDA, where a high-or
current network is coupled with an external continuous stack. The inputs to the neural net are the curren
states (8, input symbols {) and the stack reading {{RThe outputs from the neural net are the next time ini
nal state (S‘l) and the stack action EN). This action will be performed on the external stack, which in ti
will renew the next stack readingttlii). The weights of the recurrent neural network controller will be trair

by minimizing the error function, which is a function of the final state and the stack length at the end o
string.

onto the external stack, which in turn will renew the next time stack re@Hihgrhis new stack reading together with

new internal stat&™! and new input symbaf*! will serve as a new input for another input-output mapping. At the

end of input sequence the content of internal state and stack will determine whether or not the input string is legal.
During the training stage, the weights of the recurrent neural net will be modified to minimize the error function,

which is fully discussed in subsections 3.4 and 3.5. In some sense the learning can be thought of as unsupervised or

reinforcemenstyle learning, because (a) no credit assignment is made before the end of input sequences and (b) the
system can extract the classification rules automatically from the input examples.

3.1 Neural Network Controller

The neural network controller is an extended version of the neural network finite state automata (NNFSA) previ-
ously described in [Giles92a, Liu90]. It is still a high order recurrent neural network (Fig.3). The difference is that the
NNPDA introduces additional input and output neurons (and, of course, the external stack). The “hidden” recurrent
neurons §, i=1,2,...Ng represent the internal states of the system to be learned. The input néyneiss,...N;},
are each associated with a particular input symbol (a localist or one-hot encoding scheme). These two groups of neu-
rons are the same as that of NNFSA. The additional “nonrecurrent” input neBrard £2,...Ng} represent the stack
content read from the top of stack memory. The additional “nonrecurrent” output nefyord 2,...Na} represent
the action values that operate the stacisfiespopsor no-operatiors). The state neurons are feedback into themselves
after one time step delay (Fig. 3).

The discrete time dynamics of the neural network controller can be written in general form as



St+l:G(St., Rt,lt;WS) (3)
A L= F (SR 1WA

whereS!, Rt andl! are vectors of internal state, stack reading and input symbol at tme\\° andW? represent the
weight matrices for the state dynamics and action mappings. It is seen from Eq.(3) that for a full description of the

dynamic, we need another equation for the stack re&ing general, this function could be written as

R = F(AL AL L AL 1S 1Y, (4)
The combination of Egs. (3) and (4) describes a dynamical process for the system “state vagalie&] that
evolves in time as a function of an input sequen&elf, 13,...... JT}, given a set of initial values &, RO andA®,

However, this is not a state machine, because Eq.(4) indicates that there does not exist a simple recursive function for
the stack reading'. The value oR' depends on the entire history of input and actions (or equivalBhtgpends on

weight matrices and input history). This mappindRbis highly nonlinear and is determined by the definition of the
stack mechanism, which will be later discussed in ddtaibe exact, the so called neural network controller is defined
only by Eq.(3).
To decide the proper structure of neural network controller, both the neural representations and the target mapping
functions need to be known. For discrete pushdown automata, the mappings (or transition rules) are third-order in na-

ture, by which we mean that each transition rule is a unique mapping from a third-order combigati&ti {1} to

its output, the next time sta8! and stack actioA*!. Assume that unary representations'pR' andS! are em-
ployed. For instance lét=(1, 0, 0), (0, 1, 0) and (0, 0, 1) represent symaplbandc, andS' =(1, 0) and (0, 1) the

two different states. It is easily seen that any transition rgfe:R!, '} - §™* or A™! could be coded into two
four-dimensional matrices WI and V\f‘ijk|, each component being a binary value 0 or 1(fafk|W or ternary value
1,0, -1(for V\?ijld). For example, the state transition rugj], R(k), ()} - S(i) means that if the input symbol is the

li, symbol, the stack reading is thg kymbol and the internal state is thestate, then the next state will be the i
state. And, this rule would be codedVe§j =1 andWy=0, m#i. Similarly, Wi = [1, 0, -1] implies a mapped ac-
tion: [push no-op pop of A1, In this way we show that any deterministic PDA could be implemented by a third

order, one layer recurrent neural network with discrete neural activity function. Particularly, if the NNPDA'’s neural
network controller is represented by third-order nets of the form

=Y Wi SR+ 6)
S jZI Jk|§1 Kl

, )
AT = f(jZ|\AﬁquR}(llt +67)

the existence of a solution to any given PDA would be guaranteed upon proper quantization of the nonlinear functions
0(x) andf(x). During learning, the sigmoid functi@fx) is used an@(x) is defined a$(x) = 2g(x) -1.

However, this proof does not exclude solutions with other neural net structures and does not necessarily guarantee
the best learning behavior with third-order weights for all problems. In practice, second-order weights were used for
some problems and good training results were achieved. The recurrent updating formula for second-order networks
can be written as

§*t= g(Z\NiSij(RtD It)k+9is)
f

: (6)
AT = f(ZWﬁkﬁ(RtD 1)+ 6
f

where R0 1Y), is the concatenation of the two vectBfsandI!, whose components are given by
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Experiments and comparisons between NNPDAs with different orders of connection weights were discussed in
[Das92]. In most cases the third-order weights gave better learning results.

The existence proof of the NNPDA controller discussed above is based on the assumption of unary representations

of internal states and symbols (both input and reading symbols). For the stack Readidgnput®, a unary repre-

sentation (or linear independent vector representation) is necessary. This will be discussed in next subsection.
However, unary representation of internal states may not be necessary. Moreover, to extract a discrete PDA, the pro-
cedure of state quantization is performed after learning and the quantized state vectors (often expressed in a binary
form) are neither unary, nor linearly independent. But, during learning (especially hard problems), we often encounter
the cases where we need to adjust independently the transitions between these linearly dependent state vectors. With
third order weights the degrees of freedom are limited and each weight parameter does not associate with only one
particular state transition as in the case of unary representations. Therefore, learning could be often trapped at a local
minimum. To solve this problem, we propose a “full-order” connected network and find it very useful in learning some
hard problems, like the Palindrome grammar. A “full-order” network is defined one is which the order of the correla-
tion is the produce of all independent state neurons. The “full-order” network we used for one action output is

AL = f( WEj, oS Rl +09) (8)
{iTx1

where the subscript {&{j 1, j2, ---, I}, represents all 2possible n-bit binary numbers,§0, 1; m=1, 2, ..., n), and n
is the number of state neurons. The state v@E{ﬁpris an i, order product 08''s components defined as

Sty = ] GaSh* (=i (1-S0)) ©)
m=1

For exampleS; 1013 = $'S,(1-$)S' for a 4-state neuron net. In learning the palindrome grammar, the combination
of Eq.(8) and the third order state dynamics of Eq.(5) led to successful training.

3.2 External Continuous Stack Memory

One of novel features of the NNPDA is the continuous stack memory. The continuous (or analog) stack was mo-
tivated by a desire to manipulate a stack with a gradient descent training algorithm. In order to minimize the error func-
tion along the gradient descent direction, the weight modification is proportional to the gradient of the error function

d :
AW aTV(ErrorFuncnon) . (20)

To couple the neural net with a stack memory, the stack variable must be included in the error function. One way of
doing this is to make the stack variables a continuous function of the connection weights, so that an infinitesimal
change of weights will cause an infinitesimal change of action values, which in turn cause an infinitesimal change of
stack readings. Any discontinuity among these relations may cause the derivative to be infinity, thereby interfering
with the learning process.

3.2.1 Continuous Stack Action

To fully describe the mechanism of the continuous stack, we discuss in detail: (1) the continuous stack action and
stack operation; (2) how to read the stack and (3) the neural representation of the stack reading. Consider a conven-
tional stack, as shown in Fig. 4(a), where there are stored a number of discrete symbols. The discrete stack actions
include pop pushandno-op Without affecting the generality of a stack function, it is assumed that each action only
deals with one symbol. Thmpsimply removes the top symbol and pushplaces the symbol read from input string
onto the top of stack. When the continuous stack is introduced, we have to replace both the discrete symbols in the
stack by continuous symbols and the discpeteandpushactions by continuous actions. Therefore, we define the
continuoudengthof every symbols. In Fig. 4(a), the stack is filled with discrete symbols and each symbol is interpret-



ed as having equal length L=1. In the general case, as shown in Fig.4(b), the stack is filled with continuous symbols,
each having a continuous lengtte L = 0. These continuous symbols are generated by the continuous stack actions.

As described in the neural network controller in Egs.(5), (6) and (8), the output of the action Ag¢arensalculated
by the functiorf(x) with analog values distributed within the interval [-1, 1]. The valuatdﬁ interpreted as the in-
tensity of the actions to be taken on the conventional stack [Harrison78].Al,\?hahes on continuous values, the

natural generalization of the discrete dynamics is to interpret each continuousAda®an uncertainty about the

action to be taken. We represent this uncertainty in terms rththof the discrete symbols to be pushed or popped.
Therefore, at each time step only part of a discrete symbol is pushed or popped onto the stack with length determined
by CA'] Whether to push or pop is determined by the sigh'opushif At > ¢ andpopif A'< —¢ wheree is a small

number close to zero; otherwis@@operation(no-op) takes place. After such actions, the stack construction would
appear as in Fig.4 (b).

L=1[P L=09 [ g
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b

@ Fig.4 ®

Fig.4 Stack symbols with continuous lengths
(a) discrete stack is filled with discrete symbols which can be viewed as all he

length = 1.
(b) continuous stack is filled with discrete symbols having continuous length
L<1.

In the above description of the stack operation, only one component of the #éctsused and all three actions

pop, pushandno-opare represented by one variable. However, one could integrate continuous actions into a conven-
tional discrete stack in many different ways. For instance, separate action neurons could be used to represent the

different types of actions, i.e. one neuron with oupatA < 1 to represent the value pfishand another neuron

with output 0 < At2 <1 torepresent the value pbpaction. In this case botlaﬂktl and A‘2 could simultaneously have

nonzero output and the order in which the two actipost{andpop) are executed must be assigned in advance. If we
first take apop action and thempush we in effect introduce four types of actions in the discrete limitp(th

(A] = landA}, = 0), (2)pop (A} = Oand A}, = 1), (3)no action( A} = OandA), = 0) and (4)replace(A] = 1
andA, = 1).

3.2.2 Reading the Stack

How to read from a continuous stack must be defined. For simplicity, we assume only one action neuron is used.
In the conventional discrete stack a read operation only reads one symbol from the top of stack and sees nothing below.
This reading method is not suitable for the continuous stack, since there will be a discontinuity in the content of the
stack reading. We treat the stack as a one-way tape and the reading can be performed without popping the stack. More
specifically, a reading discontinuity may happen in either of the following two cases: (1) after performing the action

Al, a symbol with an infinitesimal length is left on the top of the stack; or (2) the top symbol has a infinitesimal (or



zero) part being removed by the previous pop adlom these two cases an infinitesimal perturbation to the action
valueA! could generate a discrete jump in the stack readings. See the example shown in FigA'4¢b)0.8, the
symbol “a” will be popped entirely from the top of the stack. And the next rea‘ﬂﬁglould be the symbol “b” with
length = 0.6. However, if there is a small perturbation to the connection weights such that theAldhmredses by

only 0.001, ther\'=-0.899. The top symbol “a” with length L=0.899 will be popped and a small portion of “a” remains
on the top of stack. In that case the next reaBlfiwould be the symbol “a” with length = 0.001. A similar discrete

jump will happen for the case whekk= 0. To avoid this discontinuity we impose the condition that each time the con-
tinuous stack is read with depth equal to 1 from the stack’s top.

The advantages of this reading method are outlined below. First, a continuous reading function will be constructed
with respect to the connection weights - any infinitesimal change of weights will cause an infinitesimal change of stack

readings. In the example of Fig.4(b), A§=-0.9 the symbol “a” on the top is popped. The next reading contains two
parts: symbol “b” with length = 0.6 and symbol “c” with length = 0.4 (the total length = 0.6 + 0.4 = 1.0). If the action

value was changed #=-0.899 due to a small perturbation of the connection weights, the symbol “a” is not totally
popped off and a small fraction is left. In this case the next reading would contain: a small fraction of symbol “a” with
length = 0.001, a part of symbol “b” with length = 0.6 and a part of symbol “c” with length = 0.399 (total length =
0.001 + 0.6 + 0.399 = 1.0). This example shows that the change of the next stackREadmgroportional to the
change of previous action valué's WhenAA! approaches zero, the change of readii®fd! also approaches zero.
It should be noted that this continuity of the reading function does not automatically guarantee that it is differentiable;
and, even if it is differentiable, its derivative may not be a function feasible for numerical implementation. The com-
plication of the derivativedRYd Wand dRYd A will be discussed in Appendix A.

The other advantage of the proposed reading method is its correspondence with a probabilistic interpretation of

the continuous action value; a stochastic machine. The continuous action values can be interpreted as a type of uncer-
tainty compared to the deterministic discrpteshandpop If the maximum of the absolute action value is one,

ie. \Aﬂ < 1, thelengthof a symbol to be pushed or popped can be interpreted as the probability of this discrete action.

Consequently, the reading of the stack with a total length equal to one implies the normalization of the total probabil-
ities i.e. the summation of all the probabilities for reading each discrete symbol normalized to one. In other words, as
in the previous example of Fig.4 (b), if the stack reading (with total length equals to one) contains: ‘a’ with length =
0.001, ‘b’ with length = 0.6 and “c” with length = 0.399, we can interpret that the stack symbol is being read with un-
certainty: the probability of the read symbol to be “a” is very small as 0.001, the probability to be “b” is 0.6 and to be
“c” is 0.399. When the stack length is less than 1, the reading may be only an ‘a’ with length = 0.1, this could be in-
terpreted that the probability to read ‘a’ is 0.1 and the probability to read empty stack is 0.9.

3.2.3 Neural Representation

In the last subsections, the stack readithgnd the input! are often described as a symbol. In this subsection, the
actual neural representation of these two vectors will be discussed.

The neural representations of the input string syrilamid the stack readingSare determined under the follow-
ing considerations. First, in the discrete limit (by quantization of the analog neurons to discrete levels) the learned
neural network pushdown automata is required to behave the same way as a conventional pushdown automata. In this

limit, since both setsl{} and {R"} (each element of which corresponds to a symbol) represent the same set of discrete
symbols, the neural representations of daemdR! need to be identical. In this regard, there are no restrictions on
their neural representations as long as they are the same. For instance, consider the symbols ‘a’, ‘b’ and 1}, the set {
or {RY can be represented either by two neurons as (0, 1), (1, 0) and (1, 1) if a binary code is used or by three neurons
as (1,0, 0), (0, 1, 0) and (0, O, 1) if an orthogonal code is used.

Second, during training, the stack reading should consist of continuous neuron values and each readiig neuron
should be able to represent the contents inside a segment of the continuous stack with total length = 1. This is in general
a distributed mixture of the three possible symbols, each with a analog length less than 1. For effective neural infor-
mation representation, it is important to require that there exist a unique one-to-one mapping between eRth vector
and the stack symbol component it represents.
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The general mapping from the three continuous lengtRSdan be written as

R=f(l,l,l,4ab,¢

, (11)
|, +1,+15<1, 1,20,1,20,1,20

wherel;, I, andl5 are the three continuous lengths of discrete symbols ‘a’, ‘b’, and ‘e’ contaiRednd a, b, & are

the vector representations of ‘a’, ‘b’, and ‘e’ in neuron space. The conlitigtt [3 <1(notl,+l,+ 153 =1) includes the

case of partial empty stack during training where the total length of symbols stored in the stack is less than one.
The first requirement for the discrete limit can be stated as

a if I,=11,=0l,=0;
b if 1,=0l,=11,=0; . (12)
e if I,=01,=0l,=1

Rt
Rt
Rt

N

One simple way to satisfy this condition is to wieas a linear combination of three basis vectarb, &

R = la+hb+le. (13)
For the second requirement, uniqueness, the necessary and sufficient condition for the mapping in Eq.(13) is that the
three neural vectorg, B, e be linearly independent. (By the uniqueness we mean that if there exists another set of co-
efficientsl’;, ' andl' 5 such thatl',a +1',b +1';& = l,a+1,b+1,& thenl', = I, I', = I, andl'; = I;.) If there
arem symbols used in the input strings, then at leaahalog neurons are needed to represent the input string symbol
It and the stack reading$ because ang vectors in the lower, less tham dimensional space would be linearly de-
pendent on each other. In the three symbol example, this excludes the use of binary vectors (0, 1), (1, 0) and (1, 1) to
represent symbols ‘a’, ‘b’ and ‘e’. For simplicity the unary neural representatiorgiz. (1, 0, 0) , b= (0,1,0)

and & = (0,0, 1) are used for the three symbols ‘a’, ‘b’ and ‘e’. In this case the stack re&iigsrepresented by
a three-dimensional vectdy (1, |3), indicating that in the current stack reading the lengths of letters ‘a’, ‘b’ and ‘e’
arelq, I, I respectively.

To conclude this section, a novel continuous stack is introduced. One interpretatiocoottitngous stacls the
concept ofa magnitude associated with a discrete symbbis new concept stresses two aspects: (1) generalization

of a discrete stack to a continuous stack and (2) identification of the stack readings and actions as neural network input
and output with a probabilistic interpretation.

3.3 Dynamics of the Neural Network Pushdown Automata

For simplicity the following assumptions are made: (a) only deterministic pushdown automata are considered; (b)
only one action neuron outpat is used; (c) the same set of symbols represent both the input and stack symbols, so

that an actiorpushonly pushes the current input onto the stack. These assumptions will restrict the class of CFG
languages that the NNPDA can learn and recognize.

We illustrate the NNPDA dynamics by examples. Consider two symbol strings of ‘a’ and ‘b’. To mark the end of
an input string the end symbol ‘e’ is introduced. A possible input string may be: “aababbabe.” Each time a string sym-
bol ‘a’ (or ‘b’) is fed into the neural network controller, this same symbol ‘a’ (or ‘b’) could be pushed onto the stack
(or the stack could be popped from the top) with magnifilgl according to the sign @¥. The last symbol ‘e’ in-
dicates the end of the input string. Upon receiving the end symbol, the neural network pushdown automata would
generate a proper output to tell whether the input string was legal or illegal.

Numerically, two arrays are used to represent the stack: an integestackaymbol|] to store the symbols {‘a’,
‘b’, ‘e’} and a real number arragtacklength[] for their lengths. A record of the number of symbols stored on the stack
is kept in an integetop. Assume that four state neurons are used such'thdsSs,, S;, ), where &s;, S5, S, $<1
are the four neurons output.
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a | 06

@) Fig. 5 (b)
Fig.5 Stack status at (a) t =0 and (b) t = 1.

The NNPDA operations are outlined for successive time steps.

(1)t=0.
Initially, the stack is empty, so thiap = 0 and the stack readingtat 0 isR0 = (0, 0, 0). If the first symbol of the

string is letter ‘a’, the initial input neural vector wouldiBe (1, 0, 0). Assume the initial state to t%ﬂl, 0, 0, 0).
The stack is shown in Fig. 5(a).

@) t=1.
Initialize the NNPDA with the valueS° andRC (as shown in Fig.3). After one iteration of Eq.(3), the new state

st and new action Aare obtained. Assume that the action outputlis A.6, then push symbol ‘a’ with length = 0.6
onto the stack. The new status of the stack can be represesitatkagnbol[1] =’a’, stacklength[1] = 0.6andtop=1.

Then the next readinglﬁvould be (.6, 0, 0). The stack is shown in Fig. 5(b).
If the next symbol in the input string is ‘b’, the= (0, 1, 0). Substituting the new valués S and R into Eq.(3)
generates the next time values. Repeat the procedure.
(3) some later time t.
After several possible pushes, pops and no-ops, the current stack memory may have stored several continuous
symbols as in Fig. 6(afop = 4 (four symbols are stored)acksymbol[] = (‘a’, ‘a’, ‘b’, ‘a’) and stacklength[] = (0.32,
0.2, 0.7, 0.4). Since the stack is read down from the top with depth = 1, the current stack reading woui®le R
0.6, 0) as shown in Fig. 6(a). Assume the input symbol is ‘a’, sd'thdfL, 0, 0). The state vector can also be read
from the state neuron output ds S

top -
Th
TH t ajo4 a jo4 BOIS %%rt(l)?fn is
o R b Jo.46 byA =-0.86
: il tOpT b 024
a o2 ot d 102
a 7 a fos
0.32 7 _
a)time t Fig. 6 (b) time t+1

Fig.6 Continuous stack at (a) time t and (b) time t+1.

12



(4) time t+1.

SubstituteS, I' andR! into Eq.(3) and the next time values are obtained. If the a&fidn=-.86, a segment of the
stack with content of length = 0.86 is popped. This “popped segment” includes 0.4 of ‘a’ and 0.46 of ‘b’ and the stack
now hagop = 3 (three symbols are lefgfacksymbol[] = (‘a’, ‘a’, ‘b’) and stacklength[] = (0.32, 0.2, 0.24). The next
stack reading would be'R = (.52,.24, 0) (formed by 0.32 of ‘a’ plus 0.2 of ‘a’ plus 0.24 of ‘b’).

This procedure is repeated until the end of the input string. The classification of an input string is determined by
examining the final state neuron output and the stack length. The criterion for training and classification will be dis-
cussed in the next two sections.

3.4 Objective Function

The objective function to be minimized is defined as a scalar error measure which is a function of both the end
state and the stack length. For a conventional pushdown automata, either the end state or the stack length alone is a
sufficient criterion to determine the acceptance of input strings [Harrison78]. If either the end state reaches a desired
final state, or the stack is ended empty, the input string is legal; otherwise illegal. However in training the NNPDA we
find that a combination of these two criteria seems necessary. (Initially, we tried only one of these criteria in training,
but training was unsuccessful. For the stack-empty only criterion, the stack actions always converged to pop. For the
final-state only criterion, the stack actions were not affected.) We speculate that this is because of the existence of too
many local minimum in phase space. Thus, an objective function consisting of only one criteria of final state or stack
length will have a very complex phase space configuration so that the local learning algorithm - gradient descent -
would not be able to drive the system from the local minima. Therefore, a legal string is required to satisfy both con-
ditions: (1) at the end the NNPDA reaches a desired finalatdtg) the stack is empty.

Define the stack length at tiniéo beL!. Then,L! can be evaluated recursively in terms of the action vlue
L't = L+ A (14)

because only the push or pop actions can change the length of stack. The initial coriditiob éd the constraint

L'> 0 should be imposed at all the times. et be the final time at the end of input string. For legal strings the
straightforward error functio& to be minimized could be

E= (§-Sh7+(h* (15)
where$; is the desired final state. However, this error function could not be used to train illegal strings. For illegal
strings the desired value of functiBris not known. Maximizing the saneerorE as in Eq.(15), in general, would not

give a correct answer becausé an unbounded function and an illegal string may not end with a long stack length.
However, replacing; in Eq.(15) with a desired end state for illegal strings and then minintizprgsents the same

problem since illegal strings are required to end with an empty stack (in effect avoid using stack). The main difficulty
is that there is not enough information to decide the desired value of stack length for illegal strings.

In general, the following reasoning is applied. Since a legal string reqoitega) the desired final sta@=$;,

and (b) an empty stack_{ = 0); an illegal string should require the opposiither (a) the final state be a large mea-
surable distance froi®, or (b) a non-empty stack (= 1). Although other training requirements could be defined, in
practice, both of these conditions are successfully used.

One way to implement the above requirement is to introduce a unified error fuaetlinh can be used to train
both legal and illegal strings. For simplicity we assign the final state(s) in such a way that only on&pgoutput

is to be checked at timeat the end of input string. We requﬁi@ST =landL"= O for legal strings anSNST =0or

LT > 1 for illegal strings. In this case the unified error function to be minimized for both legal and illegal strings can be
defined as

E = (v+LT—S,TuS)ZEe2 : (16)

wherev is a parameter assigned as a target value for each training example. For legal-sttiags for illegal strings
v =min{0, SNST-LT}. The learning algorithm is derived by minimizing this error function with the proper value of
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for each input string. Correctness of the error function(16) can be checked separately for each string. If the input string
is legal,v = 1. Then, minimizinge corresponds to the requirement tﬁ@f:l andL"=00 the desired final state and

empty stack. If the input string is illegal, we require min{0, S\,ST—LT}. There are two possible cases. First, when
Sus>L", letv =0, which implies that minimizing corresponds to driving' to approact§ys'. The minimum o
can be reached 8¢ =LT. This means that for each input string (neuron actm@r is discretized to 0 or 1) one of
the following requirements is meSs =0 or LT=1. Second, ifL" is already greater thas, then
v=min{0, Sys'-LT}=Sys -L". This leads t&=0, implying “do not care” or “no error”. Thus, in the discrete limit, the
combination of the two cases corresponds a requirement for illegal strings: mgﬁao (illegal state)or
LT> 1(non-empty stack).

From the above analysis for analog valueS\@f, the expressioni=S.'-L" could be considered as a continuous

measure of howvell both of the two conditionSys' = 1 andL" =0 are satisfied. The desired value for legal string is
H=1 and for illegal stringbl<0. ThisH function also provides a simple test measure for new input string strings. After
training we will use the same meashl@S\,sT-LT to test the generalization capability of the NNPDA on unseen input
strings. The measut¢will be evaluated for each input string. A string is classified as legat.ib, otherwise illegal.

Another criterion to assist learning is the “trap state,” one of the “hints” used by [Das93]. This “trap state” is used
in training the non-trivial Palindrome grammar; details are discussed in Section IV.

3.5 Training Algorithm

The training algorithm is derived by minimizing the error function using a gradient descent optimization method.
There are currently two ways to implement gradient descent optimization in recurrent neural networks: the chain-rule
differentiation can be propagated forward or backward in time. The forward propagation method is also known as Real
Time Recurrent Learning (RTRL) [Williams89], which propagates a sensitivity matrix forward in time until the end
of an input sequence. Then, error correction is performed and the weights are modified according to the error message
and the sensitivity matrix. Back-propagation-through-time [Rumelhart86b] can be applied to recurrent network train-
ing by unfolding the time sequence of mappings into a multilayer feed-forward net, each layer with identical weights.
This method requires memorizing the state history of input sequence and, whenever the error is found, the error must
be propagated backward in time to the starting point. Due to the nature of the backward path, it is an off-line method.
In principle, both methods can be generalized to couple the external stack memory with recurrent neural network and
train the NNPDA. RTRL is desirable for on-line training because the weights can be modified immediately after the

error is detected without waiting for back-propagation. But it has a complexity dj €ghipared to the complexity

of O(N3) for back-propagation through time (N is the number of neurons and first order connection weights are as-
sumed). For the task of grammatical inference, on-line training is not necessary because error messages are only given
at the end of input strings. But, since the derivation of forward propagation algorithm is more straightforward for NNP-
DA, we first consider the generalization of RTRL for training the NNPDA.

From Eqgs.(10) and (16), the weight correction for gradient descent learning becomes

T
LT IS0
- _ T_oT —_ so 17
AW = —n (v+LT=§)) e = 50D (17)
wheren is the learning rate and the partial derivativeis'andS"ys with respect to weight matr can be calculated
recursively. The formula falLY dW is easily derived from Eq.(14)

aL'*t oLt oA

W - owaw (18)

The recursions fadSY dW anddAY W are found by differentiating the controller dynamical equations. For example
the second-order connection weights of Eq.(5) yield
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It should be noticed that Eq.(19) is an abbreviation of four equatiodstdy/ oW, 0S™*% /9WRy,, AT 1/ aWsy,
andaAtl/ avvak For simplicity the notations & andA! are combined into one equation. Tha{1);, component
of vectorS'is Al. The functionh;(X) represents derivativegy(x) for i =1 toNg andf'(x) for i = Ng,4. WE andW? are

similarly combined such thatt;, representkl\/”ksfor i=1 to Ng andW, ka for i=Ng+1. (Note the assumption tHdg=1
andNg=N,). The learning algorithm formulas for the third order state transition and “full order” action mapping are
presented in Appendix B.

From these recursions and knowing the initial conditior@S¥BW, dA%W, their values at a later time can be
evaluated by Eq.(19). But, the recursion is not completedeﬁIllaW is expressed in terms @8Y/0W, dAYoW and
ARYAW. This relation may not be easy to find, since the stack reading is a highly nonlinear function of all the previous
actions and input symbols, as shown in EqQREF(AL A2, ..., At 11,12, ... 1Y). The approximate recursive relation

for AR /oW can be derived (for details see Appendix A). To the lowest order in its expansion, we have (from the
derivation in Appendix A)

Re . ) 20
oW~ G =5 awy (20)

wherer ;' andr.! are the ordinal numbers of neurons that represent the top and the bottom symbols respectively in the

readingR!. Consider for example the case where after the execution of the atiba stack is (from bottom to top):
(0,0.9,0), (.2,0,0), (0,.7,0) and (0, 0, .15). Th&B andr,'=1, because the symbol (0, 0, .15) on the top is the third
symbol and the symbol (.2, 0, 0) on the bottorR'a$ the first one.

The complete recursive equations Eqgs.(18), (19) and (20), together with the NNPDA dynamical equations can be
forward propagated with initial conditiod$%dW=0, dA%W=0 anddR%dW=0. The initial values oh? andR° are

zero and the initial sta@ could be assigned any constant. At the end of the input string, the weight correction Eq.(17)
is evaluated. The final weight correction can be performed using either batch or stochastic learning.

However, there is the case of “pop empty stack.” If the total length of the remaining symbols in the stack is less

than the value of a pop actidrf'&<|At|), a ‘pop empty stacloccurs. For a well designed conventional pushdown au-
tomata pop empty stacknever occurs. But, in learning a PDA, whether with a NNPDA or another method, such an
action seems almost inevitable. We devise two possible ways to deal with this case. First, the input sequence can be
interrupted whenever a “pop empty stack” occurs and weight corrections are made to increase the sta®length (

aLYaW). And, second, when we have “pop empty stack” and the input string is illegal, no weight correction is made.
Conversely, weight corrections are made for legal input strings.

3.6 Extraction of PDA from a Trained NNPDA

After training with examples of a context free grammar, the NNPDA in general could recognize correctly the
training set up to a certain length of strings. But, because of the analog nature of NNPDA, the recognition results are
not “correct” in the discrete sense. The final state output are analog values between 0 and 1, which are usually reduced
to the binary values of 0 and 1 by a threshold of 0.5. But, analog errors from intermediate states still exist and could
accumulate as the input strings become longer. To extract from the trained NNPDA a PDA which represents the un-
derlying CFG, we devise a quantization procedure that converts an analog NNPDA to a discrete PDA. To simplify the
state structure of the extracted discrete PDA, a minimization procedure for the PDA must be devised.

The quantization can be performed as follows. First, the action neuron(s) is quantized into three discrete values:
-1, 0 and 1 according to the rule
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0, if (JA<A)
A= 1, if (A<-A") , (21)
U, it (asA)

where the threshol@* was chosen to be 0.5 for most of our numerical simulations (However, our experience indicates
that the quantization results do not seem sensitive to the selecidwaifies and other values besides 0.5 could be

used). In this way the continuous stack will behave like a discrete stack and generate the discrete actions: push, no-op
and pop actions. Next we perform a cluster analysis of the internal states. All input strings that have been recognized
correctly are fed into the trained NNPDA and a set of analog internal states is generated. This set is divided into several
clusters using a standafdmean clustering algorithm [Duda73]. The number of clustassdetermined by minimiz-

ing the averaged distance from each state to its cluster center (in case the clusters are not well separated more training
with these strings may be needed). After the cluster analysis store the cluster centers as the representative points of
guantized internal states, then a PDA with discrete states is created and the number of states is equal to the number of
clusters. During further testing, each analog internal state is quantized to its nearest cluster representative points and
the discrete transition rules can be extracted. Now construct a transition diagram and this is the extracted PDA.

In some cases, instead of quantizing the whole state vectors, quantizing each of the state neurons is also useful. If
the state neuron’s output is distributed near their saturation values (0 or 1), a binary quantization is néip'ml, ie.

quantized to one i§; > 0.5 and zero otherwise. If the state neural activity is uniformly distributed, more quantization
levels are needed. The quantized NNPDA is tested with training or test strings again. If the recognition is incorrect, a
finer re-quantization is needed (see [Giles92a] for a discussion of a similar method for FSA extraction for trained NN-
FSA).

When a linear “full order” mapping is used for the action output (linear “full order” mapping is the linear form of
Eq.(8)), then the quantization rule of Eq.(21) can be replaced by quantizing the connection weights by:

Do, if (WAl <wWh)
WA = -1, if (WR<-W ), (22)
S (WR>W )

whereW? are the connection weights for action output ¥fids the threshold. For details, see the numerical simula-
tion for learning the Palindrome grammar.

After extraction of the discrete PDA, we reduce the state structure by pruning equivalent states. It is known that,
in general, there exists no minimization algorithm (as for FSAs) for obtaining the unique minimal PDA; and that there
exists no algorithm to tell whether or not two context free grammars or the two PDAs which accept two context free
grammars are equivalent [Hopcroft79]. But, for a given specific structure of a PDA, the minimal size can be obtained
by exhaustive search. For instance, assume a specific structure of a deterministic PDA, which pushes and pops only
one symbol per input and the stack symbols are the same as input symbols. For this type of PDA each state transition
can be characterized by a three-tuple conditin@,§), wherea is input symbolf is stack reading symbol age 1,

-1, 0 represents push, pop and no-op. If we consider each combinatiof,gf &s an equivalent input symbol of a
regular grammar, the extracted PDA transition diagram is equivalent to a finite state automaton transition diagram
where a transition occurs each time a “symbo|B(y) is seen. Thus, the minimization algorithm for FSA can also be
effectively used to reduce the extracted PDA. For detailed examples, see the next section.

IV.NUMERICAL SIMULATIONS (learning grammars)

To illustrate the learning capabilities of the NNPDA, we train the NNPDA on a finite number of positive and neg-
ative strings of three context-free grammars. Different types of NNPDA and training procedures are discussed for each
particular problem set. For all problems the external stack of the NNPDA is initially empty. All simulations were per-
formed with 64 bit, double precision. For training we started with short strings and gradually increased the string length
[EIman91]. For some simulations only 5 significant figures are presented.

4.1 Balanced Parenthesis Grammar
We train a second-order NNPDA to correctly recognize a given sequence of “balanced” parentheses. Input se-
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guences consist of two input symbols ‘(" and ‘)’ and an end symbol ‘e’. Unary input representations are used with three
input neurons, where (1,0,0), (0,1,0) and (0,0,1) represent respectively ‘(, )’, and ‘e’. The stack action is controlled

by one action neuroft. The number of state neurons is chosen empirically to be three, since the correct PDA control-
ler is known to be a two state machine. The initial state is (1, 0, 0). At the end of the input string the value of third state
neuronS; is checked. During training, the target valu&gis 1.0 for legal strings and 0.0 for illegal strings.

The training set consists of fifty strings: all thirty possible strings up to length four and twenty randomly selected
longer strings up to length eight. The training criterion and algorithm (RTRL) are the same as described in Sections
3.4-5. For each run the initial weights are randomly chosen from the interval [-1,1]. For 5 different runs approximately
one hundred training epochs are needed for the NNPDA to converge, i.e. learn the entire training set. To speed up train-
ing, we introduce the empirical condition that the input sequence is stopped and the stack length isAtdeed (
aLY oW if a “pop empty stacloccurs during input of an illegal string. In this case, after only twenty epochs of training,
the training set is learned. During testing, all the strings up to length twenty can be correctly recognizedzﬂtotally 2
strings). The acceptance criterion is discussed in Section 3.4. Due to analog error accumulation, longer strings could
not be correctly recognized. To extract a discrete PDA the state neuron activation [0, 1] is quantized into five segments:
(0, 0.125), (0.125, 0.375), (0.375, 0.625), (0.625, 0.875), (0.8755, 1) or five discrete §al@e$.25, 0.5, 0.75 and
1.0, each corresponding to one segment. After quantization, the analog NNPDA becomes a discrete PDA. To check
its performance, randomly chosen longer strings (length 50 to 100) were tested. All strings incorrectly classified by
the analog NNPDA were now correctly recognized by the discrete PDA.

pop empty stack

(0! (p1 '1)
start 1,01

o

(0,(p,-1)

Quantized states:
@D=@00 @)=, 25 29
@ = (1., .25, .25) @ = (.75, .25, .75)

Fig. 7
Fig.7 The pushdown automaton (PDA) extracted from the NNPDA after the balanced parer
grammar was learned. The discrete states (1), (2), (3) and (4) are obtained by quantizing the nt
values of state neurons into five levels: 0, .25, .5, .75, and 1. State (1) is start state. State (4) is t
end state. Just before the end symbol, a legal string must end at state (2) with an empty stack.

The transition diagram extractedby tracing all possible paths of state transition numerically. This is easily done
using a tree search method. Denote each node of the tree as a combination of state and stack reading. Starting from the
root node, the initial state and empty stack, input all possible symbols at each node and trace the path of each symbol
by calculating the next time state, stack reading and stack operation in terms of quantized NNPDA. Each time a new
node is calculated, this node is checked to see if it has already been created in the previous level of the tree. If it is not,
create this node and construct a transition line from the old node to the new node. Label the stack operation for this
transition. Repeat this procedure at the new node until no additional new node occurs. The result of the tree structure
can be translated to a transition diagram with each state as a node. As shown in Fig.7, each circle represents one quan-
tized neural state and the arrows represent the state transitions. The notattdpm(kig.7 represents a transition that

occurs when the input symbollis ‘a’, the stack reading'= ‘b’ and action neuron outputAg=c. The two parentheses
‘("and ‘)’ are denoted by ‘1’ and ‘0’ and an empty stack readingpbyt'is seen from Fig.7 that when a ‘1’ is presented
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to the NNPDA, a ‘1’ is pushed onto the stack (due to rulegl(land (1,1,1)). If a ‘0" is presented to the NNPDA, a

‘1’ is popped from the stack (due to (0,1,-1)). Whenever a ‘0’ is presented and the stack is empty, the “pop empty stack”
occurs. An input string will be classified as legal if, just before the presentation of the end symbol, the PDA is at state
2 and the stack is empty. Otherwise the input string is illegal. i.e. either “pop empty stack” occurs or the stack is not
empty).This is indeed the desired PDiA.addition to the start state (state 1), only one state (state 2) is needed. States
3 and 4 are only needed to check if the stack is empty at the end of string.

4.2 1"0" grammar.

The language of thE'0" grammar is a subset of the parenthesis grammar"DAePDA needs at least 2 internal
states in order to filter out the strings legal for the balanced parenthesis grammar but illegalfo? grammar
[Hopcroft79]. The neural controller we used to learni*@ grammar had 5 state neurons.

A small training set, 27 short strings with 12 legal and 15 illegal strings shown below was initially used for train-
ing:

nl nll n1000 y1100 n1011
y10 y10 y1100 n110010 y10

n0 n100 n1111 y11110000 n1101,
y10 y10 y1100 n110100

n00 n1001 n1110 y1111100000

y10 y1100 n101100 n1010

where the letter ‘n’ and 'y’ in front of the strings denote the classifications “no” and “yes1"Uhgrammar contains

very few legal strings; amoné‘ 2trings of length L there is only one legal string 11...100...0. Hence, the training set
replicates some of the short legal strings “10” and “1100” between illegal strings in order to give balanced training set.
For this example, the empirical rules (or “hint”) of “pop empty stack” or “dead state” are not used. Whenever a nega-

tive stack length appears, we stop and modify the weights to increase the stadk igwyth dLY0W). This is equiv-
alent to increasing theptish action valueA! to avoid ‘popempty stack”.

After 100 training epochs, the NNPDA correctly classified the training set and was tested on unseen strings. Up
to length eight, all strings are classified correctly except the following six strings:

n11000 n1100100 n01110000 n10101000 n11011000 n11001100.

These strings are then added to the training set and the NNPDA is retrained for another 100 epochs. Testing found 8
errors for all strings up to length nine. The misclassified strings are again added to the training set. After repeating this
procedure five times, the trained NNPDA correctly classified all 2,097,150 strings up to length twenty and 20 random-
ly chosen strings up to length 160.

To analyze the learned NNPDA, the state neurons are quantized into two leveBx@.5 and 1 (otherwise),
and the action neuron is quantized into three levels: -1, 0 and 1 as before. Starting from the initial state (1,0,0,0,0) and
empty stack, all possible state transitions could be identified by inputting different strings. The resultant transition di-
agram is shown in Fig.8, where six binary states: (1,0,0,0,0), (1,0,0,0,1), (0,0,0,0,1), (1,1,1,1,1), (0,0,0,1,1) and
(1,0,1,1,1) were found to form a close loop for any input strings of ‘0’ and ‘1’. For clarity, the transitions for inputting
an end symbol are not shown. Without end symbol, the state (1,1,1,1,1) is the desired final state for legal strings. All
other states are illegal final states. This is because that starting from (1,1,1,1,1) with an empty stack, an end symbol
input will lead to state (0,0,0,0,1). But, in all other cases (either starting from state (1,1,1,1,1) with non-empty stack or
starting from other states) an end symbol input will lead to an illegal final state (*,*,*,*,0), a state with last neuron
activity being zero.

The state transition diagram of the extracted PDA can be reduced using procedures previously discussed. The re-
duced transition diagram is shown in Fig.9, where the states 1, 2, 3 and 4 represent the quantized states (1,0,0,0,0),
(1,0,0,0,1), the combination of states {(1,1,1,1,1), (1,0,1,1,1)} and the combination {(0,0,0,0,1), (0,0,0,1,1)} respec-
tively. In the reduced diagram, state 3 is the desired final state. Recall that acceptance of a legal string requires both a
desired final state and an empty stack.
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Fig.8 The state transition diagram extracted from the trained NNPDA where the training
ples were from the context-free gramma@™ In the figure, each five-component column vec
represents a state of the PDA which is obtained by quantizing each of the state neurons to tt
values: 0 and 1.

0, ¢ 1)
start | (1,9 1) (0,1,-1) l ((% p 11))
L
(1,0,1)
(1, T 1,1,1)
T (0,1,1)
Fig. 9 111

Fig.9 The reduced PDA transition diagram of 1H@" grammar. This diagram is obtaine
by grouping together the equivalent states in Fig.8 and assigning one representation to e
group, where the states 1, 2, 3 and 4 represent respectively the quantized states (1
(2,0,0,0,1), the combination {(1,1,1,1,1), (1,0,1,1,1)} and the combination {(0,0,0
(0,0,0,1,1)}.

4.3 Palindrome grammar.
The language of the deterministic Palindrome grammar contains all strings in the idtciNpfivhereW repre-
sents an arbitrary string of given symbols (here, we use two synabalsd ‘b’), W is the reversed order ¥, and
‘c’ is an additional symbol to mark the boundary symbol betWéandW . For example, strings “abaaabbcbbaaaba”
or “bbabbacabbabb” are legal.
The minimal (to our knowledge) palindrome PDA is shown in Fig. 10. Starting with state (1), every input symbol
‘a’ or ‘b’ is pushed onto the stack and the PDA remains in state (1). After an input symbol ‘c’ the PDA moves to state
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(2). When in state (2) the PDA pops every stack symbols if the stack reading (‘a’ or ‘b’) matches the input symbol;
otherwise it moves to a trap state. The input string is classified as legal only if the PDA ends atsitites @)ty
stack. In this example no end symbol is used.

This grammar has been found difficult to learn [Das92]. In our numerical simulations, both second order and third
order nets were not able to learn a correct PDA for palindrome grammar. Two major difficulties were found. First, we
lack sufficient information to supervise the stack actions for illegal strings. In most simulations the NNPDA did not
learn to push correctly every symbol into the stack for illegal strings like “ab” and “babbaa” since it was not told what
should be the target stack length during training. After seeing ‘c’ as in strings “abcba” (legal) or “babaacaab” and “ba-
baacabb” (both illegal), the NNPDA is supposed to compare input symbols with stack readings and perform a pop if
they match. But, since those symbols before ‘c’ were not stored in the stack as discrete symbols, the NNPDA could
not compare the right stack symbols with input and perform the correct pops. Although, in learning the balanced pa-
renthesis grammar a NNPDA had been able to learn a correct pop, this is a different level of stack operation.
Comparing the two transition diagrams in Figs.7 and 10, it can be found that the palindrome grammar involves a more
sophisticated level of stack manipulations than those in the balanced parenthesis grammar PDA. The stack of balanced
parenthesis grammar is in fact only a counter. As shown in Fig.7, all the state transitions and stack actions can be de-
cided totally by the combination of input symbol and current state, they do not really depend on the contents the stack
is reading. (In this sense, only a second order correlation is needed.) But, the stack actions for the palindrome grammar
require a third order correlation and actual dependence on the stack contents.

The second problem is the limitation of neural network structures. [Das92] shows that second and third order neu-
ral network structures are not able to learn certain grammars without “hints.” Moreover, our simulations show that
even with hints using second and third order networks, the palindrome grammar cannot be learned. The limitation of
the neural network structure for learning the palindrome is now discussed. For example, the Palindrome grammar re-
quires the action rules (a, a, 1) before seeing ‘c’ and (a, a, -1) after seeing ‘c’. For these two rules, the input and the
stack reading are the same but the action is different: one is push and the other is pop. So, according to the third order

dynamics, the stack actions could be writtenf(W [$ +8) where the summation over input symbols and stack read-

ings for these two cases have already been performed and W is the result of the “equivalent weights”. The problem
becomes one of learning the weigitsindd such thaA=1 for one set of state${} (before seeing ‘c’) ané=-1 for

another set of state${} (after seeing ‘c’). Clearly, two arbitrary sets of state vectors may not be linearly separable
unless they all have a unary representation (or mutually orthogonal in general). (This is the assumption for justifying
the usefulness of third order networks.) However, during learning the numerical neural states most likely to occur are

neither unary nor mutually orthogonal. To overcome this problem we introduced the idea of a “full order” linear net
for stack action mapping.

6. 1 &5 @
start =(é> (c,00) - % (a,B3, D) =D
final state trap state

Fig. 10

Fig.10 The simplest PD&ansition diagram for palindrome grammar, wheer@ndf3 rep-
resent any combinations of input symbols and stack readings other than (a, a) and (b, |

(1). Full Third-order Network Structure.

The third order connection weights for state dynamics as in Eq.(5) are used, and the stack action is governed by a
linear “full order” mapping. The parameters are: (i) number of state neNgeds(Equivalent to the number of binary
states = 16); (ii) Number of input symb\=3, number of stack reading symbdg=4. Three input neurons for sym-
bols ‘a’, ‘b’ and ‘c’ (no end symbol) and an additional neuron is introduced to represent the empty stack. This is
necessary to supervise the learning to avoid the “empty stack” situation. (iiij) One action Ngeforin this case,

the state transition weights as in Eq.(5) are a four-dimensional m&fs}4][4][3] and the stack action weights are
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a three-dimensional matri%A[16][4][3]. The dynamics of the neural controller are

NS NR NI
+ O
ST =gy Y Y Waa (SRUD + 65
j=1k=1I=1
ZNS Ne N
ATE= NS S Wi (PSR
J=1k=11=1

, (23)
where the nonlinear functid(x) in Eq.(8) has been replaced by a linear fundifgn= x and the extended state vector
P;is defined as

NS
Py = [ (BuSi* (1-8,) (1-S). (24)
m=1

In EQ.(24), the symbdl,, inside the product represents the binary values of 0 and 1, which are determineghRy the
bit of the binary number (J-1). For example, if J-1 = 10, its binary form is 1010, whidhséi{s1, 5,=0, d3=1 and
0,=0. The summation of all components of the extended Bjaseequal to one, i.e.

ZP‘J =1, (25)
J=1

whereP; can be interpreted as the probability for a NNPDA to be in each of\'?rte'r&ry states. To guarantee that
the action output be in the range:<A'<1, the stack action weights are truncated to the rarp@241.

It can be seen that Eq.(25) plus the truncationffo [-1, 1] will automatically guarantee the action output in
Eq.(23) to be within the rangel<A*'<1. Later, upon performing the post-learning quantizatioh®b three levels:
-1, 0 and 1, each of the action weighfd will represent an action rule, which were used in Figs.7- 10. For example,

WA3][2][1] = -1 means that, starting from the third binary state, e.g. (0,0,1,0), if the input symbol is the first one, e.g.
0, and the stack reading is the second one, e.g. 1, the stack action will be a pop, i.e. arule (0, 1, -1) marked besides the
transition arrow from state (0,0,1,0) to the other state.

(2) Learning Criterion.

Some modifications have been made to the learning objective function previously discussed in Section 3.4. Both
state and stack length are used to discriminate the legal and illegal strings. But, instead of using the usual desired final
state and non-desired final state, we introduce the “trap state” and “non-trap state” to discriminate the “potentially legal
string” and “definitely illegal string” [Das93]. Input strings “abbbacbab”, “abbbacbbababaaab”, ... , can now be clas-
sified before seeing the end of the string. This is because whenever symbol ‘b’ occurs after ‘c’, an ‘a’ in front of a ‘c’
is not matched and string is illegal irrespective of the remaining symbols. In that case, we force the NNPDA to go to
the “trap state” and stop further learning. This requires prior knowledge about the underlying language in order to suc-
cessfully supervise training. Here, we assigned the last state neuron to be 0 for the “trap state” and 1 for the “non-trap
state”. For input strings not trapped into the “trap state,” training is as usual. The weight updates become

AW = n[(s* —st)g%/t+ ( —Lt)%vt] , (26)

whereS* and L* are the target values of state and stack length. The target state is determined by the “trap state” or
“non-trap state”, and the target stack length is zero for a legal string. Since the target stack length for an illegal string
is not known, a small driving force is used empirically to slightly increase the stack length for all illegal strings ending

at a “non-trap state”, i.eL*-L'= 0.1 ifL'>0.9 andL*= 1 if L'<0.9. This error supervision is based on the following.
Although the exact length of an illegal string is not known, it must be greater than or equal to one if the string ends up
at a “non-trap state”. For illegal strings ending at a “trap state”, the stack length is unaffected.
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(3)Training Set.

Two training sets are used. The first training set includes all 39 strings up to length three. The second contains 363
strings up to length five. Since the number of legal strings is much smaller than the illegal strings, the training set is
balanced by adding all four legal strings up to length five to the first training set and all eight legal strings up to length
seven to the second training set. In each training set the legal and illegal strings are put in two separate groups. During
training, we present a legal string between every five illegal strings and make the learning rate for legal strings five
times larger than that of illegal strings. Each training set was trained for 200 epochs.

(4)Training Algorithm.
The RTRL learning algorithm is generalized to the dynamics of Egs.(23) to (26) which can be derived from the
“chain rule” and forward propagating the error rate. Details are listed in Appendix B.

Input string = “acabc”, final stack length = 1.8805 > 0.5 -> classification lllegal.
input state action stack segment lengths stack symbols

a | (0.0079, 0.9952, 0.0160, 0.9580) 1.0000 | (1.0000) (a)

¢ | (0.0010, 0.0162, 0.9994, 0.9599) 0.1323 | (1.0000, 0.1323) (a,c)

a |(0.0026, 0.9982, 0.9971, 0.9995)- 0.9869 | (0.1454) (a)

b |(0.2055, 0.9749, 0.6775, 0.0003) 0.7667 | (0.1454, 0.7667) (a,b)

c |(0.0030, 0.9977, 0.4301, 0.96841) 0.9684| (0.1454, 0.7667, 0.9584) (abc)

Table 1a.

Input string = “bacab”, final state = 0.9993 > 0.5, final stack length = 0.0318 < 0.5 -> classification Le(
input state action stack segment lengths stack symbols

b | (0.9183,0.0831,0.9777,0.970B) 1.0000 | (1.0000) (b)

a | (0.9934, 0.9875, 0.1103, 0.9999) 0.9540 | (1.0000, 0.9540) (b, a)

c |(0.0030, 0.1921, 0.9995, 0.9990) 0.0625 | (1.0000, 0.9540, 0.0625) (b,a,c)

a |(0.0021, 0.9989, 0.9961, 0.9998) 0.9989 (1.0000, 0.0176) (b,a)

b | (0.0031, 0.9089, 0.9994, 0.999B) 0.9858 | (0.0318) (b)

Table 1b.

Input string = “bachba”, final state = 0.0054 < 0.5, final stack length = 3.6539 > 0.5 -> classification llle
input Internal state action stack segment lengths stack symbols

b | (0.9183,0.0831,0.9777,0.970B) 1.0000 | (1.0000) (b)

a |(0.9934, 0.9875, 0.1103, 0.9999) 0.9540 (1.0000, 0.9540) (b,a)

¢ |(0.0030, 0.1921, 0.9995, 0.9990) 0.0625 (1.0000, 0.9540, 0.0625) (b,a,c)

b |(0.2890, 0.9472, 0.9021, 0.0260) 0.6850 | (1.0000, 0.9540, 0.0625, 0.6850) | (b, a,c,b

a {(0.0190, 0.99602, 0.4490, 0.0054)0.9524 |(1.0000, 0.9540, 0.0625, 0.6850, 0.9524p, a, c, b, a|)

Table 1c.

Table 1. A demonstration of the step by step working process of the trained NNPDA. The three example s
“acaba”, “abcba” and “abcab”. The state of the NNPDA at each time step is displayed in each row using the data liste
five columns. For all the cases, the initial neural state is (1, 0, 0, 0) and the initial stack reading is “empty stack”. T
column is the input symbol, the second is the output of internal neural Stefresented as a four-dimensional vector, 1
third one is the action neuron output And the fourth and fifth are the stack status at each time step. The actual accu
the calculation was 64bit double-precision, but only 5 significant figures are shown.

(5) Simulations of Training.

The first training set described above was used to train the NNPDA for 200 epochs. Then, the second training set
was used for another 200 epochs. The “averaged classification error” for each training set was monitored during train-
ing. After a total 400 epochs of training, it converged to ~ 0.06. At the end of each string the error is determined by
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E= (S -50%+ (1 -L"Z. 27)
The values of S* antd* are specified as before. The only difference from before is that for illegal strings thé-&rror (
- L") is set to zero it is already greater than one.
The trained NNPDA is tested on new input strings. In testing the “trap state” monitor is not used to stop any se-
guence. The classifications criterion is: LEGAifth Sy¢>0.5andL" < 0.5; ILLEGAL otherwise. The 29,523 test

strings include all possible strings constructed with symbol ‘a’, ‘b’ and ‘c’ up to length nine. [The following results
are given for 5 significant figures, though 64bit floating point double precision was used.] The test result shows only

four errors: three legal strings “ababcbab®’y(=0.9898,L'=1.0776), “abbacabbaS{y<=0.9973,L=0.7301) and
“bbbacabbb” §'\=0.9994,.'=0.5302) are classified as illegal becali$20.5 and one illegal string “abcbbbcbb”

(STNS:0.9744,LT:O.4543) is classified as legal beca&§ﬁ5>0.5 andL"<0.5.To illustrate the inner workings of the

NNPDA for classification after training, consider the examples in Table 1, strings “acabc”, “bacab” and “bacba’. The
processing status at each time step is displayed using the data listed in the five columns. For all the cases, the initial
neural state is (1, 0, 0, 0) and the initial stack reading is “empty stack”. At each time step the first, second, third, fourth

and fifth columns are the input symbol, the four-dimensional neuralState action neuron outpat, and the stack
segment length and symbol, respectively. For example, the combination of (1.0000, 0.1323) in the fourth column and
(a, c) in the fifth column represent a stack configuration: symbols ‘a’ at the bottom with length = 1.0000 and ‘c’ at the
top with length = 0.1323.

See the first example in Table 1a. The whole string is an illegal pattern “acabc”, but the first three symbol consists
of a legal string “aca”. When “aca” is fed in, the trained NNPDA first pushes ‘a’ with length 1.0000 into the stack, then
pushes again the second input symbol ‘c’ with length 0.1323 and finally pops the stack with total length 0.9869. In the

stack remains a symbol ‘a’ with final lengtfi= 0.1454(<0.5). The internal state varies and reaches a final state such
that neurors'\=0.9995(>0.5). Therefore, the string “aca” is classified as [&)g>0.5 and_"<0.5). Notice that all

three states are a “non-trap state” (becalige> 0.95 for all cases). But, when an additional symbol ‘b’ is read, the
state changed to a “trap state” indicating that “acac” is an illegal string. During the training we ignored the rest of the
sequence and concluded that no matter what the next symbol, the entire string would be illegal. But, in the test se-
guence, the “trap state” monitor is not used and classification of any strings will be decided at the end of each string.
After feeding in another symbol ‘c’, the state becomes a “non-trap state” (not a desired state). But due to training, the

stack actions in the last two steps become pushes and the final stacksleﬂgm8805>0.5, classifying the entire
string as illegal.

In Table 1b, the trained NNPDA deals with a legal string “bacab” nearly perfectly. The controller first pushes ‘b’
and ‘a’ onto the stack and then moves to a special state (0.0030, 0.1921, 0.9995, 0.9990) after seeing ‘c’ (but does not
push much of ‘c’ into the stack since 0.0625 is a tolerable error). It pops ‘a’ and ‘b’ out of the stack when the input
symbol matches the stack readings. Concurrently, the state remains in the “non-trap state” as desired.

The Table 1c shows what happens if we reverse the order of last two symbols ‘a’ and ‘b’ in the last example.
Again, the trained NNPDA behaves nearly perfectly. When the fourth symbol ‘b’ is fed in, the stack reading is almost
a complete ‘a’ (a combination of ‘c’ with length 0.0625 and ‘a’ with length 0.9375). Since the input ‘b’ does not match
the stack reading ‘a’, the NNPDA enters a “trap state” and the string “bacb” is classified as illegal. Furthermore, if
another symbol ‘a’ is seen, the NNPDA moves to another “trap state”. So, “bacba” is still illegal. Concurrently, the
stack actions generated from the “trap state” are all pushes. These increase the stack length so that the classification is
“far” from legal.

Although the classifications for these three examples are all correct, in the sense of a correct discrete PDA, there
are still some numerical errors. These numerical errors will accumulate over time and possibly misclassify an input
string that is too long. One of the four incorrect classifications in our test result, the string “ababcbaba”, is illustrated
in Table 2, where the general behavior of the learned NNPDA is the same as that of a discrete PDA. But, due to the
accumulation of numerical errors, at t =7 when the input symbol is ‘a’, the NNPDA reads not a complete ‘a’ in the
stack. Instead, it reads with depth unity an ‘a’ with length 0.6467 and a ‘b’ with length 0.3533. Therefore, the action
output is not a full “pop” but a “pop” with length 0.2757. Thus, accumulated final stack length is 1.0776 > 0.5 and the
string is classified as illegal.
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Input string = “ababcbaba”, final stack length = 1.0776 > 0.5 -> classification lllegal.
input Internal state action stack segment lengths stack symbols
a | (0.0077,0.9952, 0.0160, 0.9580) 1.0000  (1.0000) (a)
b | (0.9855, 0.9364, 0.9868, 0.9784) 0.9714§ (1.0000, 0.9716) (a,b)
a |(0.9627,0.9961, 0.1055, 0.9811) 0.9936  (1.0000, 0.9716, 0.9936) (a,b,a)
b |(0.9987,0.8105, 0.9719, 0.9995) 0.9932  (1.0000, 0.9716, 0.9936, 0.9932) |(a,b,a,b)
¢ |(0.0002, 1.0000, 0.0239, 0.9992) 0.0810 (1.0000, 0.9716, 0.9936, 0.9932, 0.0810R, b, a, b, c|)
b |(0.0053, 0.9977, 0.9881, 0.9996)- 0.9981 (1.0000, 0.9716, 0.9936, 0.0761) (a,b,a,b)
a |(0.0016, 0.9996, 0.9209, 0.9993)- 0.8207 (1.0000, 0.9716, 0.2491) (a,b,a)
b |(0.0246, 0.9377, 0.9986, 0.9937)- 0.8674 (1.0000, 0.3533) (a,b)
a |(0.0128,0.9994, 0.7910, 0.9898) 0.2757 (1.0000, 0.0776) (a,b)
Table 2

Table 2. The step by step operations of a numerically trained NNPDA for the example string “ababcbaba”. Thi
eral behavior of the analog NNPDA is correct. But, due to the cumulated numerical round-off error, the action ¢
deviates gradually from the discrete pop so that the final classification is wrong.

(6). Quantization of the Trained NNPDA.
The state neuron activities are quantized to two levels. The stack action Wéigtres quantized to three levels

o, if (IWA <0.5)

0
WA = -1, if (WP<-05) . (28)
H 1, if (W*>0.5)

After quantization, we test the NNPDA with all possible strings up to length fifteen. The classification rule is as
follows. The “trap state” monitor is used to monitor the last state n&jgnVheneveSy becomes zero, we stop
the sequence and classify it as an illegal string; otherwise, we proceed to the end of the input sequence. At the end, if

LT=0, the input is classified as legal; otherwise it is illegal. The test result is that all the 21,523,359 strings are classified
correctly. But, this does not mean that the quantized NNPDA represents the Palindrome grammar. We have to extract
the correct discrete PDA and verify that it recognizes the Palindrome grammar.

(7). Extraction of the Discrete PDA.

Using the quantized NNPDA with the initial state (1, 0, 0, 0), we check all possible paths of the quantized NNPDA
by reading input symbols as described in Section 4.1. The transition diagram of these paths is drawn in Fig.11. Every
path was terminated whenever a “trap state” occurred. Each bracketed action rule in the form of (input, reading, action)
is marked besides the transition arrows. This diagram looks more complicated than might be expected. Though it did
not turn out to be the simple diagram of Fig.10, the neural net generates some rather novel transitions.

First we find all equivalent states. All “trap states” are equivalent. Also, the two states (1,0,1,1) and (0,0,1,1) make
equivalent transitions and actions. After grouping these equivalent states, seven states are finally selected and labelled
as in Fig.12. The first six states are “non-trap states” and the seventh is the “trap state”. Let us see how this PDA shown
in Fig.12 could recognize the Palindrome grammar. The start state is state (1) and the start reading is an “empty stack”
represented byy'. If the first input symbol is ‘c’, it will move to state(3), and then either stop there with an empty
stack (the string “c” is legal) or goes to the “trap state”—state(7) if more symbols are read (i.e. an illegal string). When
an input string starts with ‘a’ or ‘b’, the neural net controller pushes the read symbol onto the stack and moves to either
state(2) (for input ‘b’) or state(3) (for input ‘a’). Then, before seeing a symbol ‘c’, it will push all the read symbols
onto the stack and, concurrently, move among a symmetric structure of the four states (2), (3), (4) and (5). These four
states are manipulated in a very complicated manner. Whenever a symbol ‘b’ is read, it is pushed onto the stack and
the PDA moves to either state(2) or state(5). Whenever a symbol ‘a’ is read, it is pushed onto the stack and the PDA
moves to either state(3) or state(4). If a symbol ‘c’ is read, it will transit to either state(2) (if the last symbol is ‘a’) or
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Fig.11 The extracted discrete PDA obtained from the trained NNPDA by quantization o
neural activities of the continuous NNPDA. Using the quantized NNPDA, start with the initial ¢
(1, 0, 0, 0) and cover all possible paths by feeding in various strings whenever needed. Here, ¢
are terminated whenever a “trap state” occurs. Each bracketed action rule in the form of (input
ing, action) is marked by the transition arrows.

state(3) (if the last symbol is ‘b’). Then, the controller will examine whether the next input symbol matches the top
symbol on the stack. If every read symbol matches the stack reading, the PDA will pop and move to state(6) and stay
there until the stack is emptied. If any input symbol does not match the top stack symbol. the PDA will go to the “trap
state”— state(7) and the string is classified as illegal.

As noted in Fig.12, the self-loop for state(7) indicates that there is no escape from a “trap state.” This is assumed
because of our pre-knowledge about the “trap state”. However, the discrete NNPDA-generated “trap states” may not
form closed loops. We have checked all the possible transitions from the “trap states” and find that there do exist
“leaks”. For example, the illegal string “bbcbabacabab” is found to end at a “non-trap state” (1,1,1,1) and the string
“aaacabbcb” ends at (1,0,1,1). Thus, it is good idea to use the “trap state” monitor in recognition as well as in training.

V.CONCLUSION

A recurrent neural network pushdown automata (NNPDA) was devised and used to learn simple but illustrative
deterministic context-free grammars (CFGs). The NNPDA itself is a hybrid model consisting of a recurrent neural net-
work state automaton controller and an extewwitinuousstack memory connected through a common error
function. This is to be contrasted to connectionist models that construct stacks (and their associated state structure)
from internal hidden layers or from the dynamic range of the nonlinearity of the neural network. To train the NNPDA
an enhanced forward-propagating real time recurrent learning algorithm (RTRL) was derived and used to learn CFGs
from positive and negative string examples. However, the NNPDA model is quite general and can be trained using
other gradient descent approaches such as a modified back-propagation through time algorithm. What should be noted
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Fig.12 The equivalent reduced PDA that recognizes the palindrome grammar. It is obta
grouping the equivalent states of the PDA in Fig.11 into seven representative states and comple
transitions. The correspondence between the original 12 states and the reduced 7 states is li¢
seven equalities below the transition diagram.

is that during training the NNPDgimultaneouslyearns to construct its internal state contraledto figure out how
to control with the proper actions (push, pop and no-operation) the use of the external stack memory.

The external continuous stack memory is constructed of two arrays; one for symbols and one for real values as-
sociate with those symbols. The input symbol alphabet is also the stack alphabet (this somewhat restricts the class of
learnable CFGs). A gradient-descent training algorithm is derived for the continuous stack. One interpretation of the
continuous stack memory is that the real values associated with the symbols stored on the stack reflect an uncertainty
in the content of stack reading of the NNPDA. This allows more than one symbol to be read from the top of stack and
each with different probabilities.

For all languages of the learned grammars (the balanced parentf@sadlpalindrome grammars), the size of
the positive and negative string training set was less than 512. The number of epochs required for successful training
was approximately 100 and usually less than 1000. The trained NNPDA exhibited very good generalization capabili-
ties and were able to correctly classify large sets (usually millions) of unseen strings. Its performance appears to be
much better than other connectionst stack models used to learn simple context-free grammars.

We devised an algorithm for extracting a discrete pushdown automaton (PDA) from the trained NNPDA. For all
the grammars used in training, correct PDAs were extracted (For all languages the strings were generated by “known”
PDAs). The advantage of this quantization process is that the extracted PDA was often able to outperform the trained
NNPDA in correctly classifying any unseen strings (similar results were shown for FSA extracted from trained NNF-
SA [Giles92a, Omlin92]). However, the extracted PDAs could be quite complex and not necessarily the simple PDA
expected.

There argnanyopen issues. We only demonstrated the principlmaoftaneouslyraining a recurrent neural net-
work coupled to an external stack memory. It is not evident that this method will scale or this is an efficient way to
learn context free grammars. There needs to be further work on the required accuracy of the analog stack. The addi-
tional knowledge required to learn the palindrome grammar shows that the intelligent use of topology, such as order
of connection weights, arapriori knowledge, such as supervising the control of the stack, significantly effects suc-
cessful training and testing. Because of the number of variables, the training results were illustrative not exhaustive or
complete. What was interesting is that such good results were obtained! Another question is how this architecture
scales. One would expect that because of the additional states offered by the stack, that it would scale better that a
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stack-less recurrent network. However, this remains to be determined.

Finally, there is nothing that restricts this model to symbol learning. Real numbers could have just as easily been
used as inputs. We speculate that this model could also be used in learning more complex hidden state processes for
real-valued problems.
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Appendix A

Thederivation of dRY oW

In this appendix we deri\&Rtk,/aWijk for the case where there is only one action nelg#il. The generaliza-
tion to the case with more action neurons is straightforward.
The stack reading at time t is in general a function of the entire stack history

R=FALA LA Y (A-1)

whereA' 0 [-1, 1], 1< 1 <t, is the continuous action value which operates on the stack. The input $jmbot <
t, at timet is read from the input sequence. As previously defined, an action to be performed on the stack is either a

push,pop or no-operation(no-op)depending on the sign and magnitudé&fThe amount of the stack to pested
or poppedis equal to the absolute valueAdf which also determines what amount of that the current input syinbol
is read into the stack.

To complete the forward-propagation of the sensitivity matdg#9W anddAY oW as in Eq.(19), the derivative

ARY AW has to be known. If a recursive relation &Y 0W exists,i.e.

R [@R' 4S' 0A!

tC
ow - MW aw ow ' (A-2)
whereM is an unknown vector function, the recursive evaluati@SsdW anddAY oW is straightforward. However,
a rigorous recursion equation of Eq.(A-2) does not exist. The reason is as follows.

The stack operation and stack readtigefined in Section Il does not include any derivativR'ofith respect
to W. Therefore, Eq.(A-2) implies the following relation

RI*Y = H(R, S, ALLY | (A-3)
whereH is another vector function. But, in general, relation (A-3) should not hold for a PDA. The reason is that the

current stack reading! depends on the whole history of the stack, not on the history a few time steps in the past. If,
we assume that relation (A-3) is true, then the read operation can couple with the dynamics of the neural network con-
troller, as in the two equations in Eq.(3). This yields

zt = K(Z,1Y (A-4)

where the vectar represents the concatenation of the three veRid8sandA, or Z= (SUOAOR), andK is the com-
bination of the functiondd in (A-3), G andF in Eq.(3). Since in the discrete limit the vedds represented by finite
description, the relation of Eq.(A-4) indicates that the whole system is a finite state automaton with extended internal
states represented By

The fallacy of assuming that Eq.(A-3) is correct can also be seen from a simple example. Suppose that the input
sequence contains 20 symbols and the stack is empty. The PDA is constrained to have two actions: fromt=1tot =
10 only pushes and from t = 11 to t = 20 only pops. Then, after the nineteenth action (pop) there would be only one
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symbol left on the stack. The content of the stack red@%qgs the first symbol of the input string pushed onto the
stack attime t = 1. This is a counter-example to (A-3), $3€aot only depends on the previous readRﬁcg‘ previous
actionA®® and stat&!® but also ori ! andA?, the stack history at time t= 1.

Generally speaking, the exact calculatioﬂl@}flkv 1 dWjj willinvolve the storage of the entire history of the stack
and actions on the stack, which demands a large memory size and increased computation. In order to simplify this
problem, we derive an efficient approximatiorof@**,. / dWjj which can be used recursively in a manner that closely
approximates the recursion set of Eq.(19). Since the input syrhtoks not depend on the weidtit Eq.(A-1) im-
plies that

R! L AR' QAT

oW D ot oW (A-5)
=1
where the summation oveiin general contains all time steps starting at t = 1. But not all of the histafyadfiects
the current stack readirig}. SinceR' contains only the contents of depth 1 from the top of the stack, the number of
terms in the summation (A-5) can be reduced by removing all of the acdns{t <t} which do not contribute to
the generation dR".

AR
Rle]

Co |12

C T

Fig. Al

Fig.A1 The readingR' of the continuous stack at time t consists of K sections of continu
symbols, G i=1, 2, ... K, each of which contains only one symbol, and each pair of adje

sections, €and G, 4, contains two different symbols. The length of each sectiés denoted
by I(i) marked beside the stack.

Assume thaR! consists oK sections of continuous symbols, as shown in Fig. A1, where each section contains
only one symbol denoted by ®ith lengthl(i), each generated at timgi = 1, 2,..K. Each pair of adjacent sections,

C; and G, 4, contains different symbols. Note that each of the sectiopsif@, 2, ... K} may not be generated by
only one actionush at timer;. It may be first generated partially at timeand then b@oppedor pushedseveral
times. Finally, (before time,; when the next symbol;G was generated) the symbghth lengthl(i) is left on the
stack. Under these assumptions, the actions befofé\", 1<1 <14} do not contribute to the formation &, and
thereforecan be removed from the summation. The expression Eq.(A-5) can be written as

Rt &
WD

i=17=

oR" A’ a6
ZI ? aW1 ( = )
i+1

where the bold-faced® have been replaced By (without lose of generality, only one action neuron is used).
In order to calculate the derivatives in Eqg.(A-6), assume that there is an infinitesimal perturbation of the weight
matrix AW, which then produces infinitesimal perturbations of actidk&'{ 1<t <t} for every time step calculated
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from the second equation in Eq.(3). These new actidhe¥AT, 1< 1 <t} can be used to reconfigure the stack, which
in turn creates the change in the stack reatiRlg The partial derivativedR'/ 0A" is defined as

R, DR
- = Im , -
| (A7)

A" AT 0AAT

where the change in the stack reacmﬁﬁ(is induced by onlyAAT, while all otherA”, T s # 1, are fixed.
Since the stack readir@’ consists oK sections of continuous symbols;{G=1, 2, ... K}, the changeAR!
would also be computed from\;, i=1, 2, ... K}, the change in each of the sections. The major approximation

made in this derivation is the following. We assume that;fot <t;,4, an infinitesimal perturbatiohA’ would only
produce the change of the lengty), in the j, section G In general, this is not true, because there exists a pertur-

bationAA! which not only changes the length of its symbol section but also changes the content of the section (i.e.
brings in a part of the new symbol to this section). This can be seen from a counter example. Suppose that the section

C; contains only the symb@& with length 0.5 and it is produced by a sequence of actions: t:xatA'=0.1 (push

of symbold, (2) att=T;+1, A=0.2(push of symbolD, (3) att=T;+2, A’= -0.2 pop). (4) att=T;+3, A'=0.4 ush of
symbola. Although the net result is to push a symBakith length 0.5 onto the stack, during the sequence an equal
amount of symbolD was pushed and popped onto and from the stack. In this case an infinitesimal perttidation
whent=1;+1 ort;+2 would create an infinitesimal portion of symhhh/ith length equal to the absolute value\af,
sandwiched between the two parts of syn&adlVe ignore this situation because of the following reasoning.

Assign anoccurrence probabilitp(A") to each actiol' and replace the derivatid®/ A" by its probability
weighted value:

R, OR,
ﬁ - ﬁp(A) . (A-8)

If an actionA' is free to take any values in the domain [-1, 1], assigeciirrence probabilitypne. In Eq.(A-6) all the

terms on the right hand side of the summation are supposed to have a walogn@nce probabilityequal to one.

However, we argue that there do exist some actions withozetorence probabilityand that these can be removed

from the summation in Eq.(A-6). A special group of such actions apopisvhich pop symbols at thedoundaries

i.e. the border lines inside the stack which separate two different symbols. For instance, in the above example the action

A'=-0.2 pop) atT=T;+2 belongs to this category. In general, for the stack example shown in Fig.A1, if the next time
action isA“lz—B(i), B(i) =I(K) +1(K-1)+...+I(i+1) +I(i) for any i=1,2,3,...,K, we would say that the actiét™ has a
zerooccurrence probabilityln fact, if the actio®*is uniformly distributed within [-1, 1], then tleecurrence prob-

ability of A™! can be measured by the possible range of valut'd odivided by 2, the measure of whole region [-1,

1]. If A"Lis apopwhich occurred around a boundary of one of the stack sections shown in Fig. it 'sa(i)|<¢,

then the measure of teecurrence probabilitpf A™ will be £/2. Whene — 0 (orwhenA™ ., -B(i), i=1,2,3,...,K)
this probability goes to zero.

With the above approximation we have two useful outcomes. First, in the summation on the right-hand side of
EQ.(A-6), all terms within the first section whose acti®roccurs betweetime 1; andty, i.e.T;<T<T,, can be re-
moved and the equation becomes

Rt & OR! QAT
W2 2 o ow (A-9)
i=2GsSUST

because for all action#\f, 1;< T <1,}, dRY dA" are zero. The reason is that the content of the stack ré@ldéngrmed
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by reading the stack in the top-down manner with a fixed length 1 and is actually independent of the infinitesimal
change of the length on the first section. As shown in Fig.A2, as long as the lower boundary of setties it

exactly coincide with the lower boundaryR®f the content oR! will not change. In the case where the lower boundary
of section G does coincide with the lower boundary of &y negative change of the sectiofs@ength AI<0) will

introduce an infinitesimal changeR). This case was excluded because it hasamrorrence probability

Cy| 1(K) Cy| 1K)
R' « R' +

C,| 12) Cy| 1(2)

Cil1(1) C. [ 1(0)+aI(2)

@ e ®

Fig.A2 When the stack readif®} has a fixed length = 1, its content is independent(d), an
infinitesimal change of the length in first sectiop Gnless (i) the lower boundary of sectiondo-

incides with the lower boundary Bf and (ii)Al(1) < O.
(a) Stack readin@®! before any changes. (b) Stack read®i@fter an infinitesimal change
the length in the sectionCThe reading content has no change.

From Figure A2, a method for determinidig/ AT within each section 0 = 2,3,..., k can be calculated as fol-
lows. According to the definition in Eq.(A-7), we need to calculate the AﬁigAAT and take the liminA" - 0.
Suppos&;<T<T;,. Itis known that the perturbatidi' only changes the length of the sectigrBdt, the stack read-

ing Rt will still have a fixed length (a distance of one) regardless of this change. Therefore, the contents of the stack
reading would not only includal(i), the change in the length of symbg] But also Al(1), the change of symbohC
See Fig.A3. This implies

oR, AR! 1

— = lim — = lim — (AI(i) —Al (1)),

OAT  AATL 0AA' AT~ 0AAT

Since the magnitudes af(i) andAl(1) are the same @\, the ratioAl(i),/AAT (or Al(1),/AAT) will be either one or
zero depending on whether or not the symhdb€C,) is the same as tlig, symbol. This result can be expressed as

J:é

N G=T<T, (A-10)

ik ~ Ok

whereg; is Kroneckerdelta function.
Inserting Eq.(A-10) into Eq.(A-9) yields
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Fig.A3 When the stack readii} has a fixed length = 1, the change of its content wot
include not onhyAl(i), the change of the length of the symbagl lait also Al(1), the change in
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If we further assume th#t=2, i.e. the current stack reading with length equal to 1 contains at most two sections
of symbols; the approximation to Eq.(A-11) would be
oR' _ A"
FA (8 =3y oW (A-12)

T2_T<t

In this paper we also assumge=t and obtain

oR' _ 0A'
avl ~ (6”( - Blk) m . (A'13)
This approximation implies that instead of considering the case where a section of the symbol in the stack is the cu-
mulated results of many actions, the sectigrnsGissumed to be generated by only one action.
The two approximations in Egs.(A-12) and (A-13) are valid for the following two conditions: (1) when the action

activity values are close to their saturation values 1 and -A'(®0]5). (2) or the total number of actions (i.e. the length

of input string) is small. This corresponds to imposing a restriction on the learning strategy. During the initial stage of
learning when the action activity values are far from their saturation values 1 and -1, short strings are used as the train-
ing examples and the string length is increased after the short strings have been learned.

Appendix B
Derivation of RTRL for the NNPDA

The forward-propagation recurrent learning algorithm known as Real Time Recurrent Learning (RTRL) can be
derived by taking the derivative with respect to weights of the neural controller dynamics of Egs. (23) and (24), and
using Eq. (A-13) derived in Appendix A for the stack dynamics. For a complete appendix we first list these equations
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as follows

S R N
= z z |Jk|(§1Rt|t) +9

N

2% Ng N
AT = 5SS W (PR
J=1k=1I=1 , (B-1)
and
NS
=[] GBS+ (1-3,) (1-S)) - (B-2)
m=1
The derivative of the first equation in Eq. (B-1) is
o O . * s, ¢ R, [0
—— =g () B, (SR + Wirjrierl ER‘ *S y
Wi 0" lekz-llzl 0 OWij 1 OWAj [T
oSl Nao NNl 05, | R [
=g, (1) Wrjrienl (Rie +S , (B-3)
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oSt o N NN O asj‘ dRl, (1)
=g, () @+ WP R —— M
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whereg'; (t) = 31“1(1- S,“l) is the derivative of Sigmoid function. Similarly, the derivatives of second equation in
Eq.(B-1) are written as

aAt+]_ 2NS Ny N-1 O pt GR}(, d

=T T T Wkl BP0
Wi Lo O aWSijkl OWPijjq O

NN N -1 t
aAt+1 2 aRk, C
——— =PRI+ Wyl qu Py : (B-4)
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a\/\/aJkl Z Z Z a\NaJk|

J=1 o1l =1 Jkl

N

2s N, N -1 t t

aAt+l _ ! ! I Dt i taRkyD
- E Wiy ke ||:R S

S
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" 06% 0

To complete the derivation we need two more relations which are obtained from the derivative of Eq.(B-2) and
the derivative of stack reading in Eq.(20)
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wherer ;' andr,! are the ordinal numbers of neurons that represent the top and the bottom symbols respectively in the
readingR". The initial conditions for all the derivatives in Egs.(B-3) to (B-5) are set to zero.
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