
1

The Neural Network Pushdown Automaton: Model, Stack
and Learning Simulations

UNIVERSITY OF MARYLAND TR NOs. UMIACS-TR-93-77 & CS-TR-3118

August 20, 1993 - Revised January, 1995

G.Z. Suna,b, C.L. Gilesb,c, H.H. Chena,b and Y.C. Leea,b

aLaboratory For Plasma Research,
bInstitute for Advanced Computer Studies

 University of Maryland, College Park, MD 20742
and

3NEC Research Institute
4 Independence Way, Princeton, NJ 08540

Abstract
 In order for neural networks to learn complex languages or grammars, they must have sufficient computational

power or resources to recognize or generate such languages. Though many approaches to effectively utilizing the com-
putational power of neural networks have been discussed, an obvious one is to couple a recurrent neural network with
an external stack memory - in effect creating a neural network pushdown automata (NNPDA). This NNPDA general-
izes the concept of a recurrent network so that the network becomes a more complex computing structure. This paper
discusses in detail a NNPDA - its construction, how it can be trained and how useful symbolic information can be ex-
tracted from the trained network.

To effectively couple the external stack to the neural network, an optimization method is developed which uses
an error function that connects the learning of the state automaton of the neural network to the learning of the operation
of the external stack: push, pop, and no-operation. To minimize the error function using gradient descent learning, an
analog stack is designed such that the action and storage of information in the stack are continuous. One interpretation
of a continuous stack is the probabilistic storage of and action on data. After training on sample strings of an unknown
source grammar, a quantization procedure extracts from the analog stack and neural network a discrete pushdown au-
tomata (PDA). Simulations show that in learning deterministic context-free grammars - the balanced parenthesis

language, 1n0n, and the deterministic Palindrome - the extracted PDA iscorrect in the sense that it can correctly rec-
ognize unseen strings of arbitrary length. In addition, the extracted PDAs can be shown to be identical or equivalent
to the PDAs of the source grammars which were used to generate the training strings.

I. INTRODUCTION
 Recurrent neural networks are dynamical network structures which have the capabilities of processing and gen-

erating temporal information. To our knowledge the earliest neural network model that processed temporal
information was that of McCulloch and Pitts [McCulloch43]. Kleene [Kleene56] extended this work to show the
equivalence of finite automata and McCulloch and Pitts’ representation of nerve net activity. Minsky [Minsky67
showed that any hard-threshold neural network could represent a finite state automata and developed a method for ac-
tually constructing a neural network finite state automata. However, many different neural network models can be
defined as recurrent; for example see [Grossberg82] and [Hopfield82]. Our focus is on discrete-time recurrent neural
networks that dynamically process temporal information and follows in the tradition of recurrent network models ini-
tially defined by [Jordan86] and more recently by [Elman90] and [Pollack91]. In particular this paper develops a neural

2

network pushdown automaton (NNPDA), ahybridsystem that couples a recurrent network to an external stack mem-
ory. More importantly, a NNPDA should be capable of learning and recognizing some class of Context-free grammars.
As such, this model is a significant extension of previous work where neural network finite state automata simulated
and learned regular grammars. We explore the capabilities of such a model by inferring automata from sample strings
- the problem of grammatical inference. It is important to note that our focus is only on that of inference, not of pre-
diction or translation. We will be concerned with problem of inferring an unknown system model based on observing
sample strings and not on predicting the next string element in a sequence.

1.1 Motivation
To enhance the computational power of a recurrent neural network finite state automaton to that of aninfinite ma-

chine [Minsky67] requires an expansion of resources. One way to achieve this goal is to introduce a potentially infinite
number of neurons but a finite set of uniformly distributed local connection weights per neuron. [Sun91] is an example
of this approach and shows the Turing equivalence by construction. Another way to construct a neural networkinfinite
machine is to allow infinite precision of neuron units but keep a finite size network (finite number of neurons and con-
nection weights) [Siegelmann91, Pollack87]. Doing so is equivalent to constructing a more general nonlinear dynamic
system with a set of continuous, recurrent state variables. Such a system in general would have rich dynamical behav-
ior: fixed points, limit cycles, strange attractors and chaos, etc. However, how easily is such a system trained? In
general, without additional knowledge it is almost impossible to train an infinite neural system to learn a desired be-
havior. In effect, putting constraints anda priori knowledge in learning systems has been shown to significantly
enhance the practical capabilities of those systems.

The model we introduce has this flavor. It enhances the neural network by giving it an infinite memory - a stack
- and constrains the learning model by permitting the network to operate on the stack in the standard pre-specified way
- push, pop or no-operation (no-op). As such, this model can be viewed as: (1) a neural network system with some
special constraints on an infinite neural memory, or (2) a hybrid system which couples an external stack memory (con-
ventionally a discrete memory, but here a continuous stack) with a finite size neural network state automaton. There
are many issues in connecting and training an external computational structure such as stack to a neural network. For
example what form does the objective function take; when and how are the push/pop/no-op operations of the stack
incorporated into the neural net; and after training how are can learned rules extracted? We provide a complete proce-
dure for training such a neural network pushdown automata.

 1.2 Grammars and Grammatical Inference
Because this paper is concerned with new models of neural networks, we give only a brief explanation of gram-

mars and grammatical inference. For more details, please see the enclosed references. Grammatical inference is the
problem of inferring an unknown grammar from only grammatical string samples [Angluin83, Fu82, Gold78, Mi-
clet90]. In the Chomsky hierarchy of phrase structured grammars [Harrison78, Hopcroft79, Partee90], the simplest
grammars and its associated automata are regular grammars and finite state automata (FSA). Moving up in complexity
in the Chomsky hierarchy, the next class is the context-free grammars (CFGs) and their associated recognizer - the
pushdown automata (PDA), where a finite state automaton has to control an external stack memory in addition to its
own state transition rules. For all classes of grammars, the grammatical inference problem is in the worst case at least
NP [Angluin83]. Because of the difficulty of this problem, we feel that training a neural network to learn grammars is
a good testbed for exploring the networks computational capabilities. However, comparison of a neural network push-
down automata with other methods for grammatical inference is not discussed. Our concern has only been with how
such an architecture can be constructed, how it is trained and how it learns grammars from grammatical strings.

 1.3 Outline of Paper
In next section, we review some of the previous work on recurrent neural network finite state automata and work

that extends the power of recurrent neural network beyond that of a finite state automata. We show that from the stand-
point of representation, it is more computationally efficient to use a “real” external stack instead of the neural network
emulator of stack memory [Pollack90].In Section III we systematically introduce the model of the Neural Network
Pushdown Automata (NNPDA), the structure, the dynamics and the optimization (learning) algorithms. This model is
substantiated by means of theoretical analysis of many of the related issues regarding its construction. The attempt
there is to give a rigorous mathematical description of the NNPDA structure.We then illustrate the model by correctly

3

learning the context-free languages: balanced parentheses and the 1n 0n. A modified version of NNPDA is then intro-
duced to learn the more difficult Palindrome grammar. The conclusion covers enhancements and further directions. In
the Appendices, a detailed mathematical derivation of the crucial formula necessary for the training equations of NNP-
DA is discussed. The key point is that in order to use real-time recurrent learning (RTRL) algorithm [Williams89], we
have to assume a recursion relation for all variables, which means that the NNPDA model must be approximated by a
finite state automaton. In the Appendices, we discuss this paradox and show one solution to this problem.

II. RELATED WORK
In this section we review previous work related to the NNPDA. However, the general area of grammatical infer-

ence and language processing will not be covered; see for example [Angluin83, Fu82, Miclet90] and more recently the
proceedings of the workshop on grammatical inference [Lucas93]. We only focus on neural network related research
and, even there, only on work directly related to our model.

2.1 Recurrent Neural Network - Connectionist State Machine
 Recurrent neural networks have been explored as models for representing and learning formal and natural lan-

guages. The basic structure of the recurrent networks, shown in Fig. 1, is that of a neural network finite state automaton
(NNFSA) [Allen90, Cleeremans89, Giles92a, Horne92, Liu90, Mozer90, Noda92, Pollack91, Sanfeliu92, Wa-
trous92]. More recently, [Nerrand93] formalizes recurrent networks in a finite-state canonical form. We will not
directly discuss neural network finite state machines, i.e. NNFSA which have additional output symbols, see for ex-
ample [Das91, Chen92]. The computational capabilities of recurrent networks were discussed more recently by
[Giles92a, Pollack91, Siegelmann92].

All of the recurrent network models discussed will be higher-order. We and others have found that these models
can be extremely useful and more powerful for representing specific computational constructs in neural networks; for
a discussion of their use see the following papers [Lee86, Goudreau94, Miller93, Pao89, Perantonis92, Pollack87,
Psaltis88, Watrous92]. (It is easy to see that higher order terms are more general than sigma-pi [Rumelhart86a] or
pi-sigma [Ghosh92] expressions.) Using second order connection weights, the recurrent dynamics of the state neurons
can be given by

, (1)

whereSi
t is the activity of theith State neuron at time stept, Ik

t is thekth component of the input symbol at time step t,
g is the nonlinear operator, usually the sigmoid functiong(x) = 1 / (1+exp(-x)) andθi is the bias term for theith neuron.

When a temporal sequence of lengthT: { I1, I2, I3,......,IT} is fed into the recurrent net, the input symbolIt at each time

.......
St

....

......
St 1+

I t

Fig. 1

Fig.1 A simple structure of a recurrent neural network, where It and St

represent the current input and state, and St+1 is the next state.

Si
t 1+ g Wi j kSj

tIk
t

j k,
∑ θi+()=

4

step together with the current stateS t (initial state is assigned) are the “input” to the network and the “output” would

be the next time stateS t+1. The recurrent network therefore acts like a state automata. At the end of an input string, an
end symbol is given to the network and the output in the last state neuron is checked to determine the classification
category of the input string. This neural network finite state automaton (NNFSA) can be used to recognize strings that
belong to a regular grammar. The work of [Cleeresman89, Giles92a, Giles92b, Liu90, Omlin92, Pollack91, Wa-
trous92, Zeng93] has shown the possibility of using neural networks to perform grammatical inference on regular
grammar, i.e. to find a “useful set” of production rulesP from only a finite set of sample training strings.

One of the limitations of NNFSA is its difficulty in processing higher level languages. A “brute-force” method to
enhance the computational power of a NNFSA is to increase the size of the existing neural network structure (or in-
crease the precision of the neuron units in the network) while training on a more complex language, say a context-free
grammar [Allen90]. The assumption is that the size of the neural networks has no bound, but the knowledge gained as
the network grows gives clues to the representation of the underlying grammar and it associated machine ([Crutch-
field91] uses this approach to show that context-free grammars are generated by a nonlinear system on the edge of
chaos). But in practice gaining this knowledge is difficult. What usually happens is that the trained NNFSA will only
recognize the language up to a certain string length (in effect, a regular grammar). For the NNFSA to generalize cor-
rectly on longer unseen strings, the NNFSA needs to be re-trained on those strings. Thus, we argue that this method of
knowledge representation is in itself inefficient.

2.2 Recurrent Neural Network - Beyond the Finite State Automaton
There has been a great deal of effort to enhance the power of recurrent neural networks by increasing the precision

or size of the network or by coupling it with an external, potentially infinite, memory. The work of [Williams89] cou-
pled a recurrent neural network to a memory tape to emulate a Turing machine and to learn the state automaton
controller for the balanced-parentheses grammar (a context-free grammar). More specifically, a recurrent network was
trained to be the correct finite-state controller of a given Turing machine by supervising the input-output pairs, where
the input is the tape reading from a target Turing machine and the output is the desired action of the finite controller.
The important distinction between NNPDA model and that of [Williams89] is in the training - particularly, the behav-
ior of their target controller was knowna priori and not learned. In the most general case of grammatical inference
the transition rules of the target machine are not known beforehand; only the classification for each training sequence
is known. The NNPDA model we describe allows the NNPDA itself to “figure out” how to construct a neural net con-
troller that knows both the state transition rules and, in addition, how to use and manipulate the tape or stack.

Closely related work is the RAAM model of [Pollack90], which proposed an “internal” neural network model of
stack memory as a plausible model for cognitive processing. Let us consider using this model to build a NNPDA. As
shown in Fig. 2, the “push” and “pop” actions onto the stack are emulated by a coder and a decoder separately, where
the “STACK1”, “STACK2”, and “STACK3” are the neuron arrays with the same size and the “TOP” represents the
symbol(s) on the top of the stack. The training can be performed by concatenating the network in Fig2(b) with the net-
work in Fig2(a) and using error back-propagation. The desired outcome requires “STACK3” to be identical to
“STACK1”. This recursive distributed representation of a stack memory may be of particular interest to cognitive
models of language processing. However, as a computational model this structure has drawbacks. First, this recursive

STACK1 TOP

STACK3 STACK2

STACK2

TOP

(a). Push onto stack (b). Pop from stack
Fig. 2

Fig.2 A neural network emulator of a stack proposed by [Pollack90]. (a) Coding
process emulates a “push” action onto a stack. (b) Decoding process emulates a “pop”
action from a stack.

5

structure is identical to a NNFSA, where the“STACK’s” configurations correspond to internal neural states.In other
words, this model transfers the complexity of a stack manipulation to NNFSA state transitions. For a stack with limited
length, this model is equivalent to training a FSA with a small number of states. But in general, such a model will be
limited since, theoretically, the stack represents a potentially infinite number of states. Even for a limited length stack,
this model is inefficient. To illustrate this, consider a stack with length L and number of symbols N. Thetotal number
of possible configurations of thestack is

. (2)

If we wish to build a distributed memory of internal states that behaves like a stack, we need to construct (or learn) a

NNFSA with NL internal states. The required memory sizeof neurons (or weights) will scale as ~NL which severely
limits the usefulness of the internal neural network stack.

Other closely related work is the connectionist Turing machine models of [Siegalmann92, Pollack87]. They
showed that a stack can be simulated in terms of binary representations of a fractional number which are manipulated
by neural network generated actions. The focus of this work was initially on “representational” issues and not on a
“practical” learning system. Their proposed stacks use a fractional number represented in terms of a sequence of binary
symbols “0” and “1”. A “pop” action removes the leading bit from the fraction and can be simulated by two consecu-
tive numerical operations: multiplication by two and subtraction of the leading bit. A “push” is represented by adding
“0” or “1” to the original stack and dividing the sum by two. This stack model is clearly as efficient as the conventional
discrete stack. An additional feature is its simple representation -- a fractional number. However, for learning, these
stack models have the problem that they are not easily coupled to gradient-based learning algorithms. This is because,
although a fractional number is continuous, any small perturbation of the fraction causes a discrete change of the stack
content that this fraction is representing.

Finally, an interesting model developed by [Lucas90] proposes an entirely different method for learning contex-
t-free grammars with a neural network. [Lucas90] maps directly the production rules of the CFG, both terminals and
nonterminals, directly in neural networks and shows some preliminary results for character recognition. ([Frasconi93,
Giles93, Sanfeliu92] illustrate similar techniques for mapping regular grammars into recurrent networks.)

The original NNPDA model with an external continuous stack and its learning algorithm were originally proposed
in short papers [Giles90, Sun90a, Sun90b]. Recently [Das92] showed benchmark experiments with different order
connection weights of NNPDA and pointed out that third order weights were better than first or second order. [Das93]
showed the advantage of using hints in learning CFGs. Recent work of [Mozer93] also shows that the continuous stack
can be used to manipulate the “continuous rewrite rules” necessary to parse context-free grammars. [Zeng94] showed
that when a recurrent network controlling an external stack is trained by a pseudo-gradient method and discretized dur-
ing training, the trained NNPDA can successfully classify strings of arbitrarily long length.

III. NEURAL NETWORK PUSHDOWN AUTOMATA
In this section, the NNPDA model is thoroughly described. The schematic diagram of the neural network push-

down automata (NNPDA) is shown in Fig. 3. This NNPDA, after being trained, will hopefully be able to represent the
underlying grammar of the given training set (we assume that for each of our training sets there is a unique underlying
grammar) and be able to correctly classify all unseen input strings generated by an unknown CFG. To use the NNPDA
as a classifier, input strings are fed into the NNPDA one character a time, and the “error function” at the end of each
string sequence decides the classification. It is important to note that all grammars and automata discussed in this paper
are deterministic.

The proposed NNPDA consists of two major components: a recurrent neural network controller and an external
continuous stack memory. The structure and working mechanism of these two components will be described in detail
in subsections 3.1 and 3.2. A brief introduction of the NNPDA dynamics follows. The neural network controller con-
sists of four types of neurons: input neurons, state neurons, action neurons and stack reading neurons; and the stack is
simply a conventional stack with analog symbol “length”. At each time step, the recurrent neural network can be con-

sidered an input-output mapping. The input to the mapping is: the current internal stateSt, input symbolIt and the stack

readingRt. And the output are the next time internal stateSt+1 and the stack actionAt+1. This action will be performed

Ns Nl

l 0=

L

∑ NL 1+ 1−
N 1−

NL∼= =

6

onto the external stack, which in turn will renew the next time stack readingRt+1. This new stack reading together with

new internal stateSt+1 and new input symbolIt+1 will serve as a new input for another input-output mapping. At the
end of input sequence the content of internal state and stack will determine whether or not the input string is legal.

During the training stage, the weights of the recurrent neural net will be modified to minimize the error function,
which is fully discussed in subsections 3.4 and 3.5. In some sense the learning can be thought of as unsupervised or
reinforcement style learning, because (a) no credit assignment is made before the end of input sequences and (b) the
system can extract the classification rules automatically from the input examples.

3.1 Neural Network Controller
The neural network controller is an extended version of the neural network finite state automata (NNFSA) previ-

ously described in [Giles92a, Liu90]. It is still a high order recurrent neural network (Fig.3). The difference is that the
NNPDA introduces additional input and output neurons (and, of course, the external stack). The “hidden” recurrent
neurons {Si, i=1,2,...,NS} represent the internal states of the system to be learned. The input neurons {I i, i=1,2,...,NI},
are each associated with a particular input symbol (a localist or one-hot encoding scheme). These two groups of neu-
rons are the same as that of NNFSA. The additional “nonrecurrent” input neurons {Ri, i=1,2,...,NR} represent the stack
content read from the top of stack memory. The additional “nonrecurrent” output neurons {Ai, i=1,2,...,NA} represent
the action values that operate the stack (pushes, pops orno-operations). The state neurons are feedback into themselves
after one time step delay (Fig. 3).

The discrete time dynamics of the neural network controller can be written in general form as

....

A(0.33)
B(0.67)

K(0.98)

J(0.45)

.......
St

St 1+

It
....

......

. . . .

. . . .

Rt

(state neuron
at time t)

(input symbol)(reading from
top of stack
with unit depth.)

At 1+
(action on stack)

push or pop with depth |A|

continuous
stack

re
cu

rs
io

n

error function
Lt 1+

(length of stack at time t+1)weight
training

High-Order Connection

Fig. 3
Fig.3 The schematic diagram of the Neural Network Pushdown Automata NNPDA, where a high-order re-

current network is coupled with an external continuous stack. The inputs to the neural net are the current internal

states (St), input symbols (It) and the stack reading (Rt). The outputs from the neural net are the next time inter-

nal state (St+1) and the stack action (At+1). This action will be performed on the external stack, which in turn

will renew the next stack reading (Rt+1). The weights of the recurrent neural network controller will be trained
by minimizing the error function, which is a function of the final state and the stack length at the end of input
string.

7

, (3)

whereSt, Rt andI t are vectors of internal state, stack reading and input symbol at timet, andWs andWa represent the
weight matrices for the state dynamics and action mappings. It is seen from Eq.(3) that for a full description of the

dynamic, we need another equation for the stack readingRt. In general, this function could be written as

. (4)

The combination of Eqs. (3) and (4) describes a dynamical process for the system “state variables” {St, Rt, At} that

evolves in time as a function of an input sequence {I1, I2, I3,......,IT}, given a set of initial values ofS0, R0 andA0.
However, this is not a state machine, because Eq.(4) indicates that there does not exist a simple recursive function for

the stack readingRt. The value ofRt depends on the entire history of input and actions (or equivalently,Rt depends on

weight matrices and input history). This mapping ofRt is highly nonlinear and is determined by the definition of the
stack mechanism, which will be later discussed in detail.To be exact, the so called neural network controller is defined
only by Eq.(3).

To decide the proper structure of neural network controller, both the neural representations and the target mapping
functions need to be known. For discrete pushdown automata, the mappings (or transition rules) are third-order in na-

ture, by which we mean that each transition rule is a unique mapping from a third-order combination: {St × Rt × I t} to

its output, the next time stateSt+1 and stack actionAt+1. Assume that unary representations ofI t, Rt andSt are em-

ployed. For instance letI t=(1, 0, 0), (0, 1, 0) and (0, 0, 1) represent symbolsa, b andc, andSt =(1, 0) and (0, 1) the

two different states. It is easily seen that any transition rule: {Sj
t, Rk

t, Il
t} → Si

t+1 or Ai
t+1 could be coded into two

four-dimensional matrices Wsijkl and Wa
ijkl , each component being a binary value 0 or 1(for Ws

ijkl), or ternary value

1, 0, -1(for Wa
ijkl). For example, the state transition rule {S(j), R(k), I (l)} → S(i) means that if the input symbol is the

lth symbol, the stack reading is the kth symbol and the internal state is the jth state, then the next state will be the ith

state. And, this rule would be coded asWs
ijkl=1 andWs

mjkl=0, m≠i. Similarly, Wa
ijkl = [1, 0, -1] implies a mapped ac-

tion: [push, no-op, pop] of Ai
t+1. In this way we show that any deterministic PDA could be implemented by a third

order, one layer recurrent neural network with discrete neural activity function. Particularly, if the NNPDA’s neural
network controller is represented by third-order nets of the form

, (5)

the existence of a solution to any given PDA would be guaranteed upon proper quantization of the nonlinear functions
g(x) andf(x). During learning, the sigmoid functiong(x) is used andf(x) is defined asf(x) = 2g(x) -1.

However, this proof does not exclude solutions with other neural net structures and does not necessarily guarantee
the best learning behavior with third-order weights for all problems. In practice, second-order weights were used for
some problems and good training results were achieved. The recurrent updating formula for second-order networks
can be written as

, (6)

where (Rt⊕ I t)k is the concatenation of the two vectorsRt andI t, whose components are given by

St 1+ G St Rt I t Ws;, ,()=

At 1+ F St Rt I t Wa;, ,()=

Rt F A1 A2 … At I1 I2 … I t, , , , , , ,()=

Ai
t 1+ f Wi j kl

a Sj
tRk

t I l
t θi

a+
j k l, ,
∑()=

Si
t 1+ g Wi j kl

s Sj
tRk

t I l
t θi

s+
j k l, ,
∑()=

Ai
t 1+ f Wi j k

a Sj
t Rt I t⊕() k θi

a+
j k,
∑()=

Si
t 1+ g Wi j k

s Sj
t Rt I t⊕() k θi

s+
j k,
∑()=

8

. (7)

Experiments and comparisons between NNPDAs with different orders of connection weights were discussed in
[Das92]. In most cases the third-order weights gave better learning results.

The existence proof of the NNPDA controller discussed above is based on the assumption of unary representations

of internal states and symbols (both input and reading symbols). For the stack readingRt and inputI t, a unary repre-
sentation (or linear independent vector representation) is necessary. This will be discussed in next subsection.
However, unary representation of internal states may not be necessary. Moreover, to extract a discrete PDA, the pro-
cedure of state quantization is performed after learning and the quantized state vectors (often expressed in a binary
form) are neither unary, nor linearly independent. But, during learning (especially hard problems), we often encounter
the cases where we need to adjust independently the transitions between these linearly dependent state vectors. With
third order weights the degrees of freedom are limited and each weight parameter does not associate with only one
particular state transition as in the case of unary representations. Therefore, learning could be often trapped at a local
minimum. To solve this problem, we propose a “full-order” connected network and find it very useful in learning some
hard problems, like the Palindrome grammar. A “full-order” network is defined one is which the order of the correla-
tion is the produce of all independent state neurons. The “full-order” network we used for one action output is

, (8)

where the subscript {j}≡{j 1, j2, ..., jn}, represents all 2n possible n-bit binary numbers (jm=0, 1; m=1, 2, ..., n), and n

is the number of state neurons. The state vectorSt
{j} is an nth order product ofSt’s components defined as

. (9)

For exampleSt
{1101} = S1

tS2
t(1-S3

t)S4
t for a 4-state neuron net. In learning the palindrome grammar, the combination

of Eq.(8) and the third order state dynamics of Eq.(5) led to successful training.

3.2 External Continuous Stack Memory
One of novel features of the NNPDA is the continuous stack memory. The continuous (or analog) stack was mo-

tivated by a desire to manipulate a stack with a gradient descent training algorithm. In order to minimize the error func-
tion along the gradient descent direction, the weight modification is proportional to the gradient of the error function

. (10)

To couple the neural net with a stack memory, the stack variable must be included in the error function. One way of
doing this is to make the stack variables a continuous function of the connection weights, so that an infinitesimal
change of weights will cause an infinitesimal change of action values, which in turn cause an infinitesimal change of
stack readings. Any discontinuity among these relations may cause the derivative to be infinity, thereby interfering
with the learning process.

3.2.1 Continuous Stack Action
 To fully describe the mechanism of the continuous stack, we discuss in detail: (1) the continuous stack action and

stack operation; (2) how to read the stack and (3) the neural representation of the stack reading. Consider a conven-
tional stack, as shown in Fig. 4(a), where there are stored a number of discrete symbols. The discrete stack actions
include pop, push andno-op. Without affecting the generality of a stack function, it is assumed that each action only
deals with one symbol. Thepop simply removes the top symbol and thepush places the symbol read from input string
onto the top of stack. When the continuous stack is introduced, we have to replace both the discrete symbols in the
stack by continuous symbols and the discretepop andpush actions by continuous actions. Therefore, we define the
continuouslength of every symbols. In Fig. 4(a), the stack is filled with discrete symbols and each symbol is interpret-

Rt I t⊕() k

Rk
t

Ik NR−
t

î



=
if NR < k ≤ NI+NR

if 0 < k ≤ NR

At 1+ f W j{ } kl
a S j{ }

t Rk
t I l

t θa+
j{ } k l, ,
∑()=

S j{ }
t jmSm

t 1 jm−() 1 Sm
t−()+()

m 1=

n

∏=

∆W
W∂
∂ ErrorFunction()∝

9

ed as having equal length L=1. In the general case, as shown in Fig.4(b), the stack is filled with continuous symbols,
each having a continuous length: 1≥ L ≥ 0. These continuous symbols are generated by the continuous stack actions.

As described in the neural network controller in Eqs.(5), (6) and (8), the output of the action neuronsAi
t are calculated

by the functionf(x) with analog values distributed within the interval [-1, 1]. The value ofAi
t is interpreted as the in-

tensity of the actions to be taken on the conventional stack [Harrison78]. WhenAi
t takes on continuous values, the

natural generalization of the discrete dynamics is to interpret each continuous actionAi
t as an uncertainty about the

action to be taken. We represent this uncertainty in terms of thelength of the discrete symbols to be pushed or popped.
Therefore, at each time step only part of a discrete symbol is pushed or popped onto the stack with length determined

by  Ai
t . Whether to push or pop is determined by the sign ofAi

t: push if Ai
t > ε andpop if Ai

t< −ε whereε is a small
number close to zero; otherwise ano-operation (no-op) takes place. After such actions, the stack construction would
appear as in Fig.4 (b).

In the above description of the stack operation, only one component of the vector is used and all three actions

pop, push andno-op are represented by one variable. However, one could integrate continuous actions into a conven-
tional discrete stack in many different ways. For instance, separate action neurons could be used to represent the

different types of actions, i.e. one neuron with output to represent the value ofpush and another neuron

with output to represent the value ofpop action. In this case both and could simultaneously have

nonzero output and the order in which the two actions (push andpop) are executed must be assigned in advance. If we
first take apop action and thenpush, we in effect introduce four types of actions in the discrete limit: (1)push

(and), (2) pop (and), (3) no action(and) and (4)replace (

and).

3.2.2 Reading the Stack
How to read from a continuous stack must be defined. For simplicity, we assume only one action neuron is used.

In the conventional discrete stack a read operation only reads one symbol from the top of stack and sees nothing below.
This reading method is not suitable for the continuous stack, since there will be a discontinuity in the content of the
stack reading. We treat the stack as a one-way tape and the reading can be performed without popping the stack. More
specifically, a reading discontinuity may happen in either of the following two cases: (1) after performing the action

At, a symbol with an infinitesimal length is left on the top of the stack; or (2) the top symbol has a infinitesimal (or

(a) (b)

a a

b
c
a

b
c
b
a

a

L = 1 L = 0.7

L = 1

L = 1

L = 1

L = 0.6
L = 0.7

L = 1.0
L = 0.3

L = 0.9

Fig. 4
Fig.4 Stack symbols with continuous lengths

(a) discrete stack is filled with discrete symbols which can be viewed as all having
length = 1.

(b) continuous stack is filled with discrete symbols having continuous length:0≤
L ≤ 1.

Ai
t

0 A1
t 1≤ ≤

0 A2
t 1≤ ≤ A1

t A2
t

A1
t 1= A2

t 0= A1
t 0= A2

t 1= A1
t 0= A2

t 0= A1
t 1=

A2
t 1=

10

zero) part being removed by the previous pop actionAt. In these two cases an infinitesimal perturbation to the action

valueAt could generate a discrete jump in the stack readings. See the example shown in Fig. 4(b). IfAt = -0.9, the

symbol “a” will be popped entirely from the top of the stack. And the next readingRt+1would be the symbol “b” with

length = 0.6. However, if there is a small perturbation to the connection weights such that the value ofAt increases by

only 0.001, thenAt=-0.899. The top symbol “a” with length L=0.899 will be popped and a small portion of “a” remains

on the top of stack. In that case the next readingRt+1 would be the symbol “a” with length = 0.001. A similar discrete

jump will happen for the case whereAt≈ 0. To avoid this discontinuity we impose the condition that each time the con-
tinuous stack is read with depth equal to 1 from the stack’s top.

The advantages of this reading method are outlined below. First, a continuous reading function will be constructed
with respect to the connection weights - any infinitesimal change of weights will cause an infinitesimal change of stack

readings. In the example of Fig.4(b), forAt=-0.9 the symbol “a” on the top is popped. The next reading contains two
parts: symbol “b” with length = 0.6 and symbol “c” with length = 0.4 (the total length = 0.6 + 0.4 = 1.0). If the action

value was changed toAt=-0.899 due to a small perturbation of the connection weights, the symbol “a” is not totally
popped off and a small fraction is left. In this case the next reading would contain: a small fraction of symbol “a” with
length = 0.001, a part of symbol “b” with length = 0.6 and a part of symbol “c” with length = 0.399 (total length =

0.001 + 0.6 + 0.399 = 1.0). This example shows that the change of the next stack readingRt+1 is proportional to the

change of previous action valuesAt. When∆At approaches zero, the change of readings∆Rt+1 also approaches zero.
It should be noted that this continuity of the reading function does not automatically guarantee that it is differentiable;
and, even if it is differentiable, its derivative may not be a function feasible for numerical implementation. The com-

plication of the derivatives∂Rt/∂¶W and ∂Rt/∂¶Aτ will be discussed in Appendix A.

The other advantage of the proposed reading method is its correspondence with a probabilistic interpretation of
the continuous action value; a stochastic machine. The continuous action values can be interpreted as a type of uncer-
tainty compared to the deterministic discretepush andpop. If the maximum of the absolute action value is one,

i.e. , thelength of a symbol to be pushed or popped can be interpreted as the probability of this discrete action.

Consequently, the reading of the stack with a total length equal to one implies the normalization of the total probabil-
ities i.e. the summation of all the probabilities for reading each discrete symbol normalized to one. In other words, as
in the previous example of Fig.4 (b), if the stack reading (with total length equals to one) contains: ‘a’ with length =
0.001, ‘b’ with length = 0.6 and “c” with length = 0.399, we can interpret that the stack symbol is being read with un-
certainty: the probability of the read symbol to be “a” is very small as 0.001, the probability to be “b” is 0.6 and to be
“c” is 0.399. When the stack length is less than 1, the reading may be only an ‘a’ with length = 0.1, this could be in-
terpreted that the probability to read ‘a’ is 0.1 and the probability to read empty stack is 0.9.

3.2.3 Neural Representation

In the last subsections, the stack readingRt and the inputI t are often described as a symbol. In this subsection, the
actual neural representation of these two vectors will be discussed.

The neural representations of the input string symbol It and the stack readingsRt are determined under the follow-
ing considerations. First, in the discrete limit (by quantization of the analog neurons to discrete levels) the learned
neural network pushdown automata is required to behave the same way as a conventional pushdown automata. In this

limit, since both sets {I t} and {Rt} (each element of which corresponds to a symbol) represent the same set of discrete

symbols, the neural representations of eachI t andRt need to be identical. In this regard, there are no restrictions on

their neural representations as long as they are the same. For instance, consider the symbols ‘a’, ‘b’ and ‘e’, the set {I t}

or {Rt} can be represented either by two neurons as (0, 1), (1, 0) and (1, 1) if a binary code is used or by three neurons
as (1, 0, 0), (0, 1, 0) and (0, 0, 1) if an orthogonal code is used.

Second, during training, the stack reading should consist of continuous neuron values and each reading neuronRt

should be able to represent the contents inside a segment of the continuous stack with total length = 1. This is in general
a distributed mixture of the three possible symbols, each with a analog length less than 1. For effective neural infor-

mation representation, it is important to require that there exist a unique one-to-one mapping between each vectorRt

and the stack symbol component it represents.

Ai
t 1≤

11

The general mapping from the three continuous lengths toRt can be written as

, (11)

wherel1, l2 andl3 are the three continuous lengths of discrete symbols ‘a’, ‘b’, and ‘e’ contained inRt and are
the vector representations of ‘a’, ‘b’, and ‘e’ in neuron space. The conditionl1+l2+ l3 ≤1(notl1+l2+ l3 =1) includes the
case of partial empty stack during training where the total length of symbols stored in the stack is less than one.

The first requirement for the discrete limit can be stated as

. (12)

One simple way to satisfy this condition is to writeRt as a linear combination of three basis vectors

. (13)

For the second requirement, uniqueness, the necessary and sufficient condition for the mapping in Eq.(13) is that the

three neural vectors be linearly independent. (By the uniqueness we mean that if there exists another set of co-

efficients l’ 1, l’ 2 andl’ 3 such that then , and .) If there

arem symbols used in the input strings, then at leastm analog neurons are needed to represent the input string symbol

It and the stack readingsRt because anym vectors in the lower, less thanm, dimensional space would be linearly de-
pendent on each other. In the three symbol example, this excludes the use of binary vectors (0, 1), (1, 0) and (1, 1) to

represent symbols ‘a’, ‘b’ and ‘e’. For simplicity the unary neural representation, i.e. ,

and are used for the three symbols ‘a’, ‘b’ and ‘e’. In this case the stack readingsRt are represented by
a three-dimensional vector (l1, l2, l3), indicating that in the current stack reading the lengths of letters ‘a’, ‘b’ and ‘e’
arel1, l2, l3 respectively.

To conclude this section, a novel continuous stack is introduced. One interpretation of thecontinuous stackis the
concept ofa magnitude associated with a discrete symbol. This new concept stresses two aspects: (1) generalization
of a discrete stack to a continuous stack and (2) identification of the stack readings and actions as neural network input
and output with a probabilistic interpretation.

3.3 Dynamics of the Neural Network Pushdown Automata
For simplicity the following assumptions are made: (a) only deterministic pushdown automata are considered; (b)

only one action neuron outputAt is used; (c) the same set of symbols represent both the input and stack symbols, so

that an actionpushonly pushes the current inputI t onto the stack. These assumptions will restrict the class of CFG
languages that the NNPDA can learn and recognize.

We illustrate the NNPDA dynamics by examples. Consider two symbol strings of ‘a’ and ‘b’. To mark the end of
an input string the end symbol ‘e’ is introduced. A possible input string may be: “aababbabe.” Each time a string sym-
bol ‘a’ (or ‘b’) is fed into the neural network controller, this same symbol ‘a’ (or ‘b’) could be pushed onto the stack

(or the stack could be popped from the top) with magnitude At according to the sign ofAt. The last symbol ‘e’ in-
dicates the end of the input string. Upon receiving the end symbol, the neural network pushdown automata would
generate a proper output to tell whether the input string was legal or illegal.

 Numerically, two arrays are used to represent the stack: an integer arraystacksymbol[] to store the symbols {‘a’,
‘b’, ‘e’} and a real number arraystacklength[] for their lengths. A record of the number of symbols stored on the stack

is kept in an integertop. Assume that four state neurons are used such that St = (s1, s2, s3, s4), where 0≤s1, s2, s3, s4≤1
are the four neurons output.

Rt f l1 l2 l3 a b e, , , , ,()=
l1 l2 l3+ + 1 l1 0 l2 0 l3 0≥,≥,≥,≤

a b e, ,

Rt a= i f l1 1 l2, 0 l3, 0;= = =
Rt b= i f l2 0 l2, 1 l3, 0;= = =
Rt e= i f l3 0 l2, 0 l3, 1= = =

a b e, ,

Rt l1a l2b l3e+ +=

a b e, ,

l '1a l '2b l '3e+ + l1a l2b l3e+ += l '1 l1= l '2 l2= l '3 l3=

a 1 0 0, ,()= b 0 1 0, ,()=

e 0 0 1, ,()=

12

The NNPDA operations are outlined for successive time steps.

(1) t = 0.

Initially, the stack is empty, so thattop = 0 and the stack reading att = 0 isR0 = (0, 0, 0). If the first symbol of the

string is letter ‘a’, the initial input neural vector would beI0 = (1, 0, 0). Assume the initial state to be S0 = (1, 0, 0, 0).
The stack is shown in Fig. 5(a).

(2) t = 1.

Initialize the NNPDA with the values S0, I0 andR0 (as shown in Fig.3). After one iteration of Eq.(3), the new state

S1 and new action A1 are obtained. Assume that the action output is A1 = 0.6, then push symbol ‘a’ with length = 0.6
onto the stack. The new status of the stack can be represented asstacksymbol[1] =’a’ , stacklength[1] = 0.6andtop=1.

Then the next reading R1 would be (.6, 0, 0). The stack is shown in Fig. 5(b).

If the next symbol in the input string is ‘b’, thenI1 = (0, 1, 0). Substituting the new values S1, I1 and R1 into Eq.(3)
generates the next time values. Repeat the procedure.

(3) some later time t.

After several possible pushes, pops and no-ops, the current stack memory may have stored several continuous
symbols as in Fig. 6(a):top = 4 (four symbols are stored),stacksymbol[] = (‘a’, ‘a’, ‘b’, ‘a’) and stacklength[] = (0.32,

0.2, 0.7, 0.4). Since the stack is read down from the top with depth = 1, the current stack reading would be Rt = (0.4,

0.6, 0) as shown in Fig. 6(a). Assume the input symbol is ‘a’, so thatIt = (1, 0, 0). The state vector can also be read

from the state neuron output as St.

a 0.6

(a) (b)Fig. 5

Fig.5 Stack status at (a) t = 0 and (b) t = 1.

a
(a) time t (b) time t+1

b
a

b

a

a
a0.32

0.2

0.7

0.4

0.32
0.2
0.24

Rt

1.0

1.0 Rt+1

a
b

popped off
by At = -0.86

top

top
0.4

0.46

This portion is

Fig. 6

Fig.6 Continuous stack at (a) time t and (b) time t+1.

13

(4) time t+1.

SubstituteSt, It andRt into Eq.(3) and the next time values are obtained. If the actionAt+1 =-.86, a segment of the
stack with content of length = 0.86 is popped. This “popped segment” includes 0.4 of ‘a’ and 0.46 of ‘b’ and the stack
now hastop = 3 (three symbols are left),stacksymbol[] = (‘a’, ‘a’, ‘b’) and stacklength[] = (0.32, 0.2, 0.24). The next

stack reading would be Rt+1 = (.52,.24, 0) (formed by 0.32 of ‘a’ plus 0.2 of ‘a’ plus 0.24 of ‘b’).

This procedure is repeated until the end of the input string. The classification of an input string is determined by
examining the final state neuron output and the stack length. The criterion for training and classification will be dis-
cussed in the next two sections.

3.4 Objective Function
 The objective function to be minimized is defined as a scalar error measure which is a function of both the end

state and the stack length. For a conventional pushdown automata, either the end state or the stack length alone is a
sufficient criterion to determine the acceptance of input strings [Harrison78]. If either the end state reaches a desired
final state, or the stack is ended empty, the input string is legal; otherwise illegal. However in training the NNPDA we
find that a combination of these two criteria seems necessary. (Initially, we tried only one of these criteria in training,
but training was unsuccessful. For the stack-empty only criterion, the stack actions always converged to pop. For the
final-state only criterion, the stack actions were not affected.) We speculate that this is because of the existence of too
many local minimum in phase space. Thus, an objective function consisting of only one criteria of final state or stack
length will have a very complex phase space configuration so that the local learning algorithm - gradient descent -
would not be able to drive the system from the local minima. Therefore, a legal string is required to satisfy both con-
ditions: (1) at the end the NNPDA reaches a desired final stateand (2) the stack is empty.

Define the stack length at timet to beLt. Then,Lt can be evaluated recursively in terms of the action valueAt

, (14)

because only the push or pop actions can change the length of stack. The initial condition isLt = 0 and the constraint

Lt ≥ 0 should be imposed at all the times. LetT-1 be the final time at the end of input string. For legal strings the
straightforward error functionE to be minimized could be

, (15)

whereSf is the desired final state. However, this error function could not be used to train illegal strings. For illegal
strings the desired value of functionE is not known. Maximizing the sameerror E as in Eq.(15), in general, would not
give a correct answer becauseE is an unbounded function and an illegal string may not end with a long stack length.
However, replacingSf in Eq.(15) with a desired end state for illegal strings and then minimizingE presents the same
problem since illegal strings are required to end with an empty stack (in effect avoid using stack). The main difficulty
is that there is not enough information to decide the desired value of stack length for illegal strings.

In general, the following reasoning is applied. Since a legal string requiresboth (a) the desired final stateST=Sf,

and (b) an empty stack (Lt = 0); an illegal string should require the opposite:either (a) the final state be a large mea-

surable distance fromSf, or (b) a non-empty stack (Lt ≥ 1).Although other training requirements could be defined, in
practice, both of these conditions are successfully used.

One way to implement the above requirement is to introduce a unified error functionE which can be used to train
both legal and illegal strings. For simplicity we assign the final state(s) in such a way that only one neuronSNs output

is to be checked at timeT at the end of input string. We requireSNs
T = 1 andLT = 0 for legal strings andSNs

T = 0 or

LT ≥ 1³for illegal strings. In this case the unified error function to be minimized for both legal and illegal strings can be
defined as

, (16)

wherev is a parameter assigned as a target value for each training example. For legal stringsv = 1 and for illegal strings

v = min{0, SNs
T-LT}. The learning algorithm is derived by minimizing this error function with the proper value ofv

Lt 1+ Lt At+=

E Sf ST−() 2 LT() 2+=

E v L+ T SNS

T−() 2 e2≡=

14

for each input string. Correctness of the error function(16) can be checked separately for each string. If the input string

is legal,v = 1. Then, minimizingE corresponds to the requirement thatSNs
T=1 andLT=0  the desired final state and

empty stack. If the input string is illegal, we requirev = min{0, SNs
T-LT}. There are two possible cases. First, when

SNs
T>LT, let v = 0, which implies that minimizingE corresponds to drivingLT to approach SNs

T. The minimum ofE

can be reached ifSNs
T=LT. This means that for each input string (neuron activitySNs

T is discretized to 0 or 1) one of

the following requirements is met:SNs
T = 0 or LT = 1. Second, if LT is already greater thanSNs

T, then

v = min{0, SNs
T-LT}=SNs

T-LT. This leads toE=0, implying “do not care” or “no error”. Thus, in the discrete limit, the

combination of the two cases corresponds a requirement for illegal strings: eitherSNs
T = 0 (illegal state)or

LT ≥ 1(non-empty stack).

From the above analysis for analog values ofSNs
T, the expression H≡SNs

T-LT could be considered as a continuous

measure of howwell both of the two conditionsSNs
T = 1 andLT =0 are satisfied. The desired value for legal string is

H=1 and for illegal stringsH≤0. ThisH function also provides a simple test measure for new input string strings. After

training we will use the same measureH≡SNs
T-LT to test the generalization capability of the NNPDA on unseen input

strings. The measureH will be evaluated for each input string. A string is classified as legal ifH >.5, otherwise illegal.

Another criterion to assist learning is the “trap state,” one of the “hints” used by [Das93]. This “trap state” is used
in training the non-trivial Palindrome grammar; details are discussed in Section IV.

3.5 Training Algorithm
The training algorithm is derived by minimizing the error function using a gradient descent optimization method.

There are currently two ways to implement gradient descent optimization in recurrent neural networks: the chain-rule
differentiation can be propagated forward or backward in time. The forward propagation method is also known as Real
Time Recurrent Learning (RTRL) [Williams89], which propagates a sensitivity matrix forward in time until the end
of an input sequence. Then, error correction is performed and the weights are modified according to the error message
and the sensitivity matrix. Back-propagation-through-time [Rumelhart86b] can be applied to recurrent network train-
ing by unfolding the time sequence of mappings into a multilayer feed-forward net, each layer with identical weights.
This method requires memorizing the state history of input sequence and, whenever the error is found, the error must
be propagated backward in time to the starting point. Due to the nature of the backward path, it is an off-line method.
In principle, both methods can be generalized to couple the external stack memory with recurrent neural network and
train the NNPDA. RTRL is desirable for on-line training because the weights can be modified immediately after the

error is detected without waiting for back-propagation. But it has a complexity of O(N4) compared to the complexity

of O(N3) for back-propagation through time (N is the number of neurons and first order connection weights are as-
sumed). For the task of grammatical inference, on-line training is not necessary because error messages are only given
at the end of input strings. But, since the derivation of forward propagation algorithm is more straightforward for NNP-
DA, we first consider the generalization of RTRL for training the NNPDA.

 From Eqs.(10) and (16), the weight correction for gradient descent learning becomes

, (17)

whereη is the learning rate and the partial derivatives ofLT andST
Ns with respect to weight matrix W can be calculated

recursively. The formula for∂Lt/ ∂W is easily derived from Eq.(14)

. (18)

The recursions for∂St/ ∂W and∂At/ ∂W are found by differentiating the controller dynamical equations. For example
the second-order connection weights of Eq.(5) yield

∆W η v LT SNS

T−+()
W∂

∂LT

W∂

∂SNS

T

− 
 

−=

W∂
∂Lt 1+

W∂
∂Lt

W∂
∂At

+=

15

. (19)

It should be noticed that Eq.(19) is an abbreviation of four equations for∂St+1
i’ / ∂Ws

ijk, ∂St+1
i’ / ∂Wa

jk, ∂At+1/ ∂Ws
ijk

and∂At+1/ ∂Wa
jk. For simplicity the notations ofSt andAt are combined into one equation. The (NS+1)th component

of vectorSt is At. The functionhi(x) represents derivativesg’(x) for i =1 toNS andf’(x) for i = NS+1. Ws andWa are

similarly combined such thatWijk representsWijk
s for i=1 to NS andWjk

a for i=NS+1. (Note the assumption thatNA=1
andNR=NI). The learning algorithm formulas for the third order state transition and “full order” action mapping are
presented in Appendix B.

 From these recursions and knowing the initial conditions of∂S0/∂W, ∂A0/∂W, their values at a later time can be

evaluated by Eq.(19). But, the recursion is not complete until∂Rt+1/∂W is expressed in terms of∂St/∂W, ∂At/∂W and

∂Rt/∂W. This relation may not be easy to find, since the stack reading is a highly nonlinear function of all the previous

actions and input symbols, as shown in Eq.(4),Rt=F(A1, A2, ...,At; I1, I2, ... ,I t). The approximate recursive relation

for ∂Rt+1/∂W can be derived (for details see Appendix A). To the lowest order in its expansion, we have (from the
derivation in Appendix A)

, (20)

wherer1
t andr2

t are the ordinal numbers of neurons that represent the top and the bottom symbols respectively in the

readingRt. Consider for example the case where after the execution of the action At, the stack is (from bottom to top):

(0, 0.9, 0), (.2, 0, 0), (0, .7, 0) and (0, 0, .15). Thenr1
t=3 andr2

t=1, because the symbol (0, 0, .15) on the top is the third

symbol and the symbol (.2, 0, 0) on the bottom ofRt is the first one.

The complete recursive equations Eqs.(18), (19) and (20), together with the NNPDA dynamical equations can be

forward propagated with initial conditions∂S0/∂W=0, ∂A0/∂W=0 and∂R0/∂W=0. The initial values ofA0 andR0 are

zero and the initial stateS0 could be assigned any constant. At the end of the input string, the weight correction Eq.(17)
is evaluated. The final weight correction can be performed using either batch or stochastic learning.

However, there is the case of “pop empty stack.” If the total length of the remaining symbols in the stack is less

than the value of a pop action (Lt-1<|At|), a “pop empty stack” occurs. For a well designed conventional pushdown au-
tomata “pop empty stack” never occurs. But, in learning a PDA, whether with a NNPDA or another method, such an
action seems almost inevitable. We devise two possible ways to deal with this case. First, the input sequence can be
interrupted whenever a “pop empty stack” occurs and weight corrections are made to increase the stack length (∆W ~

∂Lt/∂W). And, second, when we have “pop empty stack” and the input string is illegal, no weight correction is made.
Conversely, weight corrections are made for legal input strings.

3.6 Extraction of PDA from a Trained NNPDA
After training with examples of a context free grammar, the NNPDA in general could recognize correctly the

training set up to a certain length of strings. But, because of the analog nature of NNPDA, the recognition results are
not “correct” in the discrete sense. The final state output are analog values between 0 and 1, which are usually reduced
to the binary values of 0 and 1 by a threshold of 0.5. But, analog errors from intermediate states still exist and could
accumulate as the input strings become longer. To extract from the trained NNPDA a PDA which represents the un-
derlying CFG, we devise a quantization procedure that converts an analog NNPDA to a discrete PDA. To simplify the
state structure of the extracted discrete PDA, a minimization procedure for the PDA must be devised.

The quantization can be performed as follows. First, the action neuron(s) is quantized into three discrete values:
-1, 0 and 1 according to the rule

Si ′
t 1+∂

Wijk∂ hi ′ Si ′
t() δ

i i ′Sj
t Rt I t⊕() k Wi ′ j ′k′ Rt I t⊕() k′

Sj ′
t∂

Wijk∂ Wi ′ j ′k′Sj ′
t

Rk′
t∂

Wijk∂
k′ 1=

NI

∑
j ′ 1=

Ns

∑+
k′ 1=

2NI

∑
j ′ 1=

Ns

∑+
 
 
 

=

Rk′
t∂

Wi j k∂
δ

k′ r1
t δ

k′ r2
t−()

At∂
Wi j k∂

≈

16

, (21)

where the thresholdA* was chosen to be 0.5 for most of our numerical simulations (However, our experience indicates
that the quantization results do not seem sensitive to the selection ofA* values and other values besides 0.5 could be
used). In this way the continuous stack will behave like a discrete stack and generate the discrete actions: push, no-op
and pop actions. Next we perform a cluster analysis of the internal states. All input strings that have been recognized
correctly are fed into the trained NNPDA and a set of analog internal states is generated. This set is divided into several
clusters using a standardK-mean clustering algorithm [Duda73]. The number of clustersK is determined by minimiz-
ing the averaged distance from each state to its cluster center (in case the clusters are not well separated more training
with these strings may be needed). After the cluster analysis store the cluster centers as the representative points of
quantized internal states, then a PDA with discrete states is created and the number of states is equal to the number of
clusters. During further testing, each analog internal state is quantized to its nearest cluster representative points and
the discrete transition rules can be extracted. Now construct a transition diagram and this is the extracted PDA.

In some cases, instead of quantizing the whole state vectors, quantizing each of the state neurons is also useful. If

the state neuron’s output is distributed near their saturation values (0 or 1), a binary quantization is natural, i.e.St
i is

quantized to one if St
i > 0.5 and zero otherwise. If the state neural activity is uniformly distributed, more quantization

levels are needed. The quantized NNPDA is tested with training or test strings again. If the recognition is incorrect, a
finer re-quantization is needed (see [Giles92a] for a discussion of a similar method for FSA extraction for trained NN-
FSA).

When a linear “full order” mapping is used for the action output (linear “full order” mapping is the linear form of
Eq.(8)), then the quantization rule of Eq.(21) can be replaced by quantizing the connection weights by:

, (22)

whereWa are the connection weights for action output andW* is the threshold. For details, see the numerical simula-
tion for learning the Palindrome grammar.

After extraction of the discrete PDA, we reduce the state structure by pruning equivalent states. It is known that,
in general, there exists no minimization algorithm (as for FSAs) for obtaining the unique minimal PDA; and that there
exists no algorithm to tell whether or not two context free grammars or the two PDAs which accept two context free
grammars are equivalent [Hopcroft79]. But, for a given specific structure of a PDA, the minimal size can be obtained
by exhaustive search. For instance, assume a specific structure of a deterministic PDA, which pushes and pops only
one symbol per input and the stack symbols are the same as input symbols. For this type of PDA each state transition
can be characterized by a three-tuple condition (α,β,γ), whereα is input symbol,β is stack reading symbol andγ=1,
-1, 0 represents push, pop and no-op. If we consider each combination of (α,β,γ) as an equivalent input symbol of a
regular grammar, the extracted PDA transition diagram is equivalent to a finite state automaton transition diagram
where a transition occurs each time a “symbol” (α,β,γ) is seen. Thus, the minimization algorithm for FSA can also be
effectively used to reduce the extracted PDA. For detailed examples, see the next section.

IV. NUMERICAL SIMULATIONS (learning grammars)
To illustrate the learning capabilities of the NNPDA, we train the NNPDA on a finite number of positive and neg-

ative strings of three context-free grammars. Different types of NNPDA and training procedures are discussed for each
particular problem set. For all problems the external stack of the NNPDA is initially empty. All simulations were per-
formed with 64 bit, double precision. For training we started with short strings and gradually increased the string length
[Elman91]. For some simulations only 5 significant figures are presented.

4.1 Balanced Parenthesis Grammar
We train a second-order NNPDA to correctly recognize a given sequence of “balanced” parentheses. Input se-

A

0 if A A*≤(),
1− if A A*−<(),
1 if A A*>(),î




=

Wa

0 if Wa W*≤(),

1− if Wa W*−<(),

1 if Wa W*>(),
î



=

17

quences consist of two input symbols ‘(’ and ‘)’ and an end symbol ‘e’. Unary input representations are used with three
input neurons, where (1,0,0), (0,1,0) and (0,0,1) represent respectively ‘(’, ‘)’, and ‘e’. The stack action is controlled

by one action neuronAt. The number of state neurons is chosen empirically to be three, since the correct PDA control-
ler is known to be a two state machine. The initial state is (1, 0, 0). At the end of the input string the value of third state
neuronS3 is checked. During training, the target value ofS3 is 1.0 for legal strings and 0.0 for illegal strings.

The training set consists of fifty strings: all thirty possible strings up to length four and twenty randomly selected
longer strings up to length eight. The training criterion and algorithm (RTRL) are the same as described in Sections
3.4-5. For each run the initial weights are randomly chosen from the interval [-1,1]. For 5 different runs approximately
one hundred training epochs are needed for the NNPDA to converge, i.e. learn the entire training set. To speed up train-
ing, we introduce the empirical condition that the input sequence is stopped and the stack length is reduced (∆W ~ −
∂Lt/∂W) if a “pop empty stack” occurs during input of an illegal string. In this case, after only twenty epochs of training,

the training set is learned. During testing, all the strings up to length twenty can be correctly recognized (totally 221

strings). The acceptance criterion is discussed in Section 3.4. Due to analog error accumulation, longer strings could
not be correctly recognized. To extract a discrete PDA the state neuron activation [0, 1] is quantized into five segments:
(0, 0.125), (0.125, 0.375), (0.375, 0.625), (0.625, 0.875), (0.8755, 1) or five discrete values:Si= 0, 0.25, 0.5, 0.75 and
1.0, each corresponding to one segment. After quantization, the analog NNPDA becomes a discrete PDA. To check
its performance, randomly chosen longer strings (length 50 to 100) were tested. All strings incorrectly classified by
the analog NNPDA were now correctly recognized by the discrete PDA.

The transition diagram isextracted by tracing all possible paths of state transition numerically. This is easily done
using a tree search method. Denote each node of the tree as a combination of state and stack reading. Starting from the
root node, the initial state and empty stack, input all possible symbols at each node and trace the path of each symbol
by calculating the next time state, stack reading and stack operation in terms of quantized NNPDA. Each time a new
node is calculated, this node is checked to see if it has already been created in the previous level of the tree. If it is not,
create this node and construct a transition line from the old node to the new node. Label the stack operation for this
transition. Repeat this procedure at the new node until no additional new node occurs. The result of the tree structure
can be translated to a transition diagram with each state as a node. As shown in Fig.7, each circle represents one quan-
tized neural state and the arrows represent the state transitions. The notation (a,b,c) in Fig.7 represents a transition that

occurs when the input symbol isI t= ‘a’, the stack readingRt= ‘b’ and action neuron output isAt=c. The two parentheses
‘(’ and ‘)’ are denoted by ‘1’ and ‘0’ and an empty stack reading by ‘φ’. It is seen from Fig.7 that when a ‘1’ is presented

1

34

start

pop empty stack

(0, φ, -1)
(1,φ,1)

(0,φ,-1)

(1,1, 1)
(0,1,-1)
(1,φ,1)

(e,φ)
(e,1)

= (1, 0, 0)1 2 = (1, .25, .25)

= (.75, .25, .75)= (1., .25, .25)3 4

Quantized states:

Fig. 7

2

Fig.7 The pushdown automaton (PDA) extracted from the NNPDA after the balanced parenthesis
grammar was learned. The discrete states (1), (2), (3) and (4) are obtained by quantizing the numerical
values of state neurons into five levels: 0, .25, .5, .75, and 1. State (1) is start state. State (4) is the legal
end state. Just before the end symbol, a legal string must end at state (2) with an empty stack.

18

to the NNPDA, a ‘1’ is pushed onto the stack (due to rules (1,φ,1) and (1,1,1)). If a ‘0’ is presented to the NNPDA, a
‘1’ is popped from the stack (due to (0,1,-1)). Whenever a ‘0’ is presented and the stack is empty, the “pop empty stack”
occurs. An input string will be classified as legal if, just before the presentation of the end symbol, the PDA is at state
2 and the stack is empty. Otherwise the input string is illegal. i.e. either “pop empty stack” occurs or the stack is not
empty).This is indeed the desired PDA. In addition to the start state (state 1), only one state (state 2) is needed. States
3 and 4 are only needed to check if the stack is empty at the end of string.

4.2 1n0n grammar.

The language of the 1n0n grammar is a subset of the parenthesis grammar. The 1n0n PDA needs at least 2 internal

states in order to filter out the strings legal for the balanced parenthesis grammar but illegal for the 1n0n grammar

[Hopcroft79]. The neural controller we used to learn the 1n0n grammar had 5 state neurons.

A small training set, 27 short strings with 12 legal and 15 illegal strings shown below was initially used for train-
ing:

n1 n11 n1000 y1100 n1011
y10 y10 y1100 n110010 y10
n0 n100 n1111 y11110000 n1101,
y10 y10 y1100 n110100
n00 n1001 n1110 y1111100000
y10 y1100 n101100 n1010

where the letter ‘n’ and ‘y’ in front of the strings denote the classifications “no” and “yes”. The1n0n grammar contains

very few legal strings; among 2L strings of length L there is only one legal string 11...100...0. Hence, the training set
replicates some of the short legal strings “10” and “1100” between illegal strings in order to give balanced training set.
For this example, the empirical rules (or “hint”) of “pop empty stack” or “dead state” are not used. Whenever a nega-

tive stack length appears, we stop and modify the weights to increase the stack lengthLt (∆W ~ ∂Lt/∂W). This is equiv-

alent to increasing the “push” action valueAt to avoid “pop empty stack”.

 After 100 training epochs, the NNPDA correctly classified the training set and was tested on unseen strings. Up
to length eight, all strings are classified correctly except the following six strings:

n11000 n1100100 n01110000 n10101000 n11011000 n11001100.

These strings are then added to the training set and the NNPDA is retrained for another 100 epochs. Testing found 8
errors for all strings up to length nine. The misclassified strings are again added to the training set. After repeating this
procedure five times, the trained NNPDA correctly classified all 2,097,150 strings up to length twenty and 20 random-
ly chosen strings up to length 160.

To analyze the learned NNPDA, the state neurons are quantized into two levels: 0 (ifSi<0.5) and 1 (otherwise),
and the action neuron is quantized into three levels: -1, 0 and 1 as before. Starting from the initial state (1,0,0,0,0) and
empty stack, all possible state transitions could be identified by inputting different strings. The resultant transition di-
agram is shown in Fig.8, where six binary states: (1,0,0,0,0), (1,0,0,0,1), (0,0,0,0,1), (1,1,1,1,1), (0,0,0,1,1) and
(1,0,1,1,1) were found to form a close loop for any input strings of ‘0’ and ‘1’. For clarity, the transitions for inputting
an end symbol are not shown. Without end symbol, the state (1,1,1,1,1) is the desired final state for legal strings. All
other states are illegal final states. This is because that starting from (1,1,1,1,1) with an empty stack, an end symbol
input will lead to state (0,0,0,0,1). But, in all other cases (either starting from state (1,1,1,1,1) with non-empty stack or
starting from other states) an end symbol input will lead to an illegal final state (*,*,*,*,0), a state with last neuron
activity being zero.

The state transition diagram of the extracted PDA can be reduced using procedures previously discussed. The re-
duced transition diagram is shown in Fig.9, where the states 1, 2, 3 and 4 represent the quantized states (1,0,0,0,0),
(1,0,0,0,1), the combination of states {(1,1,1,1,1), (1,0,1,1,1)} and the combination {(0,0,0,0,1), (0,0,0,1,1)} respec-
tively. In the reduced diagram, state 3 is the desired final state. Recall that acceptance of a legal string requires both a
desired final state and an empty stack.

19

4.3 Palindrome grammar.
The language of the deterministic Palindrome grammar contains all strings in the form of WcW′, whereW repre-

sents an arbitrary string of given symbols (here, we use two symbols ‘a’ and ‘b’), W′ is the reversed order ofW, and
‘c’ is an additional symbol to mark the boundary symbol betweenWand W′. For example, strings “abaaabbcbbaaaba”
or “bbabbacabbabb” are legal.

 The minimal (to our knowledge) palindrome PDA is shown in Fig. 10. Starting with state (1), every input symbol
‘a’ or ‘b’ is pushed onto the stack and the PDA remains in state (1). After an input symbol ‘c’ the PDA moves to state

0
0
0
0
1

0
0
0
1
1

1
0
0
0
0

1
0
1
1
1

1
1
1
1
1

1
0
0
0
1

(1, 1, 1)

start

(0, φ, 1)

(1, φ, 1) (0, 1,-1)

(0,φ, 1)
(0, 1, -1)
(0, 0, 1)

(0, 0, 1)

(1, 0, 1) (1, 1, 1)
(1, f, 1)

(0, 1, 1)(1, 1, 1)

(1, 1, 1)

(1, 0, 1)

(0, 1, 1)

Fig. 8

Fig.8 The state transition diagram extracted from the trained NNPDA where the training exam-

ples were from the context-free grammar 1n0n. In the figure, each five-component column vector
represents a state of the PDA which is obtained by quantizing each of the state neurons to the binary
values: 0 and 1.

Fig. 9

1

4

32

(1, 1, 1)

(1, φ, 1) (0, 1, -1)

(0, φ, 1)

(0, φ, 1)
(0, 1, -1)

(0, 0, 1)

(1, 1, 1)

(0, 1, 1)

(1, 0, 1)
(1, 1, 1)
(1, φ, 1)

start

Fig.9 The reduced PDA transition diagram of the1n0n grammar. This diagram is obtained
by grouping together the equivalent states in Fig.8 and assigning one representation to each state
group, where the states 1, 2, 3 and 4 represent respectively the quantized states (1,0,0,0,0),
(1,0,0,0,1), the combination {(1,1,1,1,1), (1,0,1,1,1)} and the combination {(0,0,0,0,1),
(0,0,0,1,1)}.

20

(2). When in state (2) the PDA pops every stack symbols if the stack reading (‘a’ or ‘b’) matches the input symbol;
otherwise it moves to a trap state. The input string is classified as legal only if the PDA ends at state (2)with empty
stack. In this example no end symbol is used.

This grammar has been found difficult to learn [Das92]. In our numerical simulations, both second order and third
order nets were not able to learn a correct PDA for palindrome grammar. Two major difficulties were found. First, we
lack sufficient information to supervise the stack actions for illegal strings. In most simulations the NNPDA did not
learn to push correctly every symbol into the stack for illegal strings like “ab” and “babbaa” since it was not told what
should be the target stack length during training. After seeing ‘c’ as in strings “abcba” (legal) or “babaacaab” and “ba-
baacabb” (both illegal), the NNPDA is supposed to compare input symbols with stack readings and perform a pop if
they match. But, since those symbols before ‘c’ were not stored in the stack as discrete symbols, the NNPDA could
not compare the right stack symbols with input and perform the correct pops. Although, in learning the balanced pa-
renthesis grammar a NNPDA had been able to learn a correct pop, this is a different level of stack operation.
Comparing the two transition diagrams in Figs.7 and 10, it can be found that the palindrome grammar involves a more
sophisticated level of stack manipulations than those in the balanced parenthesis grammar PDA. The stack of balanced
parenthesis grammar is in fact only a counter. As shown in Fig.7, all the state transitions and stack actions can be de-
cided totally by the combination of input symbol and current state, they do not really depend on the contents the stack
is reading. (In this sense, only a second order correlation is needed.) But, the stack actions for the palindrome grammar
require a third order correlation and actual dependence on the stack contents.

The second problem is the limitation of neural network structures. [Das92] shows that second and third order neu-
ral network structures are not able to learn certain grammars without “hints.” Moreover, our simulations show that
even with hints using second and third order networks, the palindrome grammar cannot be learned. The limitation of
the neural network structure for learning the palindrome is now discussed. For example, the Palindrome grammar re-
quires the action rules (a, a, 1) before seeing ‘c’ and (a, a, -1) after seeing ‘c’. For these two rules, the input and the
stack reading are the same but the action is different: one is push and the other is pop. So, according to the third order

dynamics, the stack actions could be written A= f(W ⋅S + ϑ) where the summation over input symbols and stack read-
ings for these two cases have already been performed and W is the result of the “equivalent weights”. The problem
becomes one of learning the weightsW andϑ such thatA=1 for one set of states {S1} (before seeing ‘c’) andA=-1 for
another set of states {S2} (after seeing ‘c’). Clearly, two arbitrary sets of state vectors may not be linearly separable
unless they all have a unary representation (or mutually orthogonal in general). (This is the assumption for justifying
the usefulness of third order networks.) However, during learning the numerical neural states most likely to occur are
neither unary nor mutually orthogonal. To overcome this problem we introduced the idea of a “full order” linear net
for stack action mapping.

(1). Full Third-order Network Structure.

The third order connection weights for state dynamics as in Eq.(5) are used, and the stack action is governed by a
linear “full order” mapping. The parameters are: (i) number of state neuronsNs=4, (Equivalent to the number of binary
states = 16); (ii) Number of input symbolNI=3, number of stack reading symbols NR=4. Three input neurons for sym-
bols ‘a’, ‘b’ and ‘c’ (no end symbol) and an additional neuron is introduced to represent the empty stack. This is
necessary to supervise the learning to avoid the “empty stack” situation. (iii) One action neuron,NA=1. In this case,

the state transition weights as in Eq.(5) are a four-dimensional matrixWs[4][4][4][3] and the stack action weights are

Fig. 10

1 32(c, ∗ , 0)

(a, a, -1)
(b, *, 1)

start

(a, *, 1)
(b, b, -1)

final state trap state

(α, β, 1)

(∗ , ∗ , 1)

Fig.10 The simplest PDAtransition diagram for palindrome grammar, whereα andβ rep-
resent any combinations of input symbols and stack readings other than (a, a) and (b, b).

21

a three-dimensional matrixWa[16][4][3]. The dynamics of the neural controller are

, (23)

where the nonlinear functionf(x) in Eq.(8) has been replaced by a linear functionf(x) = x and the extended state vector
PJ is defined as

. (24)

In Eq.(24), the symbolδm inside the product represents the binary values of 0 and 1, which are determined by themth

bit of the binary number (J-1). For example, if J-1 = 10, its binary form is 1010, which setsδm: δ1=1, δ2=0, δ3=1 and
δ4=0. The summation of all components of the extended statePJ is equal to one, i.e.

, (25)

wherePJ can be interpreted as the probability for a NNPDA to be in each of the 2Ns binary states. To guarantee that

the action output be in the range:−1≤At≤1, the stack action weights are truncated to the range -1≤ Wa≤1.

 It can be seen that Eq.(25) plus the truncation ofWa to [-1, 1] will automatically guarantee the action output in

Eq.(23) to be within the range−1≤At+1≤1. Later, upon performing the post-learning quantization ofWa to three levels:

-1, 0 and 1, each of the action weightsWa will represent an action rule, which were used in Figs.7- 10. For example,

Wa[3][2][1] = -1 means that, starting from the third binary state, e.g. (0,0,1,0), if the input symbol is the first one, e.g.
0, and the stack reading is the second one, e.g. 1, the stack action will be a pop, i.e. a rule (0, 1, -1) marked besides the
transition arrow from state (0,0,1,0) to the other state.

(2) Learning Criterion.

Some modifications have been made to the learning objective function previously discussed in Section 3.4. Both
state and stack length are used to discriminate the legal and illegal strings. But, instead of using the usual desired final
state and non-desired final state, we introduce the “trap state” and “non-trap state” to discriminate the “potentially legal
string” and “definitely illegal string” [Das93]. Input strings “abbbacbab”, “abbbacbbababaaab”, ... , can now be clas-
sified before seeing the end of the string. This is because whenever symbol ‘b’ occurs after ‘c’, an ‘a’ in front of a ‘c’
is not matched and string is illegal irrespective of the remaining symbols. In that case, we force the NNPDA to go to
the “trap state” and stop further learning. This requires prior knowledge about the underlying language in order to suc-
cessfully supervise training. Here, we assigned the last state neuron to be 0 for the “trap state” and 1 for the “non-trap
state”. For input strings not trapped into the “trap state,” training is as usual. The weight updates become

, (26)

whereS* and L* are the target values of state and stack length. The target state is determined by the “trap state” or
“non-trap state”, and the target stack length is zero for a legal string. Since the target stack length for an illegal string
is not known, a small driving force is used empirically to slightly increase the stack length for all illegal strings ending

at a “non-trap state”, i.e.,L*-Lt = 0.1 if Lt≥0.9 andL*= 1 if Lt<0.9. This error supervision is based on the following.
Although the exact length of an illegal string is not known, it must be greater than or equal to one if the string ends up
at a “non-trap state”. For illegal strings ending at a “trap state”, the stack length is unaffected.

At 1+ WJkl
a PJ

t Rk
t I l

t()
l 1=

NI

∑
k 1=

NR

∑
J 1=

2
NS

∑=

Si
t 1+ g Wi j kl

s Sj
tRk

t I l
t() θi

s+
l 1=

NI

∑
k 1=

NR

∑
j 1=

NS

∑ 
 =

PJ
t δmSm

t 1 δm−() 1 Sm
t−()+()

m 1=

NS

∏=

PJ
t

J 1=

2
NS

∑ 1=

W∆ η S* St−()
W∂

∂S t
L* L− t()

W∂
∂L t

+=

22

(3)Training Set.

Two training sets are used. The first training set includes all 39 strings up to length three. The second contains 363
strings up to length five. Since the number of legal strings is much smaller than the illegal strings, the training set is
balanced by adding all four legal strings up to length five to the first training set and all eight legal strings up to length
seven to the second training set. In each training set the legal and illegal strings are put in two separate groups. During
training, we present a legal string between every five illegal strings and make the learning rate for legal strings five
times larger than that of illegal strings. Each training set was trained for 200 epochs.

(4)Training Algorithm.

The RTRL learning algorithm is generalized to the dynamics of Eqs.(23) to (26) which can be derived from the
“chain rule” and forward propagating the error rate. Details are listed in Appendix B.

(5) Simulations of Training.

The first training set described above was used to train the NNPDA for 200 epochs. Then, the second training set
was used for another 200 epochs. The “averaged classification error” for each training set was monitored during train-
ing. After a total 400 epochs of training, it converged to ~ 0.06. At the end of each string the error is determined by

input state action stack segment lengths stack symbols

a (0.0079, 0.9952, 0.0160, 0.9580) 1.0000 (1.0000) (a)

c
a

(0.0010, 0.0162, 0.9994, 0.9599) 0.1323 (1.0000, 0.1323) (a, c)
(0.0026, 0.9982, 0.9971, 0.9995) - 0.9869 (a)(0.1454)

b (0.2055, 0.9749, 0.6775, 0.0003) 0.7667 (0.1454, 0.7667) (a , b)
c (0.0030, 0.9977, 0.4301, 0.9684) 0.9684 (0.1454, 0.7667, 0.9584) (a, b, c)

Input string = “acabc”, final stack length = 1.8805 > 0.5 -> classification Illegal.

input Internal state action stack segment lengths stack symbols

b (0.9183, 0.0831, 0.9777, 0.9708) 1.0000 (1.0000) (b)
a
c

(0.9934, 0.9875, 0.1103, 0.9999) 0.9540 (1.0000, 0.9540) (b, a)
(0.0030, 0.1921, 0.9995, 0.9990) 0.0625 (b, a, c)(1.0000, 0.9540, 0.0625)

b (0.2890, 0.9472, 0.9021, 0.0260) 0.6850 (b, a, c, b)

Input string = “bacba”, final state = 0.0054 < 0.5, final stack length = 3.6539 > 0.5 -> classification Illegal.

(1.0000, 0.9540, 0.0625, 0.6850)
a (0.0190, 0.99602, 0.4490, 0.0054)0.9524 (1.0000, 0.9540, 0.0625, 0.6850, 0.9524)(b, a, c, b, a)

input state action stack segment lengths stack symbols

b (0.9183, 0.0831, 0.9777, 0.9708) 1.0000 (1.0000) (b)

a
c

(0.9934, 0.9875, 0.1103, 0.9999) 0.9540 (1.0000, 0.9540) (b, a)
(0.0030, 0.1921, 0.9995, 0.9990) 0.0625 (b, a, c)(1.0000, 0.9540, 0.0625)

a (0.0021, 0.9989, 0.9961, 0.9998) - 0.9989 (1.0000, 0.0176) (b, a)
b (0.0031, 0.9089, 0.9994, 0.9993) - 0.9858 (0.0318) (b)

Input string = “bacab”, final state = 0.9993 > 0.5, final stack length = 0.0318 < 0.5 -> classification Legal.

Table 1a.

Table 1c.

Table 1b.

 Table 1. A demonstration of the step by step working process of the trained NNPDA. The three example strings are
“acaba”, “abcba” and “abcab”. The state of the NNPDA at each time step is displayed in each row using the data listed in the
five columns. For all the cases, the initial neural state is (1, 0, 0, 0) and the initial stack reading is “empty stack”. The first

column is the input symbol, the second is the output of internal neural state St represented as a four-dimensional vector, the

third one is the action neuron output At, and the fourth and fifth are the stack status at each time step. The actual accuracy of
the calculation was 64bit double-precision, but only 5 significant figures are shown.

23

. (27)

The values of S* andL* are specified as before. The only difference from before is that for illegal strings the error (L*

- LT) is set to zero ifLT is already greater than one.

The trained NNPDA is tested on new input strings. In testing the “trap state” monitor is not used to stop any se-

quence. The classifications criterion is: LEGAL ifboth STNs >0.5andLT ≤ 0.5; ILLEGAL otherwise. The 29,523 test
strings include all possible strings constructed with symbol ‘a’, ‘b’ and ‘c’ up to length nine. [The following results
are given for 5 significant figures, though 64bit floating point double precision was used.] The test result shows only

four errors: three legal strings “ababcbaba” (ST
Ns=0.9898,LT=1.0776), “abbacabba” (ST

Ns=0.9973,LT=0.7301) and

“bbbacabbb” (ST
Ns=0.9994,LT=0.5302) are classified as illegal becauseLT>0.5 and one illegal string “abcbbbcbb”

(ST
Ns=0.9744,LT=0.4543) is classified as legal becauseST

Ns>0.5 andLT<0.5.To illustrate the inner workings of the
NNPDA for classification after training, consider the examples in Table 1, strings “acabc”, “bacab” and “bacba”. The
processing status at each time step is displayed using the data listed in the five columns. For all the cases, the initial
neural state is (1, 0, 0, 0) and the initial stack reading is “empty stack”. At each time step the first, second, third, fourth

and fifth columns are the input symbol, the four-dimensional neural stateSt, the action neuron outputAt, and the stack
segment length and symbol, respectively. For example, the combination of (1.0000, 0.1323) in the fourth column and
(a, c) in the fifth column represent a stack configuration: symbols ‘a’ at the bottom with length = 1.0000 and ‘c’ at the
top with length = 0.1323.

See the first example in Table 1a. The whole string is an illegal pattern “acabc”, but the first three symbol consists
of a legal string “aca”. When “aca” is fed in, the trained NNPDA first pushes ‘a’ with length 1.0000 into the stack, then
pushes again the second input symbol ‘c’ with length 0.1323 and finally pops the stack with total length 0.9869. In the

stack remains a symbol ‘a’ with final lengthLT= 0.1454(<0.5). The internal state varies and reaches a final state such

that neuronST
Ns=0.9995(>0.5). Therefore, the string “aca” is classified as legal(ST

Ns>0.5 andLT<0.5). Notice that all

three states are a “non-trap state” (because ST
Ns > 0.95 for all cases). But, when an additional symbol ‘b’ is read, the

state changed to a “trap state” indicating that “acac” is an illegal string. During the training we ignored the rest of the
sequence and concluded that no matter what the next symbol, the entire string would be illegal. But, in the test se-
quence, the “trap state” monitor is not used and classification of any strings will be decided at the end of each string.
After feeding in another symbol ‘c’, the state becomes a “non-trap state” (not a desired state). But due to training, the

stack actions in the last two steps become pushes and the final stack lengthis LT=1.8805>0.5, classifying the entire
string as illegal.

In Table 1b, the trained NNPDA deals with a legal string “bacab” nearly perfectly. The controller first pushes ‘b’
and ‘a’ onto the stack and then moves to a special state (0.0030, 0.1921, 0.9995, 0.9990) after seeing ‘c’ (but does not
push much of ‘c’ into the stack since 0.0625 is a tolerable error). It pops ‘a’ and ‘b’ out of the stack when the input
symbol matches the stack readings. Concurrently, the state remains in the “non-trap state” as desired.

The Table 1c shows what happens if we reverse the order of last two symbols ‘a’ and ‘b’ in the last example.
Again, the trained NNPDA behaves nearly perfectly. When the fourth symbol ‘b’ is fed in, the stack reading is almost
a complete ‘a’ (a combination of ‘c’ with length 0.0625 and ‘a’ with length 0.9375). Since the input ‘b’ does not match
the stack reading ‘a’, the NNPDA enters a “trap state” and the string “bacb” is classified as illegal. Furthermore, if
another symbol ‘a’ is seen, the NNPDA moves to another “trap state”. So, “bacba” is still illegal. Concurrently, the
stack actions generated from the “trap state” are all pushes. These increase the stack length so that the classification is
“far” from legal.

Although the classifications for these three examples are all correct, in the sense of a correct discrete PDA, there
are still some numerical errors. These numerical errors will accumulate over time and possibly misclassify an input
string that is too long. One of the four incorrect classifications in our test result, the string “ababcbaba”, is illustrated
in Table 2, where the general behavior of the learned NNPDA is the same as that of a discrete PDA. But, due to the
accumulation of numerical errors, at t =7 when the input symbol is ‘a’, the NNPDA reads not a complete ‘a’ in the
stack. Instead, it reads with depth unity an ‘a’ with length 0.6467 and a ‘b’ with length 0.3533. Therefore, the action
output is not a full “pop” but a “pop” with length 0.2757. Thus, accumulated final stack length is 1.0776 > 0.5 and the
string is classified as illegal.

E S* SNs
T−() 2 L* L− T() 2+=

24

(6). Quantization of the Trained NNPDA.

The state neuron activities are quantized to two levels. The stack action weightsWa are quantized to three levels:

. (28)

After quantization, we test the NNPDA with all possible strings up to length fifteen. The classification rule is as

follows. The “trap state” monitor is used to monitor the last state neuronSt
Ns. WheneverSt

Ns becomes zero, we stop
the sequence and classify it as an illegal string; otherwise, we proceed to the end of the input sequence. At the end, if

LT=0, the input is classified as legal; otherwise it is illegal. The test result is that all the 21,523,359 strings are classified
correctly. But, this does not mean that the quantized NNPDA represents the Palindrome grammar. We have to extract
the correct discrete PDA and verify that it recognizes the Palindrome grammar.

(7). Extraction of the Discrete PDA.

Using the quantized NNPDA with the initial state (1, 0, 0, 0), we check all possible paths of the quantized NNPDA
by reading input symbols as described in Section 4.1. The transition diagram of these paths is drawn in Fig.11. Every
path was terminated whenever a “trap state” occurred. Each bracketed action rule in the form of (input, reading, action)
is marked besides the transition arrows. This diagram looks more complicated than might be expected. Though it did
not turn out to be the simple diagram of Fig.10, the neural net generates some rather novel transitions.

First we find all equivalent states. All “trap states” are equivalent. Also, the two states (1,0,1,1) and (0,0,1,1) make
equivalent transitions and actions. After grouping these equivalent states, seven states are finally selected and labelled
as in Fig.12. The first six states are “non-trap states” and the seventh is the “trap state”. Let us see how this PDA shown
in Fig.12 could recognize the Palindrome grammar. The start state is state (1) and the start reading is an “empty stack”
represented by ‘φ’. If the first input symbol is ‘c’, it will move to state(3), and then either stop there with an empty
stack (the string “c” is legal) or goes to the “trap state”—state(7) if more symbols are read (i.e. an illegal string). When
an input string starts with ‘a’ or ‘b’, the neural net controller pushes the read symbol onto the stack and moves to either
state(2) (for input ‘b’) or state(3) (for input ‘a’). Then, before seeing a symbol ‘c’, it will push all the read symbols
onto the stack and, concurrently, move among a symmetric structure of the four states (2), (3), (4) and (5). These four
states are manipulated in a very complicated manner. Whenever a symbol ‘b’ is read, it is pushed onto the stack and
the PDA moves to either state(2) or state(5). Whenever a symbol ‘a’ is read, it is pushed onto the stack and the PDA
moves to either state(3) or state(4). If a symbol ‘c’ is read, it will transit to either state(2) (if the last symbol is ‘a’) or

input Internal state action stack segment lengths stack symbols

a (0.0077, 0.9952, 0.0160, 0.9580) 1.0000 (1.0000) (a)

b
a

(0.9855, 0.9364, 0.9868, 0.9784) 0.9716 (1.0000, 0.9716) (a, b)
(0.9627, 0.9961, 0.1055, 0.9811) 0.9936 (a, b, a)(1.0000, 0.9716, 0.9936)

b (0.9987, 0.8105, 0.9719, 0.9995) 0.9932 (a, b, a, b)

Input string = “ababcbaba”, final stack length = 1.0776 > 0.5 -> classification Illegal.

(1.0000, 0.9716, 0.9936, 0.9932)

c (0.0002, 1.0000, 0.0239, 0.9992) 0.0810 (1.0000, 0.9716, 0.9936, 0.9932, 0.0810)(a, b, a, b, c)

b

b

a

a

(0.0053, 0.9977, 0.9881, 0.9996)
(0.0016, 0.9996, 0.9209, 0.9993)

(0.0246, 0.9377, 0.9986, 0.9937)

(0.0128, 0.9994, 0.7910, 0.9898)

- 0.9981 (1.0000, 0.9716, 0.9936, 0.0761)

(1.0000, 0.9716, 0.2491)
(1.0000, 0.3533)

(1.0000, 0.0776)

(a, b, a, b)

(a, b, a)

(a, b)

(a, b)

- 0.8207

- 0.8674

- 0.2757

Table 2

Table 2. The step by step operations of a numerically trained NNPDA for the example string “ababcbaba”. The gen-
eral behavior of the analog NNPDA is correct. But, due to the cumulated numerical round-off error, the action output
deviates gradually from the discrete pop so that the final classification is wrong.

Wa

0 if Wa 0.5≤(),

1− if Wa 0.5−<(),

1 if Wa 0.5>(),
î



=

25

state(3) (if the last symbol is ‘b’). Then, the controller will examine whether the next input symbol matches the top
symbol on the stack. If every read symbol matches the stack reading, the PDA will pop and move to state(6) and stay
there until the stack is emptied. If any input symbol does not match the top stack symbol. the PDA will go to the “trap
state”— state(7) and the string is classified as illegal.

As noted in Fig.12, the self-loop for state(7) indicates that there is no escape from a “trap state.” This is assumed
because of our pre-knowledge about the “trap state”. However, the discrete NNPDA-generated “trap states” may not
form closed loops. We have checked all the possible transitions from the “trap states” and find that there do exist
“leaks”. For example, the illegal string “bbcbabacabab” is found to end at a “non-trap state” (1,1,1,1) and the string
“aaacabbcb” ends at (1,0,1,1). Thus, it is good idea to use the “trap state” monitor in recognition as well as in training.

V. CONCLUSION
A recurrent neural network pushdown automata (NNPDA) was devised and used to learn simple but illustrative

deterministic context-free grammars (CFGs). The NNPDA itself is a hybrid model consisting of a recurrent neural net-
work state automaton controller and an externalcontinuous stack memory connected through a common error
function. This is to be contrasted to connectionist models that construct stacks (and their associated state structure)
from internal hidden layers or from the dynamic range of the nonlinearity of the neural network. To train the NNPDA
an enhanced forward-propagating real time recurrent learning algorithm (RTRL) was derived and used to learn CFGs
from positive and negative string examples. However, the NNPDA model is quite general and can be trained using
other gradient descent approaches such as a modified back-propagation through time algorithm. What should be noted

1
0
0
0

(b, φ, 1)

start

(b, b, 1)

Fig. 11

0
0
0
0

1
0
1
1

0
1
0
1

(c, φ, 1)
(a, φ, 1)

1
1
0
1

0
0
1
1

0
1
1
1

(c
, a

, 0
)

(a, φ, 1)

(a, a, -1)

(a, b, 1)

(a, a, 1)

1
1
1
1

0
0
1
0

0
1
0
0

0
1
1
0

(a, φ, 1)

(b, a, 1)
(c, a, 1)

(b, b, 1)

(b, φ, 1)
(b, a, 1)

1
1
0
0

(c, φ, 1)
(c, b, 1)

(c, a, 1)

(a, b, 1)

(a, b, 1)

(b, b, -1)

(b, b, -1)

(a, a, 1)

(b, b, 1)

(c
, b

, 0
)

(c
, b

, 0
)

(b
, a

, 1
)

(a
, b

, 1
)

(b, a, 1)

(c, b, 0)

(c, a, 0) (a, a, -1)

(b, φ, 1)

(c, b, 1)
(a, b, 1)

(c, φ, 1)

Fig.11 The extracted discrete PDA obtained from the trained NNPDA by quantization of the
neural activities of the continuous NNPDA. Using the quantized NNPDA, start with the initial state
(1, 0, 0, 0) and cover all possible paths by feeding in various strings whenever needed. Here, all paths
are terminated whenever a “trap state” occurs. Each bracketed action rule in the form of (input, read-
ing, action) is marked by the transition arrows.

26

is that during training the NNPDAsimultaneously learns to construct its internal state controllerand to figure out how
to control with the proper actions (push, pop and no-operation) the use of the external stack memory.

The external continuous stack memory is constructed of two arrays; one for symbols and one for real values as-
sociate with those symbols. The input symbol alphabet is also the stack alphabet (this somewhat restricts the class of
learnable CFGs). A gradient-descent training algorithm is derived for the continuous stack. One interpretation of the
continuous stack memory is that the real values associated with the symbols stored on the stack reflect an uncertainty
in the content of stack reading of the NNPDA. This allows more than one symbol to be read from the top of stack and
each with different probabilities.

For all languages of the learned grammars (the balanced parenthesis, 1n0n and palindrome grammars), the size of
the positive and negative string training set was less than 512. The number of epochs required for successful training
was approximately 100 and usually less than 1000. The trained NNPDA exhibited very good generalization capabili-
ties and were able to correctly classify large sets (usually millions) of unseen strings. Its performance appears to be
much better than other connectionst stack models used to learn simple context-free grammars.

We devised an algorithm for extracting a discrete pushdown automaton (PDA) from the trained NNPDA. For all
the grammars used in training, correct PDAs were extracted (For all languages the strings were generated by “known”
PDAs). The advantage of this quantization process is that the extracted PDA was often able to outperform the trained
NNPDA in correctly classifying any unseen strings (similar results were shown for FSA extracted from trained NNF-
SA [Giles92a, Omlin92]). However, the extracted PDAs could be quite complex and not necessarily the simple PDA
expected.

There aremany open issues. We only demonstrated the principle ofsimultaneously training a recurrent neural net-
work coupled to an external stack memory. It is not evident that this method will scale or this is an efficient way to
learn context free grammars. There needs to be further work on the required accuracy of the analog stack. The addi-
tional knowledge required to learn the palindrome grammar shows that the intelligent use of topology, such as order
of connection weights, anda priori knowledge, such as supervising the control of the stack, significantly effects suc-
cessful training and testing. Because of the number of variables, the training results were illustrative not exhaustive or
complete. What was interesting is that such good results were obtained! Another question is how this architecture
scales. One would expect that because of the additional states offered by the stack, that it would scale better that a

Fig. 12

(b, φ, 1)

(b, a, 1)

(*, φ, 1)
start 1 6

5

4

3

2

(c, φ, 0)
(a, φ, 1)

(b, b, -1)

(b, b, -1)
(a, a, -1)

(a, a, -1)

(c, b, 0)
(b, a, 1)

(b, b, 1)

(a, a, 1)

(a
, b

, 1
)

(b
, a

, 1
)

(b, b, 1)

(a, a, 1)

(a, b, 1)

(c, a, 0)

1 = (1,0,0,0) start state, 3 = (0,1,0,1), 5 = (1,1,1,1),

2 = {(1,0,1,1),(0,0,1,1)}, 4 = (1,1,0,1), 6 = (0,1,1,1),

7 = { (0,1,1,0), (0,0,1,0)

7

(a, b, 1)
(*, φ, 1)

(c, a, 1)

(c, *, 1)

(a, b, 1)
(b, a, 1)

 (0,1,0,0), (1,1,0,0)
 (0,0,0,0) } trap state.

(c, b, 1)

(c
, a

, 0
)

(c
, b

, 0
)

(*, *, 1)

Fig.12 The equivalent reduced PDA that recognizes the palindrome grammar. It is obtained by
grouping the equivalent states of the PDA in Fig.11 into seven representative states and completing their
transitions. The correspondence between the original 12 states and the reduced 7 states is listed in the
seven equalities below the transition diagram.

27

stack-less recurrent network. However, this remains to be determined.

Finally, there is nothing that restricts this model to symbol learning. Real numbers could have just as easily been
used as inputs. We speculate that this model could also be used in learning more complex hidden state processes for
real-valued problems.

Acknowledgments
 The authors affiliated only with the University of Maryland gratefully acknowledge partial support by AFOSR

and ARPA.

Appendix A

The derivation of ∂Rt/ ∂W

In this appendix we derive∂Rt
k’ / ∂Wijk for the case where there is only one action neuronNA=1. The generaliza-

tion to the case with more action neurons is straightforward.

The stack reading at time t is in general a function of the entire stack history

, (A-1)

whereAτ ∈ [-1, 1], 1 ≤ τ ≤ t, is the continuous action value which operates on the stack. The input symbolIτ, 1 ≤ τ ≤
t, at timeτ is read from the input sequence. As previously defined, an action to be performed on the stack is either a

push,pop or no-operation(no-op) depending on the sign and magnitude ofAτ. The amount of the stack to bepushed

or popped is equal to the absolute value ofAτ, which also determines what amount of that the current input symbolIτ

is read into the stack.

 To complete the forward-propagation of the sensitivity matrices∂St/ ∂W and∂At/ ∂W as in Eq.(19), the derivative

∂Rt/ ∂W has to be known. If a recursive relation for∂Rt/ ∂W exists, i.e.

, (A-2)

 whereM is an unknown vector function, the recursive evaluation of∂St/ ∂W and∂At/ ∂W is straightforward. However,
a rigorous recursion equation of Eq.(A-2) does not exist. The reason is as follows.

 The stack operation and stack readingRt defined in Section III does not include any derivative ofRt with respect
to W. Therefore, Eq.(A-2) implies the following relation

, (A-3)

whereH is another vector function. But, in general, relation (A-3) should not hold for a PDA. The reason is that the

current stack readingRt depends on the whole history of the stack, not on the history a few time steps in the past. If,
we assume that relation (A-3) is true, then the read operation can couple with the dynamics of the neural network con-
troller, as in the two equations in Eq.(3). This yields

, (A-4)

where the vectorZ represents the concatenation of the three vectorsR, S, andA, or Z≡ (S⊕ A⊕ R), and K is the com-
bination of the functions:H in (A-3),G andF in Eq.(3). Since in the discrete limit the vectorZ is represented by finite
description, the relation of Eq.(A-4) indicates that the whole system is a finite state automaton with extended internal
states represented byZ.

The fallacy of assuming that Eq.(A-3) is correct can also be seen from a simple example. Suppose that the input
sequence contains 20 symbols and the stack is empty. The PDA is constrained to have two actions: from t = 1 to t =
10 only pushes and from t = 11 to t = 20 only pops. Then, after the nineteenth action (pop) there would be only one

Rt F A1 A2 … At I1 I2 … It, , , , , , ,()=

Rt 1+∂
W∂

M
Rt∂
W∂

St∂
W∂

At∂
W∂

I t, , , 
 =

Rt 1+ H Rt St At I t, , ,()=

Zt 1+ K Zt I t,()=

28

symbol left on the stack. The content of the stack readingR20 is the first symbol of the input string pushed onto the

stack at time t = 1. This is a counter-example to (A-3), sinceR20 not only depends on the previous readingR19, previous

actionA19 and stateS19 but also onI1 andA1, the stack history at time t= 1.

Generally speaking, the exact calculation of∂Rt+1
k’ / ∂Wijk will involve the storage of the entire history of the stack

and actions on the stack, which demands a large memory size and increased computation. In order to simplify this

problem, we derive an efficient approximation to∂Rt+1
k’ / ∂Wijk which can be used recursively in a manner that closely

approximates the recursion set of Eq.(19). Since the input symbolI t does not depend on the weightW, Eq.(A-1) im-
plies that

, (A-5)

where the summation overτ in general contains all time steps starting at t = 1. But not all of the history of Aτ affects

the current stack readingRt. SinceRt contains only the contents of depth 1 from the top of the stack, the number of

terms in the summation (A-5) can be reduced by removing all of the actions {Aτ, 1≤ τ ≤t} which do not contribute to

the generation ofRt.

Assume thatRt consists ofK sections of continuous symbols, as shown in Fig. A1, where each section contains
only one symbol denoted by Ci with lengthl(i), each generated at timeτi, i = 1, 2,...K. Each pair of adjacent sections,
Ci and Ci+1, contains different symbols. Note that each of the sections {Ci, i =1, 2, ... K} may not be generated by
only one action (push) at timeτi. It may be first generated partially at timeτi and then bepopped or pushedseveral
times. Finally, (before timeτi+1 when the next symbol Ci+1 was generated) the symbol Ci with lengthl(i) is left on the

stack. Under these assumptions, the actions beforeτ1: {Aτ, 1≤ τ <τ1} do not contribute to the formation ofRt, and
thereforecan be removed from the summation. The expression Eq.(A-5) can be written as

, (A-6)

where the bold-facedAτ have been replaced byAτ (without lose of generality, only one action neuron is used).

In order to calculate the derivatives in Eq.(A-6), assume that there is an infinitesimal perturbation of the weight

matrix ∆W, which then produces infinitesimal perturbations of actions {∆Aτ, 1≤ τ <t} for every time step calculated

Rt∂
W∂

Rt∂

Aτ∂

Aτ∂
W∂

⋅
τ 1=

t

∑=

. . .

C1

C2

CK

Rt

l(1)
l(2)

l(K)

. . .

Fig. A1

Fig.A1 The readingRt of the continuous stack at time t consists of K sections of continuous
symbols, Ci, i = 1, 2, ... K, each of which contains only one symbol, and each pair of adjacent
sections, Ci and Ci+1, contains two different symbols. The length of each section Ci is denoted
by l(i) marked beside the stack.

Rt∂
W∂

Rt∂

A
τ∂

Aτ∂
W∂

⋅
τ i τ≤ τ i 1+<

∑
i 1=

K

∑=

29

from the second equation in Eq.(3). These new actions {Aτ+∆Aτ, 1≤ τ <t} can be used to reconfigure the stack, which

in turn creates the change in the stack reading∆Rt. The partial derivative∂Rt
k/ ∂Aτ is defined as

, (A-7)

where the change in the stack reading∆Rt
k is induced by only∆Aτ, while all other Aτ′, τ�′s ≠ τ, are fixed.

Since the stack readingRt consists ofK sections of continuous symbols {Ci, i =1, 2, ... K}, the change∆Rt

would also be computed from {∆Ci, i =1, 2, ... K} , the change in each of the sections. The major approximation

made in this derivation is the following. We assume that forτi ≤ τ <τi+1, an infinitesimal perturbation∆Aτ would only
produce the change of the length,∆l(i), in the ith section Ci. In general, this is not true, because there exists a pertur-

bation∆Aτ which not only changes the length of its symbol section but also changes the content of the section (i.e.
brings in a part of the new symbol to this section). This can be seen from a counter example. Suppose that the section

Ci contains only the symbola with length 0.5 and it is produced by a sequence of actions: (1) atτ=τi, A
τ=0.1 (push)

of symbola, (2) atτ=τi+1, Aτ=0.2(push) of symbolb, (3) atτ=τi+2, Aτ= -0.2 (pop). (4) atτ=τi+3, Aτ=0.4 (push) of

symbola. Although the net result is to push a symbola with length 0.5 onto the stack, during the sequence an equal

amount of symbolb was pushed and popped onto and from the stack. In this case an infinitesimal perturbation∆Aτ>0

whenτ=τi+1 orτi+2 would create an infinitesimal portion of symbolb with length equal to the absolute value of∆Aτ,

sandwiched between the two parts of symbola. We ignore this situation because of the following reasoning.

Assign anoccurrence probabilityρ(Aτ) to each actionAτ and replace the derivative∂Rt
k/ ∂Aτ by its probability

weighted value:

. (A-8)

If an actionAτ is free to take any values in the domain [-1, 1], assign itoccurrence probability one. In Eq.(A-6) all the
terms on the right hand side of the summation are supposed to have a value ofoccurrence probability equal to one.
However, we argue that there do exist some actions with zerooccurrence probability and that these can be removed
from the summation in Eq.(A-6). A special group of such actions are thepops which pop symbols at theirboundaries,
i.e. the border lines inside the stack which separate two different symbols. For instance, in the above example the action

Aτ= -0.2 (pop) at τ=τi+2 belongs to this category. In general, for the stack example shown in Fig.A1, if the next time

action is At+1=-B(i), B(i) ≡l(K)+l(K-1)+...+l(i+1)+l(i) for any i=1,2,3,...,K, we would say that the actionAt+1 has a

zerooccurrence probability. In fact, if the actionAt+1 is uniformly distributed within [-1, 1], then theoccurrence prob-

ability of At+1 can be measured by the possible range of values ofAt+1 divided by 2, the measure of whole region [-1,

1]. If At+1 is apop which occurred around a boundary of one of the stack sections shown in Fig.A1, say|At+1+B(i)|≤ε,

then the measure of theoccurrence probability of At+1 will be ε/2. Whenε → 0 (or when At+1→ -B(i), i =1,2,3,...,K)
this probability goes to zero.

With the above approximation we have two useful outcomes. First, in the summation on the right-hand side of

Eq.(A-6), all terms within the first section whose action Aτ occurs betweentime τ1 and τ2, i.e. τ1≤ τ <τ2, can be re-
moved and the equation becomes

; (A-9)

because for all actions {Aτ, τ1≤ τ <τ2}, ∂Rt/ ∂Aτ are zero. The reason is that the content of the stack readingRt is formed

Rk
t∂

A
τ∂

∆Rk
t

∆A
τ∆A

τ
0→

lim=

Rk
t∂

A
τ∂

Rk
t∂

A
τ∂
ρ A

τ()→

Rt∂
W∂

Rt∂

A
τ∂

Aτ∂
W∂

⋅
τ i τ≤ τ i 1+<

∑
i 2=

K

∑=

30

by reading the stack in the top-down manner with a fixed length 1 and is actually independent of the infinitesimal
change of the length on the first section. As shown in Fig.A2, as long as the lower boundary of section C1 does not

exactly coincide with the lower boundary ofRt, the content ofRt will not change. In the case where the lower boundary

of section C1 does coincide with the lower boundary of Rt, any negative change of the section C1’s length (∆l<0) will

introduce an infinitesimal change inRt. This case was excluded because it has zerooccurrence probability.

From Figure A2, a method for determining∂Rt/ ∂Aτ within each section Ci, i = 2,3,..., k, can be calculated as fol-

lows. According to the definition in Eq.(A-7), we need to calculate the ratio∆Rt
k/∆Aτ and take the limit∆Aτ→0.

Supposeτi ≤ τ <τi+1. It is known that the perturbation∆Aτ only changes the length of the section Ci.But, the stack read-

ing Rt will still have a fixed length (a distance of one) regardless of this change. Therefore, the contents of the stack
reading would not only include ∆l(i), the change in the length of symbol Ci, but also -∆l(1), the change of symbol C1.
See Fig.A3. This implies

.

Since the magnitudes of∆l(i) and∆l(1) are the same as ∆Aτ, the ratio∆l(i)k/∆Aτ (or ∆l(1)k/∆Aτ) will be either one or
zero depending on whether or not the symbol Ci (or C1) is the same as thekth symbol. This result can be expressed as

, (A-10)

whereδik is Kronecker delta function.

Inserting Eq.(A-10) into Eq.(A-9) yields

. . .

C1

C2

CK

Rt

l(1)
l(2)

l(K)

. . .

. . .

C1

C2

CK

Rt

l(1)+∆l(1)
l(2)

l(K)

. . .

(a) (b)
Fig. A2

Fig.A2 When the stack readingRt has a fixed length = 1, its content is independent of∆l(1), an
infinitesimal change of the length in first section C1, unless (i) the lower boundary of section C1 co-

incides with the lower boundary ofRt and (ii)∆l(1) < 0.

(a) Stack readingRt before any changes. (b) Stack readingRt after an infinitesimal change of
the length in the section C1. The reading content has no change..

Rk
t∂

A
τ∂

∆Rk
t

∆A
τ∆A

τ
0→

lim
1

∆A
τ ∆l i() ∆l 1()−() k

∆A
τ

0→
lim= =

Rk
t∂

A
τ∂

δi k δ1k−= τ i τ τ i 1+<≤

31

. (A-11)

If we further assume thatK=2, i.e. the current stack reading with length equal to 1 contains at most two sections
of symbols; the approximation to Eq.(A-11) would be

. (A-12)

In this paper we also assumeτ2 = t and obtain

. (A-13)

This approximation implies that instead of considering the case where a section of the symbol in the stack is the cu-
mulated results of many actions, the section C2 is assumed to be generated by only one action.

The two approximations in Eqs.(A-12) and (A-13) are valid for the following two conditions: (1) when the action

activity values are close to their saturation values 1 and -1 (or |At|>0.5). (2) or the total number of actions (i.e. the length
of input string) is small. This corresponds to imposing a restriction on the learning strategy. During the initial stage of
learning when the action activity values are far from their saturation values 1 and -1, short strings are used as the train-
ing examples and the string length is increased after the short strings have been learned.

Appendix B

Derivation of RTRL for the NNPDA
The forward-propagation recurrent learning algorithm known as Real Time Recurrent Learning (RTRL) can be

derived by taking the derivative with respect to weights of the neural controller dynamics of Eqs. (23) and (24), and
using Eq. (A-13) derived in Appendix A for the stack dynamics. For a complete appendix we first list these equations

C1

Ci

CK

Rt

l(1)

l(i)

l(K)

. . .

(a) (b)
...

... C1

Ci

CK

Rt

l(1)

l(i)+∆l(i)

l(K)

. . .

...
...

Fig. A3

Fig.A3 When the stack readingRt has a fixed length = 1, the change of its content would
include not only∆l(i), the change of the length of the symbol Ci, but also -∆l(1), the change in
the length of symbol C1.

Rt∂
W∂

δi k δ1k−()
Aτ∂
W∂

τ i τ≤ τ i 1+<
∑ 

 

i 2=

K

∑=

Rt∂
W∂

δi k δ1k−()
Aτ∂
W∂

τ2 τ≤ t<
∑≈

Rt∂
W∂

δi k δ1k−()
At∂
W∂

≈

32

as follows

, (B-1)

and

. (B-2)

The derivative of the first equation in Eq. (B-1) is

, (B-3)

whereg’ i’ (t) = Si’
t+1(1- Si’

t+1) is the derivative of Sigmoid function. Similarly, the derivatives of second equation in
Eq.(B-1) are written as

. (B-4)

To complete the derivation we need two more relations which are obtained from the derivative of Eq.(B-2) and
the derivative of stack reading in Eq.(20)

At 1+ WJkl
a PJ

t Rk
t I l

t()
l 1=

NI

∑
k 1=

NR

∑
J 1=

2
NS

∑=

Si
t 1+ g Wi j kl

s Sj
tRk

t I l
t() θi

s+
l 1=

NI

∑
k 1=

NR

∑
j 1=

NS

∑ 
 =

PJ
t δmSm

t 1 δm−() 1 Sm
t−()+()

m 1=

NS

∏=

Si ′
t 1+∂

Ws
i j kl∂

g′ i ′ t() δ
i i ′ Sj

tRk
t I l

t() Ws
i ′ j ′k′ l ′ I l ′

t Rk′
t

Sj ′
t∂

Ws
i j kl∂

Sj ′
t

Rk′
t∂

Ws
i j kl∂

+
 
 
 

l ′ 1=

NI 1−

∑
k′ 1=

NI

∑
j ′ 1=

Ns

∑+
 
 
 

=

Si ′
t 1+∂

Wa
Jkl∂

g′ i ′ t() Ws
i ′ j ′k′ l ′ I l ′

t Rk′
t

Sj ′
t∂

Wa
Jkl∂

Sj ′
t

Rk′
t∂

Wa
Jkl∂

+ 
 

l ′ 1=

NI 1−

∑
k′ 1=

NI

∑
j ′ 1=

Ns

∑=

Si ′
t 1+∂

θs
i∂

g′ i ′ t() δ
i i ′ Ws

i ′ j ′k′ l ′ I l ′
t Rk′

t
Sj ′
t∂

θs
i∂

Sj ′
t

Rk′
t∂

θs
i∂

+
 
 
 

l ′ 1=

NI 1−

∑
k′ 1=

NI

∑
j ′ 1=

Ns

∑+
 
 
 

=

At 1+∂

Ws
i j kl∂

Wa
J′k′ l ′ I l ′

t Rk′
t

PJ′
t∂

Ws
i j kl∂

PJ′
t

Rk′
t∂

Ws
i j kl∂

+
 
 
 

l ′ 1=

NI 1−

∑
k′ 1=

NI

∑
J′ 1=

2
Ns

∑=

At 1+∂

Wa
Jkl∂

PJ
t Rk

t I l
t Wa

J′k′ l ′ I l ′
t Rk′

t
PJ′

t∂

Wa
Jkl∂

PJ′
t

Rk′
t∂

Wa
Jkl∂

+ 
 

l ′ 1=

NI 1−

∑
k′ 1=

NI

∑
J′ 1=

2
Ns

∑+=

At 1+∂

θs
i∂

Wa
J′k′ l ′ I l ′

t Rk′
t

PJ′
t∂

θs
i∂

PJ′
t

Rk′
t∂

θs
i∂

+
 
 
 

l ′ 1=

NI 1−

∑
k′ 1=

NI

∑
J′ 1=

2
Ns

∑=

33

, (B-5)

wherer1
t andr2

t are the ordinal numbers of neurons that represent the top and the bottom symbols respectively in the

readingRt. The initial conditions for all the derivatives in Eqs.(B-3) to (B-5) are set to zero.

References:
[Allen90] R.B. Allen, “Connectionist Language Users,”Connection Science, vol 2, no 4, pp. 279. (1990).

[Angluin83] D. Angluin, C.H. Smith, “Inductive Inference: Theory and Methods”,ACM Computing Surveys, Vol 15,
Number 3, pp. 237-269 (1983).

[Chen92] D. Chen, C.L. Giles, G.Z. Sun, H.H. Chen, Y.C. Lee, “Learning Finite State Transducers with a Recurrent
Neural Network,” IJCNN International Joint Conference on Neural Networks, Beijing, China, Publishing
House of Electronics Industry, Beijing, Vol. 1. pp. 129, (1992).

[Cleeremans89] A. Cleeremans, D. Servan-Schreiber, J. McClelland, “Finite State Automata and Simple Recurrent
Neural Networks”,Neural Computation, Vol.1, Number 3, pp. 372-381. (1989).

[Crutchfield91] J.P. Crutchfield, K. Young, “Computation at the Onset of Chaos”,Proceedings of the 1988 Workshop
on Complexity, Entropy and the Physics of Information, pp. 223-269, Editor W.H. Zurek, Addison-Wesley,
Redwood City, CA. (1991).

[Das91] S. Das, R. Das, “Induction of discrete state-machine by stabilizing a continuous recurrent network using clus-
tering,” Computer Science and Informatics, Vol. 21, No. 2, pp. 35-40, (1991).

[Das92] S. Das, C.L. Giles, G.Z. Sun, “Learning Context-free Grammars: Limitations of a Recurrent Neural Network
with an External Stack Memory”,Proceedings of The Fourteenth Annual Conference of the Cognitive Sci-
ence Society, Morgan Kaufmann Publishers, p.791-795, San Mateo, CA. (1992).

[Das93] Sreerupa Das, C. Lee Giles, Guo-Zheng Sun, “Using Hints to Successfully Learn Context-Free Grammars
with a Neural Network Pushdown Automaton”Advances in Neural Information Processing Systems5, Edited
by S.J. Hanson, J.D. Cowan, C.L. Giles, Morgan Kaufmann, San Mateo, CA., p. 65 (1993).

[Duda73] R.O. Duda, P.E. Hart,Pattern Classification and Scene Analysis, Wiley, New York, N.Y. (1973).

[Elman90] J.L. Elman, “Finding Structure in Time”,Cognitive Science, Vol.14, p.179-211. (1990).

[Elman91] J.L. Elman, “Incremental learning, or the importance of starting small”, CRL Tech Report 9101, Center for
Research in Language, University of California at San Diego, La Jolla, CA. (1991).

[Frasconi93] P. Frasconi, M. Gori, M. Maggini, G. Soda, “Unified Integration of Explicit Rules and Learning by Ex-
ample in Recurrent Networks,IEEE Transactions on Knowledge and Data Engineering, to be published
(1993).

[Fu82] K.S. Fu,Syntactic Pattern Recognition and Applications, Prentice-Hall, Englewood Cliffs, N.J (1982).

[Ghosh92] J. Ghosh, Y. Shin, “Efficient higher-order neural networks for function approximation and classification,”
International Journal of Neural Systems, Vol. 3, No. 4, pp. 323-350 (1992).

[Giles90] C.L. Giles, G.Z. Sun, H.H. Chen, Y.C. Lee, D. Chen, “High Order Recurrent Networks and Grammatical
Inference”,Advances in Neural Information Processing System2, p. 380 - 387, Editor D. S. Touretzky, Mor-
gan Kaufman, San Mateo, CA. (1990).

PJ
t∂

W∂
PJ

t δm Sm
t−()

Sm
t 1 Sm

t−()

Sm
t∂

W∂
m 1=

Ns

∑=

Rk′
t∂

W∂
δ

k′ r1
t δ

k′ r2
t−()

At∂
W∂

≈

34

[Giles92a] C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, Y.C. Lee, “Learning and Extracting Finite State
Automata with Second-Order Recurrent Neural Networks”, Neural Computation, Vol. 4, No. 3. p. 380.
(1992).

[Giles92b] C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, Y.C. Lee, “Extracting and Learning an Unknown
Grammar with Recurrent Neural Networks”,Advances in Neural Information Processing System4, pp.
317-324, Edited by J. Moody, S. Hanson, R. Lippmann, Morgan Kaufmann, San Mateo, CA, (1992).

[Giles93] C.L. Giles, C.W. Omlin, “Extraction, Insertion and Refinement of Symbolic Rules in Dynamically-Driven
Recurrent Neural Networks,”Connection Science, vol 5, nos 3&4, p. 307 (1993).

[Gold78] E.M. Gold, “Complexity of Automaton Identification from Given Data”,Information and Control, Vol. 37,
p. 302-320, (1978).

[Goudreau94] M.W. Goudreau, C.L. Giles, S.T. Chakradhar, D. Chen, “First-Order Vs. Second-Order Single Layer
Recurrent Neural Networks,”IEEE Transactions on Neural Networks, vol 5, no 3, p. 511 (1994).

[Grossberg82] S. Grossberg,Studies of Mind and Brain, Chapter 3, p. 65-167, Kluwer Academic, Boston, MA. (1982).

[Harrison78] M.H. Harrison, “Introduction to Formal Language Theory”, Addison-Wesley Publishing Company, Inc.,
Rea1ding, MA(1978).

[Hopcroft79] J.E. Hopcroft, J.D. Ullman,Introduction to Automata Theory, Languages, and Computation”, Addison--
Wesley. Reading, MA (1979).

[Hopfield82] J.J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abili-
ties”, Proceedings of the National Academy of Sciences - USA, Vol. 79, p. 2554 (1982).

[Horne92] B. Horne, D.R. Hush, C. Abdallah, “The State Space Recurrent Neural Network with Application to Reg-
ular Grammatical Inference,” UNM Technical Report No. EECE 92-002, Department of Electrical and Com-
puter Engineering, University of New Mexico, Albuquerque, NM, 87131 (1992).

[Jordan86] M.I. Jordan, “Attractor Dynamics and Parallelism in a Connectionist Sequential Machine”,Proceedings of
the Ninth Annual conference of the Cognitive Science Society, Lawrence Erlbaum, pp. 531-546, (1986).

[Kleene56] S.C. Kleene, “Representation of Events in Nerve Nets and Finite Automata”, Automata Studies, Editor
C.E. Shannon and J. McCarthy, Princeton University Press, p. 3-42, Princeton, N.J. (1956).

[Lee86] Y.C. Lee, G. Doolen, H.H. Chen, G.Z. Sun, T. Maxwell, H.Y. Lee, C.L. Giles, “Machine Learning Using a
Higher Order Correlational Network”, Physica D, 22-D, Number 1-3, p. 276-306 (1986).

[Liu90] Y.D. Liu, G.Z. Sun, H.H. Chen, C.L. Giles, Y.C. Lee, “Grammatical Inference and Neural Network State Ma-
chine”,Proceedings of the International Joint Conference on Neural, Networks, Vol. I, p.285-288, Washing-
ton D.C. (1990).

[Lucas90] S. Lucas, R. Damper, “Syntactic Neural Networks,”Connection Science, Vol.2, pp. 199-225 (1990).

[Lucas93] Proceedings of the Workshop on “Grammatical Inference: Theory, Applications and Alternatives,” U of Es-
sex, Ed. Simon Lucas, IEE Press, London (1993).

[McCulloch43] W.S. McCulloch, W. Pitts, “A Logical Calculus of Ideas Immanent in Nervous Activity”,Bulletin of
Mathematical Biophysics, Vol. 5, p. 115-133 (1943).

[Miclet90] L. Miclet, “Grammatical Inference”,Syntactic and Structural Pattern Recognition; Theory and Applica-
tions, World Scientific, Editor H. Bunke, A. Sanfeliu, Singapore (1990).

[Miller93] C.B. Miller, C.L. Giles, “Experimental Comparison of the Effect of Order in Recurrent Neural Networks”,
International Journal of Pattern Recognition and Artificial Intelligence (1993, to appear).

[Minsky67] M. Minsky,Computation: Finite and Infinite Machines, Prentice-Hall, Inc., Englewood Cliffs, NJ (1967).

[Mozer90] M.C. Mozer, J. Bachrach, “Discovering the Structure of a Reactive Environment by Exploration”,Neural
Computation, Vol. 2, Number 4, p.447 (1990).

[Mozer93] M. Mozer, S. Das, “A Connectionist Symbol Manipulator That Discover the Structure of Context-Free Lan-
guages”,Advances in Neural Information Processing Systems5, Edited by S.J. Hanson, J.D. Cowan, C.L.

35

Giles, Morgan Kaufmann, San Mateo, CA., p. 863 (1993).

[Nerrand93] O. Nerrand, P. Roussel-Ragot, L. Personnaz, G. Dreyfus, S. Marcos, “Neural Networks and Nonlinear
Adaptive Filtering: Unifying Concepts and New Algorithms,”Neural Computation, Vol. 5, pp. 165-199
(1993).

[Noda92] I. Noda, M. Nagao, “A Learning Method for Recurrent Networks Based on Minimization of Finite Autom-
ata,” IJCNN International Joint Conference on Neural Networks, Vol.I, pp. 27-32, IEEE Press, Piscataway,
NJ (1992).

[Omlin92] C.W. Omlin, C.L. Giles, “Extraction of Rules from Discrete-Time Recurrent Neural Networks,” TR 92-23,
Rensselaer Polytechnic Institute, Computer Science, Troy, N.Y. (1992).

[Pao89] Y. Pao,Adaptive Pattern Recognition and Neural Networks, Addison-Wesley Publishing Co., Inc., Reading,
MA (1989).

[Partee90] B.H. Partee, A.T. Meulen, R.E. Wall, Mathematical Methods in Linguistics, ch 18. Kluwer Academic Pub-
lishers, Norwell, MA ((1990).

[Perantonis92] S.J. Perantonis, P.J.G. Lisboa, “Translation, Rotation, and Scale Invariant Pattern Recognition by
Higher-Order Neural Networks and Moment Classifiers,”IEEE Transactions on Neural Networks, Vol. 3,
No. 2, pp 241. (1992).

[Pollack87] J.B. Pollack, “On Connectionist Models of Natural Language Processing,” Ph.D. Thesis, Computer Sci-
ence Department, University of Illinois, Urbana (1987).

[Pollack90] J.B. Pollack, “Recursive distribute representation,”Journal of Artificial Intelligence, Vol. 46, p. 77-105
(1990).

[Pollack91] J.B. Pollack, “The Induction of Dynamical Recognizers,” Machine Learning, Vol. 7, p. 227-252 (1991).

[Psaltis88] D. Psaltis, C.H. Park, J. Hong, “Higher Order Associative Memories and Their Optical Implementations”,
Neural Networks, Vol. 1, p.149 (1988).

Rumelhart86a] D.E. Rumelhart, G.E. Hinton, J.L McClelland, “A General Framework for Parallel Distributed Pro-
cessing”, Chapter 2,Parallel Distributed Processing, MIT Press, Cambridge, MA. (1986)

[Rumelhart86b] D.E. Rumelhart, G.E. Hinton, R.J. Williams, “Learning Internal Representations by Error Propaga-
tion”, Chapter 8,Parallel Distributed Processing, MIT Press, Cambridge, MA. (1986)

[Sanfeliu92] A. Sanfeliu, Rene Alquezar, “Understanding Neural Networks for Grammatical Inference and Recogni-
tion,” Advances in Structural and Syntactic Pattern Recognition, Eds. H. Bunke, World Scientific (1992).

[Siegelmann91] H.T. Siegelmann, E.D. Sontag, “Turing Compatibility with Neural Nets,”Applied Mathematics Let-
ters, Vol. 4, Number 6, p.77-80 (1991).

[Siegelmann92] H.T. Siegelmann, E.D. Sontag, “On the Computational Power of Neural Nets,” Proceedings of the
Fifth ACM Workshop on Computational Learning Theory, ACM Press, NY pp. 440-449 (1992).

[Sun90a] G.Z. Sun, H.H. Chen, C.L. Giles, Y.C. Lee, D. Chen, “Connectionist Pushdown Automata that Learn Con-
text-Free Grammars”,Proceedings of International Joint Conference on Neural Networks, Vol. 1,
pp.577-580, M. Caudill (editor), Lawrence Erlbaum Associates(publisher), Hillsdale, NJ (1990).

[Sun90b] G.Z. Sun, H.H. Chen, C.L. Giles, Y.C. Lee, D. Chen, “Neural Networks with External Memory Stack that
Learn Context - Free Grammars from Examples”,Proceedings of the 1990 Conference on Information Sci-
ence and Systems, Vol. II, pp. 649-653, Princeton University, Princeton, NJ (1990).

[Sun91] G.Z. Sun, H.H. Chen, Y.C. Lee, C.L. Giles, “Turing Equivalence of Neural Networks with Second Order Con-
nection Weights”,Proceedings of International Joint Conference on Neural Networks, Vol. II, pp. 357-362,
IEEE Press, Piscataway, NJ (1991).

[Watrous92] R.L. Watrous, G.M. Kuhn, “Induction of Finite-State Languages Using Second-Order Recurrent Net-
works”, Neural Computation, Vol. 4, Number 3, p.406 (1992).

[Williams89] R.J. Williams, D. Zipser, “ A Learning Algorithm for Continually Running Fully Recurrent Neural Net-

36

works”, Neural Computation, Vol. 1, p.270-280 (1989).

[Zeng93] Z. Zeng, R.M. Goodman, P. Smyth, “Learning Finite State Machines with Self-Clustering Recurrent Net-
works”, Neural Computation, vol. 5, no. 6, p. 976 (1993).

[Zeng94] Z. Zeng, R.M. Goodman, P. Smyth, “Discrete Recurrent Neural Networks for Grammatical Inference”,IEEE
Transactions on Neural Networks, Special Issue on Recurrent Neural Networks, vol. 5, no. 2, p. 320 (1994).

