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Abstract. In this paper, we present two efficient algorithms computing
scalar multiplications of a point in an elliptic curve defined over a small
finite field, the Frobenius map of which has small trace. Both methods use
the identity which expresses multiplication-by-m maps by polynomials of
Frobenius maps. Both are applicable for a large family of elliptic curves
and more efficient than any other methods applicable for the family.
More precisely, by Algorithm 1(Frobenius k-ary method), we can com-
pute mP in at most 2l/5+28 elliptic additions for arbitrary l bit integer
m and a point P on some elliptic curves. For other curves, the number
of elliptic additions required is less than l. Algorithm 2(window method)
requires at average 2l/3 elliptic additions to compute mP for l bit integer
m and a point P on a family of elliptic curves. For some ‘good’ elliptic
curves, it requires 5l/12 + 11 elliptic additions at average.

1 Introduction

To implement elliptic curve cryptosystems, it is important to com-
pute efficiently scalar multiplications of a point in a given elliptic
curve. The problem of multiplying a point P of an elliptic curve
by an integer m is analogous to exponentiation of an element in a
multiplicative group to the m-th power. The standard algorithm for
this problem on elliptic curves is the binary method which repeats
‘doublings’ and ‘additions’ of points. This method requires at aver-
age 3l/2 elliptic operations to compute mP for l bit integer m and a
point P in an elliptic curve. A generalization of the binary method is
the signed binary method (or the addition-subtraction method) [8].
This method use the fact that subtraction of points on an elliptic
curve is just as efficient as addition. It performs the same procedure
with the binary method except that it allows subtractions of points.
This method requires at average 4l/3 elliptic operations to compute
mP for l bit integer m and a point P in an elliptic curve.



One can use also complex multiplications to speed up scalar mul-
tiplications. Every elliptic curve over a finite field is equipped with a
set of operations (One of them is called the Frobenius map.) which
can be viewed as multiplication by complex algebraic integers. These
operations can be carried out efficiently for certain families of ellip-
tic curves if we take normal basis for base field representation. This
method is first suggested by Koblitz in [5] and [4] and improved by
Meier and Staffelbach in [6]. The method in [6] requires at average
l/2 elliptic operations to compute mP for l bit integer m and a point
P in an elliptic curve. Further improvements were made by Solinas
in [11], which requires at average l/2 elliptic operations. But these
methods in [4], [6] and [11] can be applied just for two special elliptic
curves, the anomalous binary curve(or ABC) defined over F2 and its
twist.

In this paper, we present two methods using complex multiplica-
tions. Both methods use the identity which expresses multiplication-
by-m maps by polymomials of the Frobenius map and are applicable
for a larger family of elliptic curves than the methods in [4], [6] and
[11]. These methods are efficient for elliptic curves defined over a
small finite field, the Frobenius map of which has small trace. For
some elliptic curves, the first methods requires at maximum 2l/5+28
elliptic operations to compute mP for arbitrary l bit integer m and
arbitrary point P in the elliptic curves.

We assume throughout this paper that elliptic curves are defined
over a finite field Fq for q = 2r and the elements of finite fields are
represented by normal basis, where the Frobenius map is just a bit
rotate.

2 Frobenius Map

Consider an elliptic curve E defined over Fq with q elements. We
define the q-th power Frobenius map φq on E(Fq) as follows [7] :

φq : (x, y) 7→ (xq, yq)

Then the followings are equivalent :

1. #E(Fq) = q + 1− t
2. The trace of φq is t



3. φ2
q − tφq + q = 0

In particular, we call E to be supersingular if t = 0 and to be anoma-
lous binary curve(or ABC) if t = 1.

For any poitive integer k, put Nk = #E(Fqk). By the Weil theo-
rem on elliptic curves [7] [10],

Nk = qk + 1− tk,

where tk is the sequence satisfying

t0 = 2, t1 = t and tk+1 = t2k − qktk−1 (k ≥ 1). (1)

Since φqk = φk
q , φq satisfies the equation as a map :

φ2k
q − tkφk

q + qk = 0. (2)

Hence when tk is small, we can calculate efficiently qkM for M ∈
E(Fqk) using the above equation.

Note that following Waterhouse theorem [7], we know that if q
is the power of 2, for any odd number t with |t| ≤ 2

√
q, there exist

elliptic curves E such that #E(Fq) = q+1−t, i.e. the Frobenius map
of E has the trace t. Furthermore, all of them are not supersingular
since the characteristic 2 of q does not divide t.

3 Frobenius k-ary Method

For an elliptic curve E defined over Fq where q = 2r, let En be
the curve regarded over the extension field F2nr . Assume that the
Frobenius map φ2r of E has small trace t so that we have an identity
2r = tφ2r − φ2

2r from (2). Then we can calculate qP efficiently using
this identity so that we can reduce the number of elliptic additions
to compute mP for an integer m and P ∈ En. Now, using the Frobe-
nius map, we present an algorithm which improves the usual k-ary
method [1].

Theorem 1 (Frobenius k-ary Method). Assume that an elliptic
curve E is defined over Fqn. Let P ∈ E(Fqn) and m = (en−1en−2 · · · e1e0)q



be the radix representation of the multiplier m with base q and 0 ≤
ei < q. Then Q = mP can be computed using the following algo-
rithm.

Algorithm 1 (Input: P = (x, y); Output Q = mP )

1. Precomputation
(a) P0 ← O, P1 ← P
(b) For i = 2 to q − 1, Pi = Pi−1 + P (i.e. Pi = iP )

2. Q ← Pen−1

3. For i = n− 2 to 0
(a) Q ← tφq(Q)− φ2

q(Q) (i.e. Q ← qQ)
(b) Q ← Q + Pei

4. Return(Q)

Let ε(t) be the number of additions required to compute the
multipication-by-t map. Notice that Step 1(b) requires q − 2 addi-
tions, Step 3(a) requires (n − 1)(ε(t) + 1) additions and Step 3(b)
requires n − 1 additions. Since φq is just bit rotate for the normal
base representation, the maximal complexity C of this method is
thus (n− 1)(ε(t) + 2) + q− 2 additions. That is, for any l-bit integer
m, we can compute mP in C elliptic additions. If we let l = nr for
convenience, we have

C = (
l
r
− 1)(ε(t) + 2) + q − 2. (3)

For example, if q = 24 and t = 1, then the maximal complexity
becomes C = l/2 + 14, which is very efficient compared with the av-
erage complexity 4l/3 of the addition-subtraction method [8]. When
both of q and r varies, the maximal complexities of Frobenius k-ary
method are shown in Table 1.

The maximal complexities for most of all elliptic curves in Table 1
are less than the average complexity 4l/3 of the addition-subtraction
method. The best cases for l ≈ 160 are the elliptic curves with
t = ±1 defined over F25 . In this case, the maximal complexity is
2l/5+28. That is, we can compute mP in 2l/5+28 elliptic additions
for arbitrary l bit integer m.



q t = ±1 t = ±3 t = ±5 t = ±7 Memory(×l bits)
22 l 2l − 2 − − 2
23 2l/3 + 4 4l/3 + 2 5l/3 + 1 - 6
24 l/2 + 12 l + 10 5l/4 + 9 3l/2 + 8 14
25 2l/5 + 28 4l/5 + 26 l + 25 6l/5 + 24 30
26 l/3 + 60 2l/3 + 58 5l/6 + 57 l + 56 62

Table 1. The maximal complexities of Frobenius k-ary method

4 Window Method

We start this section with an example.
Example 1. Let E be an elliptic curve defined over F212 with the
trace 3 of the Frobenius map φ212 and En be the curve regarded over
the extension field F212n . Then we have 212P = 3φ212(P ) − φ2

212(P )
for any P ∈ En from (2). For any 12n-bit integer m, write m as a
Non-Adjacent Form(NAF) as follows[8] :

m =
12n
∑

j=0

cj2j with cj = 0,±1

where cj = 0 with the probability 2/3. Then for any P ∈ En, we can
write mP as follows :

mP =
12n−1
∑

j=0

cj2jP =
n−1
∑

i=0

(
11

∑

j=0

c12i+j2j)212iP (4)

=
11

∑

j=0

2j(
n−1
∑

i=0

c12i+j212iP ) (5)

=
11

∑

j=0

2j(
n−1
∑

i=0

c12i+jPi) for Pi = 212iP, 0 ≤ i ≤ n− 1 (6)

We need 3 additions to compute 212P and at average 12n/3+11
additions to compute mP when we know P ′

is for 1 ≤ i ≤ n − 1,
because cj = 0 with the probability 2/3. Hence we totally need at
average (4n + 11) + 3(n− 1) = 7n + 8 additions, which is less than
12n × 4/3 = 16n of the addition-subtraction method. In this case,



we improved the addition-subtraction method efficiently more than
two times.

More generally, for an elliptic curve E defined over F2r , let En

be the curve regarded over the extension field F2nr . Assume that the
Frobenius map φ2r of E has the small trace t so that we have an
identity 2r = tφ2r − φ2

2r from (2). For a nr-bit integer m, we can
write m as a Non-Adjacent Form as follows :

m =
nr−1
∑

j=0

cj2j with cj = 0,±1

where cj = 0 with the probability 2/3. Then for any P ∈ En, we can
write mP as follows :

mP =
nr−1
∑

j=0

cj2jP =
n−1
∑

i=0

(
r−1
∑

j=0

cri+j2j)2riP (7)

=
r−1
∑

j=0

2j(
n−1
∑

i=0

cri+j2riP ) (8)

=
r−1
∑

j=0

2j(
n−1
∑

i=0

cri+jPi) for Pi = 2riP, 0 ≤ i ≤ n− 1 (9)

Hence we have the following algorithm :

Theorem 2 (Window Method). Assume that an elliptic curve
E is defined over F2r . Let P ∈ E(F2nr), t = 2r + 1 −#E(F2r) and
m =

∑nr
j=0 cj2j be the Non-Adjacent Form of m with cj = 0,±1.

Then Q = mP can be computed using the following algorithm.

Algorithm 2 (Input: P = (x, y); Output Q = mP )

1. Precomputation
(a) P0 ← P
(b) For i = 1 to n − 1, Pi = tφ2r(Pi−1) − φ2

2r(Pi−1) (i.e. Pi =
2rPi−1 = 2riP )

2. Q ← O
3. For j = r − 1 to 0



(a) R ← O
(b) For i = 0 to n− 1, R ← R + cri+jPi

(c) Q ← R + 2Q
4. Return(Q)

Step 1(b) requires ε(t) + 1 additions. Also Step 3 requires at
average nr/3 + r additions because cj = 0 with the probability 2/3.
Hence the average complexity C is C = nr/3 + r + (ε(t) + 1)(n− 1).
If we let l = nr, then we have

C = l/3 + r + (ε(t) + 1)(l/r − 1), (10)

which is less than the average complexity 4l/3 of the addition-subtraction
method if ε(t) + 1 < r.

Note that the order of an elliptic curve must be prime or a prod-
uct of a large prime and a small integer in order that the discrete
logarithms on the elliptic curve are intractable. Since #E(Fq) di-
vides #En = E(Fqn) and #E(Fq) ≈ q, an elliptic curve E defined
over Fq for large q is not good for elliptic curve cryptosystems.

We present in Table 2 the average numbers of elliptic additions
required to compute to mP for nr-bit m and P ∈ En where E is
defined over F2r for small r. For convenience, we put l = nr.

q t = ±1 t = ±3 t = ±5 t = ±7
22 4l/3 7l/3− 2
23 l + 2 5l/3− 1 2l − 2
24 7l/12 + 3 13l/12 + 1 4l/3 19l/12− 1
25 8l/15 + 4 14l/15 + 2 17l/15 + 1 4l/3
26 l/2 + 5 5l/6 + 3 l + 2 7l/6 + 1
27 10l/21 + 6 16l/21 + 4 19l/21 + 3 22l/21 + 2
28 11l/24 + 7 17l/24 + 5 5l/6 + 4 23l/24 + 3
29 4l/9 + 8 2l/3 + 6 7l/9 + 5 8l/9 + 4
210 13l/30 + 9 19l/30 + 7 22l/30 + 6 5l/6 + 5
212 5l/12 + 11 7l/12 + 9 2l/3 + 8 3l/4 + 7

Table 2. The average complexities of window method using q = tφq − φ2
q

In Table 2, we see that when q ≥ 28, the average numbers of
elliptic additions for l ≈ 160 are less than l/2 for t = ±1. Even for



the case of t = ±7, the number of elliptic additions are less than l,
which is more efficient result, compared with the average complexity
4l/3 of addition-subtraction method. For the best case, it requires at
average 5l/12+11 elliptic additions to compute mP for l bit integer
m.

We can also make use of t2 and t3 instead of t = t1. We also
explain this method by an example.
Example 2. Let E be an elliptic curve defined over F22 with the
trace t = 1 of the Frobenius map φ22 . Consider En = E(F22n). Since
t6 = −7 in (1), we have 46 = 212 = −7φ6

4 − φ12
4 from (2) so that we

need just 5 elliptic additions to multiply 212 to a point in En. Apply
Algorithm 2 for r = 12 and t = t6. Then 3l/4 + 7 elliptic additions
are required for computing mP for l-bit integer m and P ∈ En. In
this case, since #E(F22) = 4, it is probable that En is 4 times a
prime when we take n to be prime.

More generally, we can take an elliptic curve E defined over Fq

for small q, the Frobenius map of which has the trace t satisfying
ts ≈ 0 for some s. But it is not frequent case that ts is small for
s ≥ 4. The previous example is just one case we found for q = 2r

and r ≤ 20.
For s = 3, there are two cases. One example is the case of t3 = ±5

for the elliptic curves with t = ±5 defined over F23 . In this case,
we have the identity 29 = 5φ3

23 − φ6
23 from(2) so that the average

complexity becomes 7l/9 + 5 by (10). Another example is the case
of t3 = ±7 for the elliptic curves with t = ±7 defined over F24 . In
this case, we have the identity 212 = 7φ3

24 − φ6
24 so that the average

complexity becomes 3l/4 + 7 by (10).
For q = 2, there are lots of examples. For an elliptic curve E

defined over Fq for q = 2r, consider En = E(Fqn). If we take t
near

√
2q, we have t2 ≈ 0 since t2 = t2 − 2q. Then use the identity

q2 = t2φq − φ2
q from (2) to compute q2P for P ∈ En. For the elliptic

curve with small t2, Table 3 presents the number of elliptic additions
required to compute mP for l-bit integer m and P ∈ En.

In all cases, the average complexities are far less than l, which
are improved results. The best case is the elliptic curve with t =



q t t2 Possible Multiple ε(t2) + 1 # of E.Addition
22 3 1 24 1 7l/12 + 3
23 5 9 29 4 7l/9 + 5
24 5 -7 28 5 23l/24 + 3
25 7 -15 210 6 14l/15 + 4
25 9 17 210 6 14l/15 + 4
26 11 -7 212 5 3l/4 + 7
27 15 -31 214 7 5l/6 + 7
27 17 33 214 7 5l/6 + 7
28 23 17 216 6 17l/24 + 10
29 31 -63 218 8 7l/9 + 10
29 33 65 218 8 7l/9 + 10
210 45 -23 222 7 43l/66 + 15
212 90 -92 224 9 17l/24 + 15
212 91 89 224 9 17l/24 + 15
214 181 -7 228 5 43l/84 + 23
216 362 -28 232 7 53l/96 + 25
218 724 -112 236 9 7l/12 + 27
220 1448 -448 240 11 73l/120 + 29

Table 3. The average complexities of window method using q2 = t2φ2
q − φ4

q

181 defined over F214 . In this case, the average complexity becomes
43l/84 + 23, which is 109 less than 2l/3 for l = 168(= 14 · 12).

5 Conclusion

In this paper, we have presented two efficient methods to compute
scalar multiplications of a point of elliptic curves. Both methods use
the identity expressing multiplication-by-m maps to some polyno-
mials of the Frobenius map. Both methods can be applicable for
a large family of elliptic curves with small defining field and small
trace and more efficient than any other methods applicable for the
family. By Algorithm 1(Frobenius k-ary method), we can compute
mP in 2l/5+28 elliptic additions for any l bit integer m and a point
P for some ‘good’ curves. For other curves, the number of elliptic
additions needed is also less than l.

Algorithm 2(window method) requires at average 2l/3 elliptic
additions to compute mP for P ∈ E and l bit integer m. For some
‘good’ curves, it requires just 5l/12 + 11 elliptic additions.



Our methods are useful when one implements elliptic curve cryp-
tosystems in small hardware such as a smart card, because our meth-
ods provide high computational speed and require small size of mem-
ories.
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