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exible thereby allowing e�ciency, expediencyand fault-tolerance to be traded against completeness. Processes may bedynamically organised into groups, according to appropriate heuristics,in order to reclaim distributed garbage cycles. Unlike previous group-based algorithms, multiple concurrent distributed garbage collectionsthat span groups are supported: when two collections meet they mayeither merge, overlap or retreat. The algorithm places no overhead onlocal collectors and suspends local mutators only brie
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locality: inter-process communication should be minimised.expediency: garbage should be reclaimed despite the unavailability of parts ofthe system.scalability: it should scale to networks of many processes.fault tolerance: it should be robust against message delay, loss or replication,or process failure.Inevitably compromises must be made between these goals. For example,scalability, fault-tolerance and e�ciency may only be achievable at the expenseof completeness, and concurrency introduces synchronisation overheads. Unfor-tunately, many solutions in the literature have never been implemented so thereis a lack of empirical data for the performance of distributed garbage collectionalgorithms to guide the choice of compromises. For this reason we add a furthergoal:
exibility: the collector should be con�gurable, guided by heuristics or hintsfrom either the programmer or compiler.Distributed garbage collection algorithms generally follow one of two strate-gies: tracing or reference counting. Tracing algorithms visit all `live' objects[17, 13]; global tracing requires the cooperation of all processes before it cancollect any garbage. This technique does not scale, is not e�cient and requiresglobal synchronisation. In contrast, distributed reference counting algorithmshave the advantages for large-scale systems of �ne interleaving with mutators,and locality of reference (and hence low communication costs). Although stan-dard reference counting algorithms are vulnerable to out-of-order delivery ofreference count manipulation messages, leading to premature reclamation of liveobjects, many distributed schemes have been proposed to handle or avoid suchrace conditions [6, 39, 16, 29, 36, 7, 26].On the other hand, reference counting algorithms cannot collect cycles ofgarbage, although cyclic connections between objects in distributed systems arefairly common. For example, objects in client-server systems may hold refer-ences to each other, and often this communication is bi-directional [40]. Manydistributed systems are typically long running (e.g. distributed databases), so
oating garbage is particularly undesirable as even small amounts of uncollectedgarbage may accumulate over time to cause signi�cant memory loss [27]. Al-though inter-process cycles of garbage can be broken by explicitly deleting ref-erences, this leads to exactly the error-prone scenario that garbage collectionreplaces.Systems using distributed reference counting as their primary distributedmemory management policy must reclaim cycles by using a complementary trac-ing scheme [22, 24, 21, 25, 33, 28, 18], or by migrating objects until an entiregarbage cyclic structure is eventually held within a single process where it can becollected by the local collector [35, 27]. However, migration is communication-expensive and existing complementary tracing solutions require global synchro-nisation and the cooperation of all processes in the system [22], place additionaloverhead on the local collector and application [25], rely on cooperation from the



local collector to propagate necessary information [24], or are not fault-tolerant[24, 25].This paper presents an algorithm and outlines its implementation for theNetwork Objects system [8]. A fuller description and a proof of its correctness isto be found in [34]. Our algorithm is based on a reference listing [7], augmentedby partial tracing in order to collect distributed garbage cycles [21, 33]. Ouralgorithm preserves our primary goals of e�cient reclamation of local and dis-tributed acyclic garbage, low synchronisation overheads, and avoidance of globalsynchronisation. In brief, our aim is to match rates of collection against rates ofallocation of data structures. Objects only reachable from local processes havevery high allocation rates, and must be collected most rapidly. The rate of cre-ation of references to remote objects that are not part of distributed cycles ismuch lower, and the rate of creation of distributed garbage cycles is lower stilland hence should have the lowest priority for reclamation.To these ends, we permit some degree of completeness and e�ciency in col-lecting distributed cycles to be traded, although eventually all these cycles willbe reclaimed. We use heuristics to form groups of processes dynamically that co-operate to perform partial traces of subgraphs suspected of being garbage. Ourearlier work o�ered only limited support for multiple, independently-initiateddistributed garbage collections, as we imposed the restriction that no two dis-tributed garbage collections could overlap; that is, no object could be simulta-neously a member of more than one group and hence subject to more than onegarbage collection [33]. This restriction prevented the collection of garbage cyclesthat spanned groups. In this paper, we lift this restriction and furthermore o�erconsiderable 
exibility to the programmer/compiler over how groups interact.The paper is organised as follows. Section 2 introduces the computationalmodel: the distributed system, mutator processes, visibility of objects across thenetwork, reference passing and liveness. Section 3 introduces our partial tracingalgorithm before Sect. 4 describes multiple, independently initiated, distributedgarbage collections and deals with the problem of cycles that span groups. Sec-tion 5 introduces the problems of concurrency between mutators and collectors,and explains how the collectors are synchronised and termination achieved. Sec-tion 6 outlines a proof of correctness, and Sect. 7 maps our abstract descriptionof our collector onto a concrete implementation using Modula-3's Network Ob-jects system. Section 8 identi�es the parameters that determine the cost of ouralgorithm and discusses how heuristics may be used to tune the collector. Finallywe discuss related work in Sect. 9, and conclude in Sect. 10.2 Computational ModelA distributed system is considered to consist of a collection of processes, organ-ised into a network, that communicate by exchange of messages. Each processcan be identi�ed unambiguously, and we identify processes by upper-case letters,e.g. A, B, . . . , and objects by lower-case letters (subscripted by the identi�er oftheir owner), e.g. xA, xB , . . .



From the garbage collector's point of view, mutator processes perform com-putations independently of other mutators in the system (although they mayperiodically exchange messages) and allocate objects in local heaps. The stateof the distributed computation is represented by a distributed graph of objects.Objects may contain references to objects in the same or another process. Eachprocess also contains a set of local roots that are always accessible to the localmutator. Objects that are reachable by following from a root a path of referencesheld in other objects are said to be live. Other objects are said to be garbage, tobe reclaimed by a collector. A collector that operates solely within a local heapis called a local collector.For the moment, we abstract away from the details of the implementation byconsidering each process to maintain two tables. The in-table of a process lists allthe remotely referenced in-objects belonging to the process. Only in-objects maybe shared by processes. The process accessing an in-object for which it holds areference is called the client, and the process containing the network object iscalled its owner. Clients and owners may run on di�erent processes within thedistributed system. Objects cannot migrate from one process to another.A client cannot directly access an in-object but can only invoke the methodsof a corresponding out-object, which in turn makes remote procedure calls tothe owner. Associated with each entry in an in-table is a reference list, or clientset, of the processes holding out-objects for the in-object. The out-table of eachprocess lists all its out-objects and the remote in-objects to which they refer. Aprocess holds at most one out-object for a given in-object and all references inthe process to the remote object point to the corresponding out-object.The heap of a process is managed by garbage collection. Local collectionsare based on tracing from process roots | the stack, registers, global variablesand also the in-table. The in-table is considered a root by the local collector inorder to preserve objects reachable only from other processes. In-table entriesare managed by the distributed memory manager.Remote references may be deleted or copied from one process to anothereither as arguments or results of methods. If the process receiving a referenceis not the owner of the in-object, then the process may need to create a localout-object. In order to marshal a reference to another process, the sender processneeds either to be the owner of the object or to have a out-object for that object.This operation must preserve a key invariant: whenever there is a out-object foran in-object xP belonging to owner P at client C, then C 2 xP :clientSet.Out-objects unreachable from their local root set are reclaimed by local col-lectors, in which case the corresponding owner is informed that the referenceshould be removed from its client set. When an in-object's client set becomesempty, the object is removed from the in-table so that it can be reclaimed sub-sequently by its owner's local collector. The invariants necessary to avoid raceconditions and prevent premature reclamation of in objects are maintained inthe standard way [7].



3 The Basic AlgorithmOur algorithm is based on the premise that distributed garbage cycles exist butare less common than acyclic structures. Thus reclamation of distributed cyclicgarbage may be performed more slowly than that of local or distributed acyclicdata. One consequence is that it is important that collectors | whether localor distributed | should not unduly disrupt mutator activity. We rely on localdata being reclaimed by a tracing collector [20], whilst distributed acyclic struc-tures are managed by reference listing [7]. We augment these mechanisms withan incremental, three-phase, partial trace to reclaim distributed garbage cycles.Our implementation does not halt local collectors at all, and suspends mutatorsonly brie
y. Local collectors reclaim garbage independently and expediently ineach process. The partial trace merely identi�es garbage cycles without reclaim-ing them. Consequently, both local and partial tracing collector can operateindependently and concurrently. To simplify exposition, we start by describingthe basic mechanisms, restricting our discussion to the collection of garbagewithin a single group of cooperating processes. We add multiple, independentbut co-operating, distributed collectors in Sect. 4 and discuss concurrency andtermination in Sect. 5.Our algorithm operates in three phases [11, 33]. The �rst, mark-red, phaseidenti�es a distributed subgraph that may be garbage, to which subsequent ef-forts are con�ned. The mark-red phase also identi�es dynamically groups ofprocesses that will collaborate to reclaim distributed cyclic garbage. A group issimply the set of processes visited by mark-red. Group collection is desirable forfault-tolerance, decentralisation, 
exibility and e�ciency. Fault-tolerance and ef-�ciency are achieved by requiring the cooperation of only those processes formingthe group: progress can be made even if other processes in the system fail. De-centralisation is achieved by partitioning the network into groups, with multiplegroups simultaneously but independently active for garbage collection: commu-nication is only necessary between members of the group.The second, scan, phase determines whether members of this subgraph areactually garbage. This phase must also detect that any other collections uponwhich this collection depends have also terminated. Finally the sweep phasemakes any garbage objects available for reclamation by local collectors.The distributed collector requires that each item in processes' in- and out-tables has a colour | red, green or none | and that initially all objects areuncoloured (i.e. colour `none'). In-objects also have a red set of process names,akin to their client set.Partial tracing is initiated at suspect objects: out-objects suspected of be-longing to a distributed garbage cycle (any distributed cycle must contain someout-object). A new partial trace may be initiated by any process not currentlypart of a trace. There are several reasons for choosing to initiate such an activity:the process may be idle, a local collection may have reclaimed insu�cient space,the process may not have contributed to a distributed collection for a long time,or the process may simply choose to start a new distributed collection wheneverit discovers a suspect object. Suspects should be chosen with care both to max-



imise the amount of garbage reclaimed and to minimise redundant computationor communication. A na��ve view is to consider an out-object to be suspect ifit is not referenced locally, other than through the in-table. This informationis provided by the local collector | any out-object that has not been markedis suspect. This heuristic is very simplistic and may lead to undesirable wastedand repeated work. For example, it may repeatedly identify an out-object asa suspect even though it is reachable from a remote root. Rather, our algo-rithm should be seen as a framework: any better heuristic could be used [26].In Section 8 we show how more sophisticated heuristics improve the algorithm'sdiscrimination and hence its e�ciency.
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in-object (unmarked)xA out-object (marked red)yBFig. 1. mark-red identi�es a subgraph suspect of being garbageThemark-red phase paints the transitive referential closure of suspect out-objects red. It proceeds by a series of alternating local and remote steps. A localstep forwards a colour from an object i in a process' in-table to all objects inits out-table reachable from i. A remote step sends a request from an out-tableobject to its corresponding in-table object, in this case reddening the in-objectand inserting the name of the sending process into the red-set to indicate thatthis client is a member of the suspect subgraph1. Thus red-sets can be thoughtof as the `dual' of client-sets: client-sets list all references to an in-object butred-sets list only those references believed to be dead.The example in Fig. 1 illustrates a mark-red process. The �gure containsa garbage cycle: yAyByDxCyA. Process A has initiated a partial trace; yB is asuspect because it is not reachable from a local root (other than through the1 Notice that cooperation from the acyclic collector and the mutator would be requiredif, instead, mark-red removed references from client sets or copies of client sets (see[21]). Red sets avoid this need for cooperation as well as allowing the algorithm toidentify which processes have sent mark-red requests.



in-table). The mark-red process paints the suspect's transitive closure red, andconstructs the red sets. Note that objects xD and yC are not garbage althoughthey have been painted red: their liveness will be detected by the scan phase.At the end of the mark-red phase, a group of processes has been formed thatwill cooperate for the scan-phase. The aim of this phase is to determine whetherany member of the red subgraph is reachable from outside that subgraph. It isexecuted concurrently on each process in the group. The �rst step is to comparethe client- and red-sets of each red in-table object. If does not have a red-set (e.g.xD in Fig. 1), or the di�erence between its client- and red-sets is non-empty, theobject must have a client outside the suspect red graph. In this case the object ispainted green to indicate that it may be live. Again, the scan phase proceeds bya series of alternating local and remote steps. All red in- and out-table objectsreachable from local roots or from green in-table objects are now repainted greenby a local step. A remote step sends a scan-request from each out-table objectrepainted green to its corresponding in-table object. If this object was red, itis also repainted green. The scan phase terminates when the group contains nogreen objects holding references to red children within the group.
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At the end of the scan phase, all live objects are green3. Any remaining redobjects must be part of inaccessible cycles, and can thus be safely reclaimed.The sweep phase is executed in each process independently: at the next localcollection, red in-table objects are not considered to be roots, and thus their(garbage) descendents will be reclaimed. The reclamation of an out-table itemcauses the reference listing mechanism to send a delete message to the owner ofthe corresponding in-table object: when its client-set becomes empty, that objectwill also be reclaimed.4 Multiple Group CollectionVery few studies have measured the performance of distributed garbage col-lection algorithms and behaviour of the programs they support. In particular,comparatively little is known about the topology or demographics of distributedobject systems |for example, how common are distributed cycles, how largeare they, how long lived are they? A de�ciency of many proposals for group-based distributed collectors, including our earlier work [33], is the treatment ofinter-group garbage cycles.Our new algorithm allows di�erent collecting groups to cooperate for garbagecollection. Scalability demands that distributed garbage collections may be ini-tiated independently, but this raises the possibility that two independently ini-tiated groups may meet in one or more processes. There are two ways in whichdistributed structures, hence groups identi�ed by mark-red, may overlap. First,a process may be a member of more than one group despite there being noreference from any object in one group to any object in any other group. Conse-quently no object will visited by more than one group. Alternatively, an objectmay be referenced by objects in more than one group. It is this more interestingand challenging alternative that we address now; the simpler problem is alsosolved by our algorithm.There are three possible strategies for resolving this matter. First, all inter-action between two independent distributed garbage collections could be pro-hibited whilst nevertheless permitting inter-group references [33]. This has theadvantage of simplicity as it eliminates all interaction between distributed col-lectors, and obviates any need for synchronisation either to assure correctnessand termination, or to bound the size of a collection. However, it fails to collectgarbage cycles that span groups.The second strategy is to allow both collections to proceed, but to ignoreone another. In e�ect, the groups retain their own identity but overlap. Thisrequires that the collectors do not share any state (the colour and red-set infor-mation held in the in- and out-tables). This could be achieved by maintaining onecopy of this state information for each collection group, and having all garbagecollection messages signed with the identity of their group (i.e. the identity oftheir initiating process). The obvious drawback is that, while this is scalable andcomplete, it is neither time- nor space-e�cient as it leads to repeated work.3 Note that the converse, i.e. that all green objects are live, is not necessarily true.



The third strategy is to merge the two collecting groups into a single group,thereby giving completeness and e�ciency albeit at the cost of greater com-plexity. To collect garbage data structures that span two groups, some form ofsynchronisation must exist between the groups. One group maybe be dependenton the other, and unable to determine that the structure it is holding is garbageuntil the other has also determined that its portion of the structure is garbage.In the example in Fig. 3, the group containing processes A and B cannot detectthat its structure is garbage until the CD group has completed its scan phase.4.1 Partial Tracing ObjectsOur algorithm records this dependency information explicitly. Each in- and out-object holds (in addition to the colour) a marks list of groups that have visitedthe object; the head of this list is called the mark.The Network Objects library handles all communication between networkobjects through a special object in each process [8]. We adopt the same approachto support our partial tracing mechanisms by constructing a new partial tracingobject (pto) PTid when a collection for group id visits a participant process forthe �rst time in this collection cycle:PTid = (id, participants, ins, outs, guardians, dependents)id is a unique identi�er. A distributed garbage collection can be identi�ed byits initiating process and the set of suspect objects from which it starts. Forsimplicity we shall usually assume id and the initiator to be synonymous.participants the members of the group collaborating to collect garbage.ins, outs in- and out-objects in this process visited by this group.dependents pto's that are dependent on this object.guardians pto's that are guardians of this object.For convenience, we denote the colour of an object with mark A by redA, greenA,etc. Most communication between groups is handled through these local pto's(ambassadors, maybe?) without exchanging messages across the network.4.2 Merging Mark-redThe mark-red phase is initiated from a suspect out-object (e.g. vC in Fig. 3) bycreating a pto identi�ed by this process, say D. This initiating pto is said tobe active-disquiet. The suspect is reddened and its mark set to PTD. The ptothen executes alternate local and remote steps, colouring objects that it reaches.It performs a local mark-red step from each in-object i newly marked redD tocolour each out-object o reachable from i as follows:(ML.1) If o has not been coloured, then it is reddened and its mark set to PTD: itis redD.(ML.2) If o is already redD, then no further action is necessary.



(ML.3) If o is redA and A 6= D, then two groups have met in the same phase. Wemerge the groups and say that A is dependent on D and D is a guardian forA. PTD is appended to o:marks, PTD is added to the guardians set of thepto PTA, and PTA to the dependents set of pto PTD. Both these interactionstake place between the pto's in this process | no messages are sent.(ML.4) If o is green, it must have been marked by another group operating in a laterphase so the red wave-front retreats from this object.Remote steps executed by PTD propagate colours from out-objects o in a processP to in-objects i in a remote process Q. A new PTD pto is constructed in Q torepresent this group (unless one already exists for this group as a result of anearlier mark-red request in this collection cycle).(MR.1) If i is uncoloured or redD , P is added to its red set and i is marked redD.(MR.2) If i is redA and A 6= D, P is still added to i's red set. Once again twogroups have met and, as in the local step, PTD is appended to i:marks andto PTA:guardians, PTA to PTD:dependents in process Q; no messages areexchanged.(MR.3) If i is green, no further action is taken.
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Fig. 3. end of the mark-red phaseWhen a pto has no more local steps to perform and has received acknowledge-ments for all the tracing requests that it has sent, the pto returns an acknowl-edgement to the pto whose remote step caused it to be created. The acknowl-edgement contains a list of the participating processes that it and its childrenhave visited. It is now said to be passive-quiet but may be re-awakened by fur-ther mark-red requests (in which case it becomes passive-disquiet). No further



synchronisation is needed between the mark-red phases of each group4. At theend of the mark-red phase, each initiating pto will know the participants in itsgroup, and objects in these participant processes reachable from suspects willhave been painted red (with their marks list identifying all the groups of whichthey are members). Figure 3 shows an example in which two processes, A and D,have initiated independent distributed collections which have met at yB . Notethat process B contains pto's for both groups A and D.4.3 Scanning Merged GroupsThe aim of the merging collector is now to identify those objects that are notreachable from a root or from outside the merged super-group. A componentgroup cannot make such a decision in isolation. Thus each initiating pto mustdetermine that (a) it and all the participants in its group, and (b) all the groupsupon which it depends, have completed their scan phase.On termination of its mark-red phase, the initiator instructs all participantsin its group to start the scan phase. In this phase, each pto will `rescue' anylive objects that it had inadvertently marked red. Again, after an initial stepto colour green any in- or out- object reachable from the local roots, the scanphase proceeds by an alternating series of local and remote steps. The roots ofthe scan phase for a pto PTA are:{ the process' roots (stack, registers, static area. . . ),{ any in-object that is not red,{ any red in-object marked either by PTA or any group B responsible for it| i.e. B 2 PTA:guardians | whose client and red sets di�er (i.e. there is apath to this object that mark-red has not traversed), and{ any other red in-objects marked by other groups.For example, in Fig. 1 xD is a scan root, but in the example in Fig. 3 thereare no scan roots. The initial scan step of each pto PTA greens any objectsdirectly reachable from the root set that it had previously visited: these will bethe starting points for the `rescue' trace.(SI.1) Mark green any red in- or out-object x for which x:mark = PTA (x had beenvisited by a mark-red request from PTA) that is in, or reachable from, theroot set.The local scan phase step for PTA propagates the green colour from a greenAin-object i to those out-objects o in the same process reachable from i that PTAhad previously visited in the mark-red phase:(SL.1) Green o if it is red and A 2 o:marks.The remote step from a greenA out-object o propagates the green colour tothe corresponding in-object i:4 The termination of each phase is discussed in more detail in Sect. 5.



(SR.1) If i is red and PTA 2 i:marks, mark i green.(SR.2) If i is red but PTA 62 i:marks, retreat.(SR.3) If i is not red, retreat.
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Fig. 4. end of the scan phaseRemote steps do not invoke local steps directly. Rather, the pto that `owns' thein-object (identi�ed by its mark) will execute a local step once it has startedits scan phase. Note that an in-object may be part of more than one group (thelength of its marks list is greater than one). If a pto receives a scan-requestbefore it receives the instruction to start the scan phase, it simply marks thein-object green but does not yet take a local step.As before, a pto PTA becomes passive-quiet in the scan phase when it hasno more local steps to perform and has received acknowledgements for all theremote steps that it has executed. It returns to its parent tracing object a listof all the groups upon which it is dependent, PTA:guardians5.PTA:guardians = [i:mark=A i:marksFigure 4 shows the example at the end of the scan phase. PTA in process Bhas reported to the process A that initiated the collection that the collection isdependent on D.4.4 Sweep PhaseThe scan phase of a group cannot terminate as long as it is possible for a memberof that group to receive further scan requests. We describe our termination5 A group A may be a guardian for group B and vice-versa.



mechanism in Sect. 5.4 below. At the end of the scan phase, any redA objects areunreachable from process roots either within or without this group. First we givethe single step taken by the sweep phase for PTA in each process concurrently:(SW.1) Remove all redA from the in-table; repaint as uncoloured all greenA, settingtheir marks lists to empty.5 Concurrency and TerminationThe algorithm requires that each initiator of a distributed collection detect thetermination of its mark-red and scan phases, and that it detects the terminationof any collections upon which it is dependent. We approach these two problemsseparately.
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{ On becoming passive-quiet, processes return an acknowledgement, identify-ing themselves and those identi�ed by any tracing requests that they have inturn exported. Requests to active-disquiet processes on the other hand areacknowledged immediately6.From this it can be seen that there is always an active-disquiet process re-sponsible for any passive-disquiet process. It therefore su�ces to detect the ter-mination of the active processes alone. In the mark-red phase, this is particularlysimple as there is just one active process: the initiator; in the scan phase howeverthere may be many active disquiet processes.5.2 Mark-red PhaseWithin a single group, the mark-red phase is initiated by a single active-disquietprocess. As soon as this process has received acknowledgements from all themark-red processes that it has exported, it becomes passive-quiet: the mark-redphase is complete and the membership of the group is known.Our collector does not need to visit the complete transitive referential closureof suspect out-objects. The purpose of the mark-red phase is simply to determinethe scope of subsequent phases and to construct red-sets. Early termination ofthis phase can be used to trade conservatism (tolerance of 
oating garbage) forexpediency, and bounds on the size of the graph traced (and hence on the costof the trace). We believe that our approach also shows promise for other NUMAproblems that use partitioned address spaces, such as distributed object-orienteddatabases and persistent storage systems [34]. Importantly, this conservativismallows the phase to be executed concurrently with mutators without need forsynchronisation and so permits cheap termination of this phase.5.3 Scan PhaseThe scan phase is initiated concurrently on each participant process holding partof the red, suspect subgraph. The pto's representing this group collection in eachparticipant process are set to active-disquiet on receipt of the instruction fromthe initiating pto to start this phase. Group scan phase termination is detectedby the protocol described above. Each of the active-disquiet pto's for this groupinforms the initiating pto as soon as it becomes passive-quiet.In contrast to the mark-red phase, the scan phase must be complete withrespect to the red subgraph, since it must ensure that all live red objects arerepainted green. As with other concurrent marking schemes, this requires syn-chronisation between mutator and collector. We consider the e�ect of mutatoractions on �rst scan phase local steps and then scan phase remote steps.Termination detection requires that scan phase local steps must be able todetect any change to the connectivity of the graph made by a mutator. A localmutator may only change this connectivity by overwriting references to objects.6 We piggy-back collector acknowledgements on the back of RPC acknowledgements.



Such writes can be detected by a write barrier [41] | our implementation isdescribed in Sect. 7. Once a process has no more local scan steps to perform,any red in-object o and its red descendents are isolated from the green subgraphheld in that process | they cannot become reachable through actions of thelocal mutator. However their reachability can still be changed if:(a) a remote method is invoked on o; or(b) a new out-object corresponding to o is created in some other process;(c) another object in the same process receives a reference to o from a remoteprocess.None of these events can occur unless the red out-object is still alive. Correcttermination detection requires that each scan-request (and subsequent scan)has an active-disquiet process ultimately responsible for it. Trapping mutatormessages with a `snapshot-at-the-beginning' barrier preserves this invariant. If aclient invokes a remote method from a red out-object, or copies the reference heldby a red out-object to another process, a scan-request is sent to the correspondingin-object, along with the mutator message7. The scan-request paints the in-object, and any local out-objects reachable from it, green in an atomic local-stepoperation before the mutator message is handled.The mutator operation that sprung the trap cannot have been made from apassive-quiet process. If it were, the red out-object would have been unreachablefrom the client process' roots unless a prior external mutator action had causedthe object to become locally reachable. But in this case the out-object wouldhave been repainted green by the write barrier. Thus, an active-disquiet processis always responsible for the scan-request generated by the barrier. If the owner ofthe in-object is also active-disquiet, an acknowledgement is returned immediatelyand this process takes over responsibility for any consequent scan-requests. If itis passive, the scan-request is not acknowledged until all the descendents havebeen scanned; the client process cannot become quiet until it has received thisacknowledgement.5.4 Super-group TerminationThe scan phase of an individual group cannot terminate as long as it is possiblefor a member of the group to receive further scan requests. Our modi�cation ofAugusteijn's algorithm resolves this for members of a single group, but a groupmay also receive scan-requests from members of other groups in its super-group.We note however that there will be an active-disquiet process responsible forthese requests, and say that a process is stable if it is not active-disquiet. Oncea process becomes stable it can never become active-disquiet again: although itmay perform scan steps these will be on behalf of other active-disquiet processes.We say that a group is partially terminated if all its participants are stable. Ourtermination property for a single group is that all groups (initiating pto's) onwhich it depends are partially terminated. We de�ne a relation Dependent :7 In our implementation, we send both messages in the same remote procedure call.



De�nition 1. 8 pto's PTA; PTD in a process, Dependent(PTA; PTD) � PTD 2PTA.guardiansand we calculate its re
exive transitive closure, Dependent*. We adopt the simpleprotocol of passing tokens around a ring formed by initiator members of the supergroup [32], so that when a token has returned to the initiator that created it,the scan phase of that group is complete. As soon as an initiator A partiallyterminates, it constructs a token. The token has two parts:terminated a list of the groups in ring that are known to have partially termi-nated; initially this holds A alone.next a set of initiators not yet visited; initially this holds the groups responsiblefor A, A:guardians.Propagation of the token around the ring is simple. An initiator process Aretains the token until all members of its group are stable, i.e. the group ispartially terminated. If the head of the token's terminated list is A then thescan phase has fully terminated. Otherwise A (i) removes itself from the nextset to the end of to the terminated list, (ii) inserts any of its guardian groupsthat are not members of the terminated list in the next set, and (iii) passes thetoken to any member of the next set. If this set is empty, all the Dependent*(A)groups have terminated and the token is returned to its owner, the head of theterminated list. Figure 4 shows the token sent by A to its guardian, D; D willreturn the token with an empty next-set to the head of the terminated -list, A.As D has an empty guardians set, it does not need to wait for any other groupto terminate.6 SafetyThe safety requirement for our algorithm is that live objects are never reclaimed.First we note that the system of acknowledgements ensures that marking re-quests are guaranteed to be delivered to their destination unless either the clientor owner process fails before the message is safely delivered and acknowledged.Although it is possible that messages might be duplicated, marking is an idem-potent operation (cf. reference listing, above).To demonstrate that the merging algorithm is correct, we brie
y outline howit can be shown that, if a pto PTB is in its sweep phase, then no redB objectsin the same process can receive a scan request, and hence that no redB objectcan be live in B's sweep phase. First, we conservatively de�ne an object x to belive if (9P 2 supergroup ^ 9r 2 Roots(P ) ^ path(r; x)) _(9Q 62 supergroup ^ 9o 2 out-table(Q) ^ path(o; x))Suppose that x is live but erroneously reclaimed by pto PTB in process P .By (SW.1), redB(x) ^ live(x). Thus(9i 2 in-table(P ) ^ path(i; x) ^ live(i)) _ (9r 2 Roots(P ) ^ path(r; x))



There cannot have been such a path from a local root before PTB took itsinitial scan step | since (SI.1) would have greened x | so only a subsequentremote method invoked from an out-object o0 on an in-object i0 from which xis reachable could have created this path. If o0 was redB , x would have beenrepainted green by o0's barrier. If it was greenB , a scan request has been sent torepaint i and hence x green (if the scan-request acknowledgement has not beenreceived then the request will be sent again, with the mutator message). If o0had not been visited by B, then i would have been a scan root for PTB.So x must have been reachable from i when PTB took its initial scan step,and this i cannot have been a local scan root (SI.1). Hencered(i) ^ (i:redSet = i:clientSet) ^ (i:mark = PTB _ i:mark 2 PTB:guardians)All out-objects o (i.e. o 2 i:clientSet) from which i is reachable must be red(MR.1 or MR.2), and by hypothesis, at least one such redA, for some group A,must be live. We need to show that group A has completed its scan phase andhence that o can never become green.If A = B then the pto's responsible for both x and o are members of thesame group. Hence o's pto has completed its scan phase and so cannot generatedfurther scan requests. Alternatively, A 6= B in which case A 2 PTB :guardians(MR.1 or MR.2) and hence a member of the guardians set of the initiator of groupB (the �nal action of a pto in the scan phase is to return a list of guardian groupsto its initiator). The scan phase termination for group B must send a token to,inter alia, the initiator of group A (since A 2 PTB :guardians). Group B doesnot enter the sweep phase until A (and other guardian groups) have returnedthe token, but group A will not do so until all its members are passive-quiet. Noscan request can be generated from within group A.Neither can a scan request originate from a group in Dependent*(A) as allpto's within Dependent*(A) are partially terminated by the time that A hasreceived its token back. Any request must be from an out-object o00 in a thirdgroup, C 62 Dependent*(A). Since the in-object was red, its red set containedo00 and hence its marks contained C, i.e. C is a guardian for group B. But thismeans that C 2 Dependent*(A). Thus no such scan request can occur. Hencegroup A has completed its scan phase and the red objects cannot be live.7 Mapping the Algorithm onto Network ObjectsOur algorithm is built on top of the reference listing mechanism provided by theNetwork Objects distributed memory manager, albeit slightly modi�ed [8]. TheNetwork Objects collector is resilient to communication failures or delays, and toprocess failures. Object migration is not supported. In this section we describehow our algorithm is mapped onto the Network Objects system. In particular weare bound to account for the collection of local and acyclic distributed garbage,and synchronisation between mutators and collectorsNetwork Objects is a distributed object library for Modula-3, a garbage-collected language [10]. Our local collector is a slightly modi�ed version of the



SRC Modula-3 incremental, mostly copying collector [4]. Synchronisation be-tween the mutator and the local collector is provided by a page-wise read-onlybarrier supported by the operating system [1].Network Objects uses reference lists rather than counts: any client processholds at most one surrogate for any given network, or concrete, object. Our in-table is represented by that part of (a modi�ed version of) the Network Objects'object table, that contains references, or wireReps, to concrete network objects,and our out-table is that part that contains references to surrogate objects.Communication failures are detected by a system of acknowledgements. How-ever, a process that sends a message but does not receive an acknowledgementcannot know whether that message was received or not. Unlike reference count-ing, reference listing operations are idempotent and so resilient to duplicationof messages. Network Objects' dirty call mechanism also prevents out-of-orderdelivery of messages from causing the premature reclamation of objects.An owner of a network object can also detect the termination of any clientprocess. Any client that has terminated is removed from the client set of the cor-responding concrete object, allowing objects to be reclaimed even if the clientterminates abnormally. Unfortunately, communication delay may be misinter-preted as process failure, in which case an object may be prematurely reclaimed.Proof of the safety and liveness of the Network Objects system may be found in[7]. Unlike the mark-red phase, scan phase tracing must be accurate with respectto the red subgraph in order to ensure that it reaches all red objects that arelive. Mostly Parallel garbage collection [9] uses operating system support to de-tect those objects modi�ed by mutators (actually pages that have been updatedwithin a given interval). When the local scan phase process has visited all ob-jects reachable from its starting points, the mutator is halted while the graph isretraced from roots any modi�ed objects. Because most of the scanning work hasalready been done, it is expected that this retrace will terminate promptly (theunderlying assumption is that the rate of allocation of network objects, and ofobjects reachable from those network objects, is low). In any event, this retracemay be interrupted and restarted later.Scan-requests caused by mutator action are asynchronous and these mayrequire the out-object descendents of the receiving in-object to be repaintedgreen atomically. The simplest method of propagating marks from in- to out-objects is to `stop the world' in that process and perform a standard recursivetrace from the in-object. We claim that this does not cause excessive delay asthis event is unlikely to occur if our heuristic for �nding suspects is good, andmoreover it is likely that objects reachable from a live in-object are alreadyknown to be live.8 Costs and HeuristicsThe costs associated with our algorithm can be divided into two categories:those associated with the RPC calls exchanged between processors and those



common to any incremental collector caused by running scan phase local stepsconcurrently with mutators. We analyse the former here.Call the number of inter-process edges in the subgraph visited by mark-rede, and the number of participants in this group n. Note that e � the number ofedges in the transitive referential closure of the suspect objects.{ The mark-red phase for each group issues e mark-request RPC calls, byde�nition.{ The number of mark-red acknowledgement calls depends on whether therequest is sent to a quiet or a disquiet pto, and this in turn depends onthe topology (degree of sharing) of the subgraph. An acknowledgement froma disquiet pto can be piggy-backed onto the RPC acknowledgement; thatfrom a quiet process requires a separate call. Thus, between n � 1 (oneacknowledgement for each pto-creating request) and e (one per edge) callsare required.{ Each acknowledgement message has a length � n, the maximum number ofprocesses to which the request message can have been forwarded.Thus the number of RPC calls CMR caused by mark-red is:e+ n� 1 � CMR � 2e{ Scan phase initiation requires n� 1 messages to participating pto's.{ The number of scan requests sent depends on the accuracy with which sus-pects are identi�ed. In the best case, no requests will be sent but each ptomust report termination to the initiator; in the worst case, the number ofRPC calls is the same as that for mark-red8. Let p be the probability thatour suspect identi�cation heuristic is accurate.{ Super group termination requires dA calls for each group A where dA =jDependent*(A)j.Thus the expected number of RPC calls CSC caused by the scan phase is:(1� p)e+ 2(n� 1) + d � CSC � 2(1� p)e+ (1 + p)(n� 1) + d{ The sweep phase requires n� 1 messages.The total number of RPC calls C required is:(2� p)e+ 4(n� 1) + d � C � 2(2� p)e+ (2 + p)(n� 1) + dThe cost of our algorithm is determined by the parameters n, e, d and p.p depends on our choice of suspect; n, e and d are partly determined by thetopology of the subgraph and the dynamics of distributed collections but canalso be controlled by policy decisions on the extent of mark-red's coverage ofthe graph. Because little is known of the demographics of distributed objects,8 The intermediate case occurs when a subset of the red sub-graph is found to be live.




exibility is a key goal of our collector. Our collector can be seen as a frameworkwithin which policy decisions can be implemented. Policy guides the choice ofsuspects, the choice of processes forming each group and the merger of groups.A new partial trace may be initiated by any process not currently part ofa trace. There are several reasons for choosing to initiate such an activity: theprocess may be idle, a local collection may have reclaimed insu�cient space, theprocess may not have contributed to a distributed collection for a long time, orthe process may simply choose to start a new distributed collection wheneverit discovers a suspect object. A very simple heuristic would be to use the lo-cal collector alone to identify those surrogates only reachable from the objecttable but the better the heuristic the greater the chance p that our algorithmtraces only garbage subgraphs thereby decreasing the number of times a partialtrace is run, limiting the mark-red trace to garbage and reducing the number ofscan phase messages to the best case, and decreasing the chance of wasted andrepeated work.A more sophisticated heuristic is to estimate an object's minimum distancefrom a root, measured by inter-process references | the distance heuristic [26].The distance heuristic requires each in-object to periodically propagate an esti-mate of its distance from a root to its children, who use this estimate to adjusttheir own distance estimate. The insight is that the estimate for objects in agarbage cycle will increase without bound; once a threshold value is reached foran object's distance, we have some con�dence, but no guarantee, that the ob-ject is garbage. A drawback of the distance heuristic is that several objects in agarbage cycle may attain the threshold together, leading to multiple collectionsin the same cycle (increasing both d and the number of pto's in processes wherethe collections meet). By only propagating distances over a certain thresholdwith mark-red requests we can reduce the risk of multiple distributed collectionsin the same garbage cycle and therefore reduce the overheads of our algorithm.However, even with a simplistic heuristic, a probability of being garbage can beassigned to each suspect object that has survived a partial tracing. For example,we could take a round-robin approach by tracing only from the suspect that wasleast recently traced.p and n can be controlled by bounding the amount of work done by mark-red.Recall that this phase needs only make a conservative estimate of the transitivereferential closure of suspect objects | it need not visit the whole closure. Thispolicy decision can be taken statically by prior negotiation or dynamically bymark-red. It may be determined by the collector itself or by the user program,globally or on a per-process or even per-object basis. Heuristics based on ge-ography, process identity, distance from the suspect originating the collection,minimum distance from any object known to be live, or time constraints may beused to restrict the extent of mark-red or the decision whether to merge with,overlap or retreat from other distributed collections. In the absence of knowl-edge of the problem being computed, it is unclear what action should be takenwhen two groups meet. A merger may not always be desirable. Instead it maybe preferable to run multiple overlapping groups. For example the best compro-



mise may be to combine simultaneously occasional long-running but completecollections over very large groups with more frequent faster completing collec-tions over small groups. Our algorithm o�ers the implementer the choice betweencompleteness and promptness at the level of groups, processes and individual ob-jects. Groups can decide whether or not to merge, processes can decide whetherto allow groups to merge, to overlap or to retreat from one another, and objectscan decide on merger or retreat.The cost of distributed collection is comparatively robust against the rate ofmodi�cation of references held in objects. The cost to the local scan step depends,as with any incremental uniprocessor collector, on how it is synchronised with themutator [20]. Modi�cations caused by exchange of mutator messages trigger thebarrier, causing the collector to do work, only on the �rst occasion in a collectioncycle that a message is sent from a red out-object. Indeed, the frequency ofmessages sent to an object that would otherwise be considered suspect is a usefulmeasure of whether that object should be considered as a root for a distributedcollection.9 Related WorkDistributed reference counting can be augmented in various ways to collect dis-tributed garbage cycles. Juul and Jul [22], periodically invoke global markingto collect distributed garbage cycles, tracing the whole graph before any cyclicgarbage can be collected. Even though some degree of concurrency is allowed,this technique cannot make progress if a single process has crashed, even if thatprocess does not own any part of the distributed garbage cycle. This algorithmis complete, but it needs global cooperation and synchronisation, and thus doesnot scale.Maeda et al. [25] present a solution also based on earlier work by Jones andLins using partial tracing with weighted reference counting [21]. Weighted ref-erence counting is resilient to race conditions, but cannot recover from processfailure or message loss. As suggested by Jones and Lins, they use secondary refer-ence counts as auxiliary structures. Thus they need a weight-barrier to maintainconsistency, incurring further synchronisation costs.Maheshwari and Liskov [27] describe a simple and e�cient way of using ob-ject migration to allow collection of distributed garbage cycles, that limits thevolume of the migration necessary. The distance heuristic estimates the length ofthe shortest path from any root to each object. This heuristic allows the identi-�cation of objects belonging to a garbage cycle, with a high probability of beingcorrect. These objects are migrated directly to a selected destination processto avoid multiple migrations. However, this solution requires support for objectmigration (not present in Network Objects). Moreover, migrating an object isa communication-intensive operation, not only because of its inherent overheadbut also because of the time necessary to prepare an object for migration and toinstall it in the target process [37]. In a recent paper Maheshwari and Liskov usethe same distance heuristic to identify suspect objects from which they start a



back trace in an attempt to discover a root [28]. They employ similar referencelisting and barriers schemes to those presented here. Unlike [15], their algorithmprovides an e�cient method of calculating back-references and takes account ofconcurrency.Lang et al. [24] also presented an algorithm for marking within groups ofprocesses. Their algorithm uses standard reference counting, and so inherits itsinability to tolerate message failures. It relies on the cooperation from the lo-cal collector to propagate necessary information. This algorithm is di�cult toevaluate because of the lack of detail presented. However, the main di�erencesbetween this and our algorithm is that we trace only those subgraphs suspectedof being garbage and that we use heuristics to form groups opportunistically. Incontrast, Lang's method is based on Christopher's algorithm [11]. Consequentlyit repeatedly scans the heap until it is sure that it has terminated. This is less ef-�cient than simply marking nodes red. For example, concrete objects referencedfrom outside the suspect subgraph are considered as roots by the scan phase,even if they are only referenced inside the group. In the example of Fig. 1 and 2our algorithm would need a total of 6 messages (5 for mark-red phase and 1 forscan phase), against a total of 10 messages (7 for the initial marking and 3 forthe global propagation) for Lang's algorithm. Objects may also have to repeattraces on behalf of other objects (i.e. a trace from a `soft' concrete object mayhave to be repeated if the object is hardened). Their `stabilisation loop' mayalso require repeated traces. Finally, failures cause the groups to be completelyreorganised, and a new group garbage collection restarted almost from scratch.Hudson et al. have adapted their Mature Object Space `train' algorithm fordistributed garbage collection [19, 18]. While their new algorithm collects allgarbage, including distributed garbage, it requires an object substitution protocolto ensure that all old references to an object are updated to refer to the newcopy. Detecting that a train has no external references is also more complex ina distributed environment than in a uniprocessor one: they use a similar tokenring technique to that we use for detecting super group termination.10 Conclusions and Future WorkThis paper has outlined a solution for collecting distributed garbage cycles, de-signed for the Network Objects system but applicable to other systems | acomplete treatment will be found in [34]. Our algorithm is based on a referencelisting scheme [7], augmented by partial tracing in order to collect distributedgarbage cycles [21]. Groups of processes are formed dynamically to collect cyclicgarbage. Processes within a group cooperate to perform a partial trace of onlythose subgraphs suspected of being garbage. If necessary, groups can cooperateto collect garbage cycles that span them.Our memory management system is highly concurrent: mutators, local col-lectors, the acyclic reference collector and distributed cycle collectors operatemostly in parallel. Local collectors are never delayed, and mutators are onlyhalted by a distributed partial tracing to complete a local scan.



Our system reclaims garbage e�ciently: local and acyclic collectors are nothindered. The e�ciency of the distributed partial tracing can be increased byrestricting the size of groups, thereby trading completeness for promptness. Theuse of the acyclic collector and groups also permits scalability whereas the abilityto merge groups ensures completeness.Our collector provides a 
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