Cyclic Distributed Garbage Collection
with Group Merger

Helena Rodrigues* and Richard Jones

Computing Laboratory, University of Kent, Canterbury, Kent CT2 7TNF, UK
Tel: +44 1227 827943, Fax +44 1227 762811
email: {hccdr,R.E.Jones}@ukc.ac.uk
http://www.cs.ukc.ac.uk/people/staff/rej/

Abstract. This paper presents a new algorithm for distributed garbage
collection and outlines its implementation within the Network Objects
system. The algorithm is based on a reference listing scheme augmented
by partial tracing in order to collect distributed garbage cycles. Our col-
lector is designed to be flexible thereby allowing efficiency, expediency
and fault-tolerance to be traded against completeness. Processes may be
dynamically organised into groups, according to appropriate heuristics,
in order to reclaim distributed garbage cycles. Unlike previous group-
based algorithms, multiple concurrent distributed garbage collections
that span groups are supported: when two collections meet they may
either merge, overlap or retreat. The algorithm places no overhead on
local collectors and suspends local mutators only briefly. Partial tracing
of the distributed graph involves only objects thought to be part of a
garbage cycle: no collaboration with other processes is required.

Keywords: distributed systems, garbage collection, termination detec-
tion

1 Introduction

With the continued growth of distributed systems, designers are turning their
attention to garbage collection [35, 30, 24, 22, 23, 7, 26, 27, 25, 14, 31, 15, 33,
20, 28, 18], prompted by the complexity of memory management and the desire
for transparent object management. The goals of an ideal distributed garbage
collector are that:

safety: only garbage should be reclaimed.

completeness: all garbage, including distributed cycles, at the start of a col-
lection cycle should be reclaimed by its end.

concurrency: neither mutator nor local collector processes should be suspended;
distinct distributed collection processes should run concurrently.

promptness: garbage should be reclaimed promptly.

efficiency: time and space costs should be minimised.

* Work supported by JNICT grant (CIENCIA/BD/2773/93-IA) through the PRAXIS
XXI Program (Portugal).

locality: inter-process communication should be minimised.

expediency: garbage should be reclaimed despite the unavailability of parts of
the system.

scalability: it should scale to networks of many processes.

fault tolerance: it should be robust against message delay, loss or replication,
or process failure.

Inevitably compromises must be made between these goals. For example,
scalability, fault-tolerance and efficiency may only be achievable at the expense
of completeness, and concurrency introduces synchronisation overheads. Unfor-
tunately, many solutions in the literature have never been implemented so there
is a lack of empirical data for the performance of distributed garbage collection
algorithms to guide the choice of compromises. For this reason we add a further
goal:

flexibility: the collector should be configurable, guided by heuristics or hints
from either the programmer or compiler.

Distributed garbage collection algorithms generally follow one of two strate-
gies: tracing or reference counting. Tracing algorithms visit all ‘live’ objects
[17, 13]; global tracing requires the cooperation of all processes before it can
collect any garbage. This technique does not scale, is not efficient and requires
global synchronisation. In contrast, distributed reference counting algorithms
have the advantages for large-scale systems of fine interleaving with mutators,
and locality of reference (and hence low communication costs). Although stan-
dard reference counting algorithms are vulnerable to out-of-order delivery of
reference count manipulation messages, leading to premature reclamation of live
objects, many distributed schemes have been proposed to handle or avoid such
race conditions [6, 39, 16, 29, 36, 7, 26].

On the other hand, reference counting algorithms cannot collect cycles of
garbage, although cyclic connections between objects in distributed systems are
fairly common. For example, objects in client-server systems may hold refer-
ences to each other, and often this communication is bi-directional [40]. Many
distributed systems are typically long running (e.g. distributed databases), so
floating garbage is particularly undesirable as even small amounts of uncollected
garbage may accumulate over time to cause significant memory loss [27]. Al-
though inter-process cycles of garbage can be broken by explicitly deleting ref-
erences, this leads to exactly the error-prone scenario that garbage collection
replaces.

Systems using distributed reference counting as their primary distributed
memory management policy must reclaim cycles by using a complementary trac-
ing scheme [22, 24, 21, 25, 33, 28, 18], or by migrating objects until an entire
garbage cyclic structure is eventually held within a single process where it can be
collected by the local collector [35, 27]. However, migration is communication-
expensive and existing complementary tracing solutions require global synchro-
nisation and the cooperation of all processes in the system [22], place additional
overhead on the local collector and application [25], rely on cooperation from the

local collector to propagate necessary information [24], or are not fault-tolerant
[24, 25].

This paper presents an algorithm and outlines its implementation for the
Network Objects system [8]. A fuller description and a proof of its correctness is
to be found in [34]. Our algorithm is based on a reference listing [7], augmented
by partial tracing in order to collect distributed garbage cycles [21, 33]. Our
algorithm preserves our primary goals of efficient reclamation of local and dis-
tributed acyclic garbage, low synchronisation overheads, and avoidance of global
synchronisation. In brief, our aim is to match rates of collection against rates of
allocation of data structures. Objects only reachable from local processes have
very high allocation rates, and must be collected most rapidly. The rate of cre-
ation of references to remote objects that are not part of distributed cycles is
much lower, and the rate of creation of distributed garbage cycles is lower still
and hence should have the lowest priority for reclamation.

To these ends, we permit some degree of completeness and efficiency in col-
lecting distributed cycles to be traded, although eventually all these cycles will
be reclaimed. We use heuristics to form groups of processes dynamically that co-
operate to perform partial traces of subgraphs suspected of being garbage. Our
earlier work offered only limited support for multiple, independently-initiated
distributed garbage collections, as we imposed the restriction that no two dis-
tributed garbage collections could overlap; that is, no object could be simulta-
neously a member of more than one group and hence subject to more than one
garbage collection [33]. This restriction prevented the collection of garbage cycles
that spanned groups. In this paper, we lift this restriction and furthermore offer
considerable flexibility to the programmer/compiler over how groups interact.

The paper is organised as follows. Section 2 introduces the computational
model: the distributed system, mutator processes, visibility of objects across the
network, reference passing and liveness. Section 3 introduces our partial tracing
algorithm before Sect. 4 describes multiple, independently initiated, distributed
garbage collections and deals with the problem of cycles that span groups. Sec-
tion 5 introduces the problems of concurrency between mutators and collectors,
and explains how the collectors are synchronised and termination achieved. Sec-
tion 6 outlines a proof of correctness, and Sect. 7 maps our abstract description
of our collector onto a concrete implementation using Modula-3’s Network Ob-
jects system. Section 8 identifies the parameters that determine the cost of our
algorithm and discusses how heuristics may be used to tune the collector. Finally
we discuss related work in Sect. 9, and conclude in Sect. 10.

2 Computational Model

A distributed system is considered to consist of a collection of processes, organ-
ised into a network, that communicate by exchange of messages. Each process
can be identified unambiguously, and we identify processes by upper-case letters,
e.g. A, B, ..., and objects by lower-case letters (subscripted by the identifier of
their owner), e.g. x4, TB, - .-

From the garbage collector’s point of view, mutator processes perform com-
putations independently of other mutators in the system (although they may
periodically exchange messages) and allocate objects in local heaps. The state
of the distributed computation is represented by a distributed graph of objects.
Objects may contain references to objects in the same or another process. Each
process also contains a set of local roots that are always accessible to the local
mutator. Objects that are reachable by following from a root a path of references
held in other objects are said to be live. Other objects are said to be garbage, to
be reclaimed by a collector. A collector that operates solely within a local heap
is called a local collector.

For the moment, we abstract away from the details of the implementation by
considering each process to maintain two tables. The in-table of a process lists all
the remotely referenced in-objects belonging to the process. Only in-objects may
be shared by processes. The process accessing an in-object for which it holds a
reference is called the client, and the process containing the network object is
called its owner. Clients and owners may run on different processes within the
distributed system. Objects cannot migrate from one process to another.

A client cannot directly access an in-object but can only invoke the methods
of a corresponding out-object, which in turn makes remote procedure calls to
the owner. Associated with each entry in an in-table is a reference list, or client
set, of the processes holding out-objects for the in-object. The out-table of each
process lists all its out-objects and the remote in-objects to which they refer. A
process holds at most one out-object for a given in-object and all references in
the process to the remote object point to the corresponding out-object.

The heap of a process is managed by garbage collection. Local collections
are based on tracing from process roots — the stack, registers, global variables
and also the in-table. The in-table is considered a root by the local collector in
order to preserve objects reachable only from other processes. In-table entries
are managed by the distributed memory manager.

Remote references may be deleted or copied from one process to another
either as arguments or results of methods. If the process receiving a reference
is not the owner of the in-object, then the process may need to create a local
out-object. In order to marshal a reference to another process, the sender process
needs either to be the owner of the object or to have a out-object for that object.
This operation must preserve a key invariant: whenever there is a out-object for
an in-object zp belonging to owner P at client C, then C € zp.clientSet.

Out-objects unreachable from their local root set are reclaimed by local col-
lectors, in which case the corresponding owner is informed that the reference
should be removed from its client set. When an in-object’s client set becomes
empty, the object is removed from the in-table so that it can be reclaimed sub-
sequently by its owner’s local collector. The invariants necessary to avoid race
conditions and prevent premature reclamation of in objects are maintained in
the standard way [7].

3 The Basic Algorithm

Our algorithm is based on the premise that distributed garbage cycles exist but
are less common than acyclic structures. Thus reclamation of distributed cyclic
garbage may be performed more slowly than that of local or distributed acyclic
data. One consequence is that it is important that collectors — whether local
or distributed — should not unduly disrupt mutator activity. We rely on local
data being reclaimed by a tracing collector [20], whilst distributed acyclic struc-
tures are managed by reference listing [7]. We augment these mechanisms with
an incremental, three-phase, partial trace to reclaim distributed garbage cycles.
Our implementation does not halt local collectors at all, and suspends mutators
only briefly. Local collectors reclaim garbage independently and expediently in
each process. The partial trace merely identifies garbage cycles without reclaim-
ing them. Consequently, both local and partial tracing collector can operate
independently and concurrently. To simplify exposition, we start by describing
the basic mechanisms, restricting our discussion to the collection of garbage
within a single group of cooperating processes. We add multiple, independent
but co-operating, distributed collectors in Sect. 4 and discuss concurrency and
termination in Sect. 5.

Our algorithm operates in three phases [11, 33]. The first, mark-red, phase
identifies a distributed subgraph that may be garbage, to which subsequent ef-
forts are confined. The mark-red phase also identifies dynamically groups of
processes that will collaborate to reclaim distributed cyclic garbage. A group is
simply the set of processes visited by mark-red. Group collection is desirable for
fault-tolerance, decentralisation, flexibility and efficiency. Fault-tolerance and ef-
ficiency are achieved by requiring the cooperation of only those processes forming
the group: progress can be made even if other processes in the system fail. De-
centralisation is achieved by partitioning the network into groups, with multiple
groups simultaneously but independently active for garbage collection: commu-
nication is only necessary between members of the group.

The second, scan, phase determines whether members of this subgraph are
actually garbage. This phase must also detect that any other collections upon
which this collection depends have also terminated. Finally the sweep phase
makes any garbage objects available for reclamation by local collectors.

The distributed collector requires that each item in processes’ in- and out-
tables has a colour — red, green or none — and that initially all objects are
uncoloured (i.e. colour ‘none’). In-objects also have a red set of process names,
akin to their client set.

Partial tracing is initiated at suspect objects: out-objects suspected of be-
longing to a distributed garbage cycle (any distributed cycle must contain some
out-object). A new partial trace may be initiated by any process not currently
part of a trace. There are several reasons for choosing to initiate such an activity:
the process may be idle, a local collection may have reclaimed insufficient space,
the process may not have contributed to a distributed collection for a long time,
or the process may simply choose to start a new distributed collection whenever
it discovers a suspect object. Suspects should be chosen with care both to max-

imise the amount of garbage reclaimed and to minimise redundant computation
or communication. A naive view is to consider an out-object to be suspect if
it is not referenced locally, other than through the in-table. This information
is provided by the local collector — any out-object that has not been marked
is suspect. This heuristic is very simplistic and may lead to undesirable wasted
and repeated work. For example, it may repeatedly identify an out-object as
a suspect even though it is reachable from a remote root. Rather, our algo-
rithm should be seen as a framework: any better heuristic could be used [26].
In Section 8 we show how more sophisticated heuristics improve the algorithm’s
discrimination and hence its efficiency.

X

] XalZA Xclyc

clientSet[C [X clientSet|D [D

redSet| C redSet|D |D
ProcessA Process D

XB|YB XDYD

clientSet[A [A clientSet|B B

redSet redSet| |B
Process B Process C

in-object (unmarked) 8) out-object (marked red)

Fig. 1. mark-red identifies a subgraph suspect of being garbage

The mark-red phase paints the transitive referential closure of suspect out-
objects red. It proceeds by a series of alternating local and remote steps. A local
step forwards a colour from an object ¢ in a process’ in-table to all objects in
its out-table reachable from i. A remote step sends a request from an out-table
object to its corresponding in-table object, in this case reddening the in-object
and inserting the name of the sending process into the red-set to indicate that
this client is a member of the suspect subgraph!. Thus red-sets can be thought
of as the ‘dual’ of client-sets: client-sets list all references to an in-object but
red-sets list only those references believed to be dead.

The example in Fig. 1 illustrates a mark-red process. The figure contains
a garbage cycle: yaypyprcya. Process A has initiated a partial trace; yp is a
suspect because it is not reachable from a local root (other than through the

! Notice that cooperation from the acyclic collector and the mutator would be required
if, instead, mark-red removed references from client sets or copies of client sets (see
[21]). Red sets avoid this need for cooperation as well as allowing the algorithm to
identify which processes have sent mark-red requests.

in-table). The mark-red process paints the suspect’s transitive closure red, and
constructs the red sets. Note that objects zp and y¢ are not garbage although
they have been painted red: their liveness will be detected by the scan phase.

At the end of the mark-red phase, a group of processes has been formed that
will cooperate for the scan-phase. The aim of this phase is to determine whether
any member of the red subgraph is reachable from outside that subgraph. It is
executed concurrently on each process in the group. The first step is to compare
the client- and red-sets of each red in-table object. If does not have a red-set (e.g.
zp in Fig. 1), or the difference between its client- and red-sets is non-empty, the
object must have a client outside the suspect red graph. In this case the object is
painted green to indicate that it may be live. Again, the scan phase proceeds by
a series of alternating local and remote steps. All red in- and out-table objects
reachable from local roots or from green in-table objects are now repainted green
by a local step. A remote step sends a scan-request from each out-table object
repainted green to its corresponding in-table object. If this object was red, it
is also repainted green. The scan phase terminates when the group contains no
green objects holding references to red children within the group.

X

XA|ZA Xclyc

clientSet|C |X clientSet|D |D

redSet|C redSet|D |D
ProcessA ProcessD

. XB|YB] XplYD

clientSet/A |A clientSet|B |B

redSet redSet| |B
Process B Process C

in-object (unmarked) yB out-object (marked red) yB out-object (marked green)

Fig. 2. the scan phase ‘rescues’ any red objects that may be live

Figure 2 shows the result of the scan phase. zp in process D has no red-set so
is painted green and becomes a root for the local step. y¢ is reachable from zp
and so is also repainted green®. Note that the only inter-process edge traversed
in the scan phase is that between the yc.

% Notice that other group-based partial tracing schemes do not consider public objects
internal to the group to be roots [24]. In our example that would require extra
messages to be sent from A to B and from B to D in order to preserve zp.

At the end of the scan phase, all live objects are green®. Any remaining red
objects must be part of inaccessible cycles, and can thus be safely reclaimed.
The sweep phase is executed in each process independently: at the next local
collection, red in-table objects are not considered to be roots, and thus their
(garbage) descendents will be reclaimed. The reclamation of an out-table item
causes the reference listing mechanism to send a delete message to the owner of
the corresponding in-table object: when its client-set becomes empty, that object
will also be reclaimed.

4 Multiple Group Collection

Very few studies have measured the performance of distributed garbage col-
lection algorithms and behaviour of the programs they support. In particular,
comparatively little is known about the topology or demographics of distributed
object systems —for example, how common are distributed cycles, how large
are they, how long lived are they? A deficiency of many proposals for group-
based distributed collectors, including our earlier work [33], is the treatment of
inter-group garbage cycles.

Our new algorithm allows different collecting groups to cooperate for garbage
collection. Scalability demands that distributed garbage collections may be ini-
tiated independently, but this raises the possibility that two independently ini-
tiated groups may meet in one or more processes. There are two ways in which
distributed structures, hence groups identified by mark-red, may overlap. First,
a process may be a member of more than one group despite there being no
reference from any object in one group to any object in any other group. Conse-
quently no object will visited by more than one group. Alternatively, an object
may be referenced by objects in more than one group. It is this more interesting
and challenging alternative that we address now; the simpler problem is also
solved by our algorithm.

There are three possible strategies for resolving this matter. First, all inter-
action between two independent distributed garbage collections could be pro-
hibited whilst nevertheless permitting inter-group references [33]. This has the
advantage of simplicity as it eliminates all interaction between distributed col-
lectors, and obviates any need for synchronisation either to assure correctness
and termination, or to bound the size of a collection. However, it fails to collect
garbage cycles that span groups.

The second strategy is to allow both collections to proceed, but to ignore
one another. In effect, the groups retain their own identity but overlap. This
requires that the collectors do not share any state (the colour and red-set infor-
mation held in the in- and out-tables). This could be achieved by maintaining one
copy of this state information for each collection group, and having all garbage
collection messages signed with the identity of their group (i.e. the identity of
their initiating process). The obvious drawback is that, while this is scalable and
complete, it is neither time- nor space-efficient as it leads to repeated work.

% Note that the converse, i.e. that all green objects are live, is not necessarily true.

The third strategy is to merge the two collecting groups into a single group,
thereby giving completeness and efficiency albeit at the cost of greater com-
plexity. To collect garbage data structures that span two groups, some form of
synchronisation must exist between the groups. One group maybe be dependent
on the other, and unable to determine that the structure it is holding is garbage
until the other has also determined that its portion of the structure is garbage.
In the example in Fig. 3, the group containing processes A and B cannot detect
that its structure is garbage until the CD group has completed its scan phase.

4.1 Partial Tracing Objects

Our algorithm records this dependency information explicitly. Each in- and out-
object holds (in addition to the colour) a marks list of groups that have visited
the object; the head of this list is called the mark.

The Network Objects library handles all communication between network
objects through a special object in each process [8]. We adopt the same approach
to support our partial tracing mechanisms by constructing a new partial tracing
object (pto) PT;q when a collection for group id visits a participant process for
the first time in this collection cycle:

PT;q = (id, participants, ins, outs, guardians, dependents)

id is a unique identifier. A distributed garbage collection can be identified by
its initiating process and the set of suspect objects from which it starts. For
simplicity we shall usually assume id and the initiator to be synonymous.

participants the members of the group collaborating to collect garbage.

ins, outs in- and out-objects in this process visited by this group.

dependents pto’s that are dependent on this object.

guardians pto’s that are guardians of this object.

For convenience, we denote the colour of an object with mark A by red4, green,
etc. Most communication between groups is handled through these local pto’s
(ambassadors, maybe?) without exchanging messages across the network.

4.2 Merging Mark-red

The mark-red phase is initiated from a suspect out-object (e.g. v¢ in Fig. 3) by
creating a pto identified by this process, say D. This initiating pto is said to
be active-disquiet. The suspect is reddened and its mark set to PTp. The pto
then executes alternate local and remote steps, colouring objects that it reaches.
It performs a local mark-red step from each in-object i newly marked redp to
colour each out-object o reachable from ¢ as follows:

(ML.1) If 0 has not been coloured, then it is reddened and its mark set to PTp: it
is redp.
(ML.2) If o is already redp, then no further action is necessary.

(ML.3) If 0 is redq and A # D, then two groups have met in the same phase. We
merge the groups and say that A is dependent on D and D is a guardian for
A. PTp is appended to o.marks, PTp is added to the guardians set of the
pto PT4, and PT 4 to the dependents set of pto PTp. Both these interactions
take place between the pto’s in this process — no messages are sent.

(ML.4) If o is green, it must have been marked by another group operating in a later
phase so the red wave-front retreats from this object.

Remote steps executed by PTp propagate colours from out-objects o in a process
P to in-objects i in a remote process . A new PTp pto is constructed in) to
represent this group (unless one already exists for this group as a result of an
earlier mark-red request in this collection cycle).

(MR.1) If i is uncoloured or redp, P is added to its red set and i is marked redp.

(MR.2) If i is redy and A # D, P is still added to i’s red set. Once again two
groups have met and, as in the local step, PTp is appended to i.marks and
to PTy.guardians, PT4 to PTp.dependents in process (); no messages are
exchanged.

(MR.3) If i is green, no further action is taken.

-A AB [Xal|YB -

cl |entSet clientSet
redSet| B redSet
marks|A marks|
clientSet A C
redSet|/A C

D
A

D] |vc|up ys| | |

Fig. 3. end of the mark-red phase

When a pto has no more local steps to perform and has received acknowledge-
ments for all the tracing requests that it has sent, the pto returns an acknowl-
edgement to the pto whose remote step caused it to be created. The acknowl-
edgement contains a list of the participating processes that it and its children
have visited. It is now said to be passive-quiet but may be re-awakened by fur-
ther mark-red requests (in which case it becomes passive-disquiet). No further

synchronisation is needed between the mark-red phases of each group*. At the
end of the mark-red phase, each initiating pto will know the participants in its
group, and objects in these participant processes reachable from suspects will
have been painted red (with their marks list identifying all the groups of which
they are members). Figure 3 shows an example in which two processes, A and D,
have initiated independent distributed collections which have met at yg. Note
that process B contains pto’s for both groups A and D.

4.3 Scanning Merged Groups

The aim of the merging collector is now to identify those objects that are not
reachable from a root or from outside the merged super-group. A component
group cannot make such a decision in isolation. Thus each initiating pto must
determine that (a) it and all the participants in its group, and (b) all the groups
upon which it depends, have completed their scan phase.

On termination of its mark-red phase, the initiator instructs all participants
in its group to start the scan phase. In this phase, each pto will ‘rescue’ any
live objects that it had inadvertently marked red. Again, after an initial step
to colour green any in- or out- object reachable from the local roots, the scan
phase proceeds by an alternating series of local and remote steps. The roots of
the scan phase for a pto P14 are:

— the process’ roots (stack, registers, static area...),

— any in-object that is not red,

— any red in-object marked either by PT4 or any group B responsible for it
— i.e. B € PTs.guardians — whose client and red sets differ (i.e. there is a
path to this object that mark-red has not traversed), and

— any other red in-objects marked by other groups.

For example, in Fig. 1 xp is a scan root, but in the example in Fig. 3 there
are no scan roots. The initial scan step of each pto PTy4 greens any objects
directly reachable from the root set that it had previously visited: these will be
the starting points for the ‘rescue’ trace.

(SI.1) Mark green any red in- or out-object x for which z.mark = PT4 (x had been
visited by a mark-red request from PT4) that is in, or reachable from, the
root set.

The local scan phase step for PT4 propagates the green colour from a green 4
in-object ¢ to those out-objects o in the same process reachable from ¢ that P14
had previously visited in the mark-red phase:

(SL.1) Green o if it is red and A € o.marks.

The remote step from a green, out-object o propagates the green colour to
the corresponding in-object i:

* The termination of each phase is discussed in more detail in Sect. 5.

(SR.1) If i is red and PTs € i.marks, mark i green.
(SR.2) If i is red but PTy & i.marks, retreat.
(SR.3) If i is not red, retreat.

clientSet clientSet
redSet redSet
marks| marks|

clientSet
redSet
marks|

D] __|vc|up ys| | |

Fig. 4. end of the scan phase

Remote steps do not invoke local steps directly. Rather, the pto that ‘owns’ the
in-object (identified by its mark) will execute a local step once it has started
its scan phase. Note that an in-object may be part of more than one group (the
length of its marks list is greater than one). If a pto receives a scan-request
before it receives the instruction to start the scan phase, it simply marks the
in-object green but does not yet take a local step.

As before, a pto PT4 becomes passive-quiet in the scan phase when it has
no more local steps to perform and has received acknowledgements for all the
remote steps that it has executed. It returns to its parent tracing object a list
of all the groups upon which it is dependent, PT4.guardians®.

PTy.guardians = U 1.marks

i.mark=A

Figure 4 shows the example at the end of the scan phase. PT4 in process B
has reported to the process A that initiated the collection that the collection is
dependent on D.

4.4 Sweep Phase

The scan phase of a group cannot terminate as long as it is possible for a member
of that group to receive further scan requests. We describe our termination

5 A group A may be a guardian for group B and vice-versa.

mechanism in Sect. 5.4 below. At the end of the scan phase, any red4 objects are
unreachable from process roots either within or without this group. First we give
the single step taken by the sweep phase for P14 in each process concurrently:

(SW.1) Remove all redy from the in-table; repaint as uncoloured all green ,, setting
their marks lists to empty.

5 Concurrency and Termination

The algorithm requires that each initiator of a distributed collection detect the
termination of its mark-red and scan phases, and that it detects the termination
of any collections upon which it is dependent. We approach these two problems
separately.

Events

start phase

send mark-reguest(out-object)
receive mark-request(out-object)
receive ack(out-object)

perform local step

all acksreceived

receive mark-request(out-object)

la
Active
Disquiet %ﬂ,e
lf

Passive 9 Passive
Quiet f Disquiet%ie

Fig. 5. state transitions for termination detection. An additional initial state required
by pto’s that receive a scan-request before the instruction to start the scan phase is
omitted for simplicity.

‘@—hmo_oc'm\

5.1 Group Termination

For termination of each group, we use an acknowledgement-based termination
detection protocol for both the mark-red and the scan phases that does not
require processes to be known at the start of distributed garbage collection [38].
Following Augusteijn [2], we introduce three possible states for a process (see
Diagram and Table 5): active-disquiet, passive-disquiet and passive-quiet.

— A process initiating a phase is active-disquiet.

The receipt of a tracing request causes a passive-quiet process to become

passive-disquiet.

— Requests have no effect on the state of an active-disquiet process — the
request is simply added to the process’ work-list,.

— When a process has no more work to do — no local steps to perform and
it has received acknowledgements for all its tracing requests — the process
becomes passive-quiet.

— On becoming passive-quiet, processes return an acknowledgement, identify-
ing themselves and those identified by any tracing requests that they have in
turn exported. Requests to active-disquiet processes on the other hand are
acknowledged immediately®.

From this it can be seen that there is always an active-disquiet process re-
sponsible for any passive-disquiet process. It therefore suffices to detect the ter-
mination of the active processes alone. In the mark-red phase, this is particularly
simple as there is just one active process: the initiator; in the scan phase however
there may be many active disquiet processes.

5.2 Mark-red Phase

Within a single group, the mark-red phase is initiated by a single active-disquiet
process. As soon as this process has received acknowledgements from all the
mark-red processes that it has exported, it becomes passive-quiet: the mark-red
phase is complete and the membership of the group is known.

Our collector does not need to visit the complete transitive referential closure
of suspect out-objects. The purpose of the mark-red phase is simply to determine
the scope of subsequent phases and to construct red-sets. Early termination of
this phase can be used to trade conservatism (tolerance of floating garbage) for
expediency, and bounds on the size of the graph traced (and hence on the cost
of the trace). We believe that our approach also shows promise for other NUMA
problems that use partitioned address spaces, such as distributed object-oriented
databases and persistent storage systems [34]. Importantly, this conservativism
allows the phase to be executed concurrently with mutators without need for
synchronisation and so permits cheap termination of this phase.

5.3 Scan Phase

The scan phase is initiated concurrently on each participant process holding part
of the red, suspect subgraph. The pto’s representing this group collection in each
participant process are set to active-disquiet on receipt of the instruction from
the initiating pto to start this phase. Group scan phase termination is detected
by the protocol described above. Each of the active-disquiet pto’s for this group
informs the initiating pto as soon as it becomes passive-quiet.

In contrast to the mark-red phase, the scan phase must be complete with
respect to the red subgraph, since it must ensure that all live red objects are
repainted green. As with other concurrent marking schemes, this requires syn-
chronisation between mutator and collector. We consider the effect of mutator
actions on first scan phase local steps and then scan phase remote steps.

Termination detection requires that scan phase local steps must be able to
detect any change to the connectivity of the graph made by a mutator. A local
mutator may only change this connectivity by overwriting references to objects.

6 We piggy-back collector acknowledgements on the back of RPC acknowledgements.

Such writes can be detected by a write barrier [41] — our implementation is
described in Sect. 7. Once a process has no more local scan steps to perform,
any red in-object o0 and its red descendents are isolated from the green subgraph
held in that process — they cannot become reachable through actions of the
local mutator. However their reachability can still be changed if:

(a) a remote method is invoked on o; or

(b) a new out-object corresponding to o is created in some other process;

(c) another object in the same process receives a reference to o from a remote
process.

None of these events can occur unless the red out-object is still alive. Correct
termination detection requires that each scan-request (and subsequent scan)
has an active-disquiet process ultimately responsible for it. Trapping mutator
messages with a ‘snapshot-at-the-beginning’ barrier preserves this invariant. If a
client invokes a remote method from a red out-object, or copies the reference held
by ared out-object to another process, a scan-request is sent to the corresponding
in-object, along with the mutator message”. The scan-request paints the in-
object, and any local out-objects reachable from it, green in an atomic local-step
operation before the mutator message is handled.

The mutator operation that sprung the trap cannot have been made from a
passive-quiet process. If it were, the red out-object would have been unreachable
from the client process’ roots unless a prior external mutator action had caused
the object to become locally reachable. But in this case the out-object would
have been repainted green by the write barrier. Thus, an active-disquiet process
is always responsible for the scan-request generated by the barrier. If the owner of
the in-object is also active-disquiet, an acknowledgement is returned immediately
and this process takes over responsibility for any consequent scan-requests. If it
is passive, the scan-request is not acknowledged until all the descendents have
been scanned; the client process cannot become quiet until it has received this
acknowledgement.

5.4 Super-group Termination

The scan phase of an individual group cannot terminate as long as it is possible
for a member of the group to receive further scan requests. Our modification of
Augusteijn’s algorithm resolves this for members of a single group, but a group
may also receive scan-requests from members of other groups in its super-group.
We note however that there will be an active-disquiet process responsible for
these requests, and say that a process is stable if it is not active-disquiet. Once
a process becomes stable it can never become active-disquiet again: although it
may perform scan steps these will be on behalf of other active-disquiet processes.
We say that a group is partially terminated if all its participants are stable. Our
termination property for a single group is that all groups (initiating pto’s) on
which it depends are partially terminated. We define a relation Dependent:

" In our implementation, we send both messages in the same remote procedure call.

Definition 1. V pto’s PT4, PTp in a process, Dependent(PTs, PTp) = PTp €
PT4.guardians

and we calculate its reflexive transitive closure, Dependent*. We adopt the simple
protocol of passing tokens around a ring formed by initiator members of the super
group [32], so that when a token has returned to the initiator that created it,
the scan phase of that group is complete. As soon as an initiator A partially
terminates, it constructs a token. The token has two parts:

terminated a list of the groups in ring that are known to have partially termi-
nated; initially this holds A alone.

next a set of initiators not yet visited; initially this holds the groups responsible
for A, A.guardians.

Propagation of the token around the ring is simple. An initiator process A
retains the token until all members of its group are stable, i.e. the group is
partially terminated. If the head of the token’s terminated list is A then the
scan phase has fully terminated. Otherwise A (i) removes itself from the next
set to the end of to the terminated list, (ii) inserts any of its guardian groups
that are not members of the terminated list in the next set, and (iii) passes the
token to any member of the nezt set. If this set is empty, all the Dependent*(A)
groups have terminated and the token is returned to its owner, the head of the
terminated list. Figure 4 shows the token sent by A to its guardian, D; D will
return the token with an empty next-set to the head of the terminated-list, A.
As D has an empty guardians set, it does not need to wait for any other group
to terminate.

6 Safety

The safety requirement for our algorithm is that live objects are never reclaimed.
First we note that the system of acknowledgements ensures that marking re-
quests are guaranteed to be delivered to their destination unless either the client
or owner process fails before the message is safely delivered and acknowledged.
Although it is possible that messages might be duplicated, marking is an idem-
potent operation (cf. reference listing, above).

To demonstrate that the merging algorithm is correct, we briefly outline how
it can be shown that, if a pto P71 is in its sweep phase, then no redp objects
in the same process can receive a scan request, and hence that no redg object
can be live in B’s sweep phase. First, we conservatively define an object = to be
live if

(3P € supergroup A Ir € Roots(P) A path(r,x)) V
(3Q & supergroup A Jo € out-table(Q) A path(o, x))

Suppose that = is live but erroneously reclaimed by pto PTg in process P.
By (SW.1), redg(z) A live(z). Thus

(Fi € in-table(P) A path(i, z) A live(i)) V (Ir € Roots(P) A path(r,x))

There cannot have been such a path from a local root before PTg took its
initial scan step — since (SI.1) would have greened & — so only a subsequent
remote method invoked from an out-object o on an in-object i’ from which x
is reachable could have created this path. If o' was redg, x would have been
repainted green by o'’s barrier. If it was greeng, a scan request has been sent to
repaint 7 and hence x green (if the scan-request acknowledgement has not been
received then the request will be sent again, with the mutator message). If o'
had not been visited by B, then ¢ would have been a scan root for PTz.

So x must have been reachable from i when PTg took its initial scan step,
and this 4 cannot have been a local scan root (SI.1). Hence

red(i) A (i.redSet = i.clientSet) A (i.mark = PTg V i.mark € PTg.guardians)

All out-objects o (i.e. o € i.clientSet) from which 7 is reachable must be red
(MR.1 or MR.2), and by hypothesis, at least one such reda, for some group A,
must be live. We need to show that group A has completed its scan phase and
hence that o can never become green.

If A = B then the pto’s responsible for both z and o are members of the
same group. Hence 0’s pto has completed its scan phase and so cannot generated
further scan requests. Alternatively, A # B in which case A € PTg.guardians
(MR.1 or MR.2) and hence a member of the guardians set of the initiator of group
B (the final action of a pto in the scan phase is to return a list of guardian groups
to its initiator). The scan phase termination for group B must send a token to,
inter alia, the initiator of group A (since A € PTg.guardians). Group B does
not enter the sweep phase until A (and other guardian groups) have returned
the token, but group A will not do so until all its members are passive-quiet. No
scan request can be generated from within group A.

Neither can a scan request originate from a group in Dependent*(A) as all
pto’s within Dependent*(A) are partially terminated by the time that A has
received its token back. Any request must be from an out-object o’ in a third
group, C ¢ Dependent*(A). Since the in-object was red, its red set contained
0" and hence its marks contained C, i.e. C' is a guardian for group B. But this
means that C € Dependent*(A). Thus no such scan request can occur. Hence
group A has completed its scan phase and the red objects cannot be live.

7 Mapping the Algorithm onto Network Objects

Our algorithm is built on top of the reference listing mechanism provided by the
Network Objects distributed memory manager, albeit slightly modified [8]. The
Network Objects collector is resilient to communication failures or delays, and to
process failures. Object migration is not supported. In this section we describe
how our algorithm is mapped onto the Network Objects system. In particular we
are bound to account for the collection of local and acyclic distributed garbage,
and synchronisation between mutators and collectors

Network Objects is a distributed object library for Modula-3, a garbage-
collected language [10]. Our local collector is a slightly modified version of the

SRC Modula-3 incremental, mostly copying collector [4]. Synchronisation be-
tween the mutator and the local collector is provided by a page-wise read-only
barrier supported by the operating system [1].

Network Objects uses reference lists rather than counts: any client process
holds at most one surrogate for any given network, or concrete, object. Our in-
table is represented by that part of (a modified version of) the Network Objects’
object table, that contains references, or wireReps, to concrete network objects,
and our out-table is that part that contains references to surrogate objects.

Communication failures are detected by a system of acknowledgements. How-
ever, a process that sends a message but does not receive an acknowledgement
cannot know whether that message was received or not. Unlike reference count-
ing, reference listing operations are idempotent and so resilient to duplication
of messages. Network Objects’ dirty call mechanism also prevents out-of-order
delivery of messages from causing the premature reclamation of objects.

An owner of a network object can also detect the termination of any client
process. Any client that has terminated is removed from the client set of the cor-
responding concrete object, allowing objects to be reclaimed even if the client
terminates abnormally. Unfortunately, communication delay may be misinter-
preted as process failure, in which case an object may be prematurely reclaimed.
Proof of the safety and liveness of the Network Objects system may be found in
[7].

Unlike the mark-red phase, scan phase tracing must be accurate with respect
to the red subgraph in order to ensure that it reaches all red objects that are
live. Mostly Parallel garbage collection [9] uses operating system support to de-
tect those objects modified by mutators (actually pages that have been updated
within a given interval). When the local scan phase process has visited all ob-
jects reachable from its starting points, the mutator is halted while the graph is
retraced from roots any modified objects. Because most of the scanning work has
already been done, it is expected that this retrace will terminate promptly (the
underlying assumption is that the rate of allocation of network objects, and of
objects reachable from those network objects, is low). In any event, this retrace
may be interrupted and restarted later.

Scan-requests caused by mutator action are asynchronous and these may
require the out-object descendents of the receiving in-object to be repainted
green atomically. The simplest method of propagating marks from in- to out-
objects is to ‘stop the world’ in that process and perform a standard recursive
trace from the in-object. We claim that this does not cause excessive delay as
this event is unlikely to occur if our heuristic for finding suspects is good, and
moreover it is likely that objects reachable from a live in-object are already
known to be live.

8 Costs and Heuristics

The costs associated with our algorithm can be divided into two categories:
those associated with the RPC calls exchanged between processors and those

common to any incremental collector caused by running scan phase local steps
concurrently with mutators. We analyse the former here.

Call the number of inter-process edges in the subgraph visited by mark-red
e, and the number of participants in this group n. Note that e < the number of
edges in the transitive referential closure of the suspect objects.

— The mark-red phase for each group issues e mark-request RPC calls, by
definition.

— The number of mark-red acknowledgement calls depends on whether the
request is sent to a quiet or a disquiet pto, and this in turn depends on
the topology (degree of sharing) of the subgraph. An acknowledgement from
a disquiet pto can be piggy-backed onto the RPC acknowledgement; that
from a quiet process requires a separate call. Thus, between n — 1 (one
acknowledgement for each pto-creating request) and e (one per edge) calls
are required.

— Each acknowledgement message has a length < n, the maximum number of
processes to which the request message can have been forwarded.

Thus the number of RPC calls Cys/r caused by mark-red is:

e+n—1<Cyr <2e

— Scan phase initiation requires n» — 1 messages to participating pto’s.

— The number of scan requests sent depends on the accuracy with which sus-
pects are identified. In the best case, no requests will be sent but each pto
must report termination to the initiator; in the worst case, the number of
RPC calls is the same as that for mark-red®. Let p be the probability that
our suspect identification heuristic is accurate.

— Super group termination requires d4 calls for each group A where d4 =
| Dependent*(A)|.

Thus the expected number of RPC calls Csc caused by the scan phase is:
(1-ple+2(n—1)+d<Csc <2(1—ple+ (1+p)(n—1)+d
— The sweep phase requires n — 1 messages.
The total number of RPC calls C required is:
(2-ple+4n—-1)+d<C<22-ple+(2+p(n—1)+d

The cost of our algorithm is determined by the parameters n, e, d and p.
p depends on our choice of suspect; n, e and d are partly determined by the
topology of the subgraph and the dynamics of distributed collections but can
also be controlled by policy decisions on the extent of mark-red’s coverage of
the graph. Because little is known of the demographics of distributed objects,

® The intermediate case occurs when a subset of the red sub-graph is found to be live.

flexibility is a key goal of our collector. Our collector can be seen as a framework
within which policy decisions can be implemented. Policy guides the choice of
suspects, the choice of processes forming each group and the merger of groups.

A new partial trace may be initiated by any process not currently part of
a trace. There are several reasons for choosing to initiate such an activity: the
process may be idle, a local collection may have reclaimed insufficient space, the
process may not have contributed to a distributed collection for a long time, or
the process may simply choose to start a new distributed collection whenever
it discovers a suspect object. A very simple heuristic would be to use the lo-
cal collector alone to identify those surrogates only reachable from the object
table but the better the heuristic the greater the chance p that our algorithm
traces only garbage subgraphs thereby decreasing the number of times a partial
trace is run, limiting the mark-red trace to garbage and reducing the number of
scan phase messages to the best case, and decreasing the chance of wasted and
repeated work.

A more sophisticated heuristic is to estimate an object’s minimum distance
from a root, measured by inter-process references — the distance heuristic [26].
The distance heuristic requires each in-object to periodically propagate an esti-
mate of its distance from a root to its children, who use this estimate to adjust
their own distance estimate. The insight is that the estimate for objects in a
garbage cycle will increase without bound; once a threshold value is reached for
an object’s distance, we have some confidence, but no guarantee, that the ob-
ject is garbage. A drawback of the distance heuristic is that several objects in a
garbage cycle may attain the threshold together, leading to multiple collections
in the same cycle (increasing both d and the number of pto’s in processes where
the collections meet). By only propagating distances over a certain threshold
with mark-red requests we can reduce the risk of multiple distributed collections
in the same garbage cycle and therefore reduce the overheads of our algorithm.
However, even with a simplistic heuristic, a probability of being garbage can be
assigned to each suspect object that has survived a partial tracing. For example,
we could take a round-robin approach by tracing only from the suspect that was
least recently traced.

p and n can be controlled by bounding the amount of work done by mark-red.
Recall that this phase needs only make a conservative estimate of the transitive
referential closure of suspect objects — it need not visit the whole closure. This
policy decision can be taken statically by prior negotiation or dynamically by
mark-red. It may be determined by the collector itself or by the user program,
globally or on a per-process or even per-object basis. Heuristics based on ge-
ography, process identity, distance from the suspect originating the collection,
minimum distance from any object known to be live, or time constraints may be
used to restrict the extent of mark-red or the decision whether to merge with,
overlap or retreat from other distributed collections. In the absence of knowl-
edge of the problem being computed, it is unclear what action should be taken
when two groups meet. A merger may not always be desirable. Instead it may
be preferable to run multiple overlapping groups. For example the best compro-

mise may be to combine simultaneously occasional long-running but complete
collections over very large groups with more frequent faster completing collec-
tions over small groups. Our algorithm offers the implementer the choice between
completeness and promptness at the level of groups, processes and individual ob-
jects. Groups can decide whether or not to merge, processes can decide whether
to allow groups to merge, to overlap or to retreat from one another, and objects
can decide on merger or retreat.

The cost of distributed collection is comparatively robust against the rate of
modification of references held in objects. The cost to the local scan step depends,
as with any incremental uniprocessor collector, on how it is synchronised with the
mutator [20]. Modifications caused by exchange of mutator messages trigger the
barrier, causing the collector to do work, only on the first occasion in a collection
cycle that a message is sent from a red out-object. Indeed, the frequency of
messages sent to an object that would otherwise be considered suspect is a useful
measure of whether that object should be considered as a root for a distributed
collection.

9 Related Work

Distributed reference counting can be augmented in various ways to collect dis-
tributed garbage cycles. Juul and Jul [22], periodically invoke global marking
to collect distributed garbage cycles, tracing the whole graph before any cyclic
garbage can be collected. Even though some degree of concurrency is allowed,
this technique cannot make progress if a single process has crashed, even if that
process does not own any part of the distributed garbage cycle. This algorithm
is complete, but it needs global cooperation and synchronisation, and thus does
not scale.

Maeda et al. [25] present a solution also based on earlier work by Jones and
Lins using partial tracing with weighted reference counting [21]. Weighted ref-
erence counting is resilient to race conditions, but cannot recover from process
failure or message loss. As suggested by Jones and Lins, they use secondary refer-
ence counts as auxiliary structures. Thus they need a weight-barrier to maintain
consistency, incurring further synchronisation costs.

Maheshwari and Liskov [27] describe a simple and efficient way of using ob-
ject migration to allow collection of distributed garbage cycles, that limits the
volume of the migration necessary. The distance heuristic estimates the length of
the shortest path from any root to each object. This heuristic allows the identi-
fication of objects belonging to a garbage cycle, with a high probability of being
correct. These objects are migrated directly to a selected destination process
to avoid multiple migrations. However, this solution requires support for object
migration (not present in Network Objects). Moreover, migrating an object is
a communication-intensive operation, not only because of its inherent overhead
but also because of the time necessary to prepare an object for migration and to
install it in the target process [37]. In a recent paper Maheshwari and Liskov use
the same distance heuristic to identify suspect objects from which they start a

back trace in an attempt to discover a root [28]. They employ similar reference
listing and barriers schemes to those presented here. Unlike [15], their algorithm
provides an efficient method of calculating back-references and takes account of
concurrency.

Lang et al. [24] also presented an algorithm for marking within groups of
processes. Their algorithm uses standard reference counting, and so inherits its
inability to tolerate message failures. It relies on the cooperation from the lo-
cal collector to propagate necessary information. This algorithm is difficult to
evaluate because of the lack of detail presented. However, the main differences
between this and our algorithm is that we trace only those subgraphs suspected
of being garbage and that we use heuristics to form groups opportunistically. In
contrast, Lang’s method is based on Christopher’s algorithm [11]. Consequently
it repeatedly scans the heap until it is sure that it has terminated. This is less ef-
ficient than simply marking nodes red. For example, concrete objects referenced
from outside the suspect subgraph are considered as roots by the scan phase,
even if they are only referenced inside the group. In the example of Fig. 1 and 2
our algorithm would need a total of 6 messages (5 for mark-red phase and 1 for
scan phase), against a total of 10 messages (7 for the initial marking and 3 for
the global propagation) for Lang’s algorithm. Objects may also have to repeat
traces on behalf of other objects (i.e. a trace from a ‘soft’ concrete object may
have to be repeated if the object is hardened). Their ‘stabilisation loop’ may
also require repeated traces. Finally, failures cause the groups to be completely
reorganised, and a new group garbage collection restarted almost from scratch.

Hudson et al. have adapted their Mature Object Space ‘train’ algorithm for
distributed garbage collection [19, 18]. While their new algorithm collects all
garbage, including distributed garbage, it requires an object substitution protocol
to ensure that all old references to an object are updated to refer to the new
copy. Detecting that a train has no external references is also more complex in
a distributed environment than in a uniprocessor one: they use a similar token
ring technique to that we use for detecting super group termination.

10 Conclusions and Future Work

This paper has outlined a solution for collecting distributed garbage cycles, de-
signed for the Network Objects system but applicable to other systems — a
complete treatment will be found in [34]. Our algorithm is based on a reference
listing scheme [7], augmented by partial tracing in order to collect distributed
garbage cycles [21]. Groups of processes are formed dynamically to collect cyclic
garbage. Processes within a group cooperate to perform a partial trace of only
those subgraphs suspected of being garbage. If necessary, groups can cooperate
to collect garbage cycles that span them.

Our memory management system is highly concurrent: mutators, local col-
lectors, the acyclic reference collector and distributed cycle collectors operate
mostly in parallel. Local collectors are never delayed, and mutators are only
halted by a distributed partial tracing to complete a local scan.

Our system reclaims garbage efficiently: local and acyclic collectors are not
hindered. The efficiency of the distributed partial tracing can be increased by
restricting the size of groups, thereby trading completeness for promptness. The
use of the acyclic collector and groups also permits scalability whereas the ability
to merge groups ensures completeness.

Our collector provides a flexible framework for the implementation of policy
decisions directing the collection of garbage. Heuristics may be applied to govern
the choice of suspects, the extent of the subgraph to be traced and whether
to allow independent collections that meet to merge, overlap or retreat. Our
algorithm therefore offers the implementer the choice between completeness and
promptness at the level of groups, processes and individual objects.

Our distributed collector is fault-tolerant: it is resilient to message delay, loss
and duplication, and to process failure. Fzpediency is achieved by the use of
groups.

Early versions of our algorithm have been implemented. In particular, some
choices for cooperation with the mutator require further study and depend
mainly on experimental results and measurements. We are also interested in
heuristics for suspect identification and group formation. Finally, we would like
to thank the anonymous referees for their helpful comments on the earlier draft
of this paper.

References

[1] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent collection on
stock multiprocessors. ACM SIGPLAN Notices, 23(7):11-20, 1988.

[2] Lex Augusteijn. Garbage collection in a distributed environment. In de Bakker
et al. [12], pages 75-93.

[3] Henry Baker, editor. International Workshop on Memory Management, volume
986 of Lecture Notes in Computer Science, Kinross, Scotland, September 1995.
Springer-Verlag.

[4] Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Lisp
Pointers 1, 6 (April-June 1988), pp. 2-12.

[5] Yves Bekkers and Jacques Cohen, editors. International Workshop on Memory
Management, volume 637 of Lecture Notes in Computer Science, St Malo, France,
16-18 September 1992. Springer-Verlag.

[6] David I. Bevan. Distributed garbage collection using reference counting. In
PARLE Parallel Architectures and Languages Europe, volume 259 of Lecture Notes
in Computer Science, pages 176-187. Springer-Verlag, June 1987.

[7] Andrew Birrell, David Evers, Greg Nelson, Susan Owicki, and Edward Wobber.
Distributed garbage collection for network objects. Technical Report 116, DEC
Systems Research Center, December 1993.

[8] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network ob-
jects. Technical Report 115, DEC Systems Research Center, February 1994.

[9] Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage
collection. ACM SIGPLAN Notices, 26(6):157-164, 1991.

[10] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and
Greg Nelson. Modula-3 report (revised). Research Report PRC-131, DEC Systems
Research Center and Olivetti Research Center, 1988.

[11]

[12]

[13]
[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

22]
23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]

T. W. Christopher. Reference count garbage collection. Software Practice and
Exzperience, 14(6):503-507, June 1984.

Jacobus W. de Bakker, L. Nijman, and Philip C. Treleaven, editors. PARLE’87
Parallel Architectures and Languages Europe, volume 258/259 of Lecture Notes in
Computer Science, Eindhoven, The Netherlands, June 1987. Springer-Verlag.
Margaret H. Derbyshire. Mark scan garbage collection on a distributed architec-
ture. Lisp and Symbolic Computation, 3(2):135 — 170, April 1990.

Paulo Ferreira and Marc Shapiro. Asynchronous distributed garbage collection in
the Larchant cached shared store. Available from Marc Shapiro, May 1996.
Matthew Fuchs. Garbage collection on an open network. In Baker [3].

Benjamin Goldberg. Generational reference counting: A reduced-communication
distributed storage reclamation scheme. In Conference on Programming Languages
Design and Implementation, volume 24(7) of ACM SIGPLAN Notices, pages 313—
320, Portland, June 1989.

Paul R. Hudak and R. M. Keller. Garbage collection and task deletion in dis-
tributed applicative processing systems. In Symposium on Lisp and Functional
Programming, pages 168-178, Pittsburgh, August 1982. ACM Press.

Richard L. Hudson, Ron Morrison, J. Eliot B. Moss, and David S. Munro. Garbage
collecting the world: One car at a time. In Conference on Object-Oriented Systems,
Languages and Applications — Twelth Annual Conference, volume 32(10) of ACM
SIGPLAN Notices, pages 162-175. ACM Press, October 1997.

Richard L. Hudson and J. Eliot B. Moss. Incremental garbage collection for mature
objects. In Bekkers and Cohen [5].

Richard E. Jones. Garbage Collection: Algorithms for Automatic Dynamic Mem-
ory Management. Wiley, July 1996. With a chapter on Distributed Garbage
Collection by R. Lins.

Richard E. Jones and Rafael D. Lins. Cyclic weighted reference counting without
delay. Parallel Architectures and Languages Europe, volume 694 of Lecture Notes
in Computer Science. Springer-Verlag, June 1993.

Neils-Christian Juul and Eric Jul. Comprehensive and robust garbage collection
in a distributed system. In Bekkers and Cohen [5].

Rivka Ladin and Barbara Liskov. Garbage collection of a distributed heap. In In-
ternational Conference on Distributed Computing Systems, Yokohama, June 1992.
Bernard Lang, Christian Quenniac, and José Piquer. Garbage collecting the world.
In Symposium on Principles of Programming Languages, ACM SIGPLAN Notices,
pages 39-50. ACM Press, January 1992.

Munenori Maeda, Hiroki Konaka, Yutaka Ishikawa, Takashi Tomokiyo, Atsushi
Hori, and Jorg Nolte. On-the-fly global garbage collection based on partly mark-
sweep. In Baker [3].

Umesh Maheshwari. Fault-tolerant distributed garbage collection in a client-server
object-oriented database. In Conference on Parallel and Distributed Information
Systems, Austin, September 1994.

Umesh Maheshwari and Barbara Liskov. Collecting cyclic distributed garbage by
controlled migration. In Principles of Distributed Computing, 1995.

Umesh Maheshwari and Barbara Liskov. Collecting cyclic distributed garbage by
back tracing. In Principles of Distributed Computing, 1997.

José M. Piquer. Indirect reference counting: A distributed garbage collection
algorithm. In Parallel Architectures and Languages Europe, volume 505 of Lecture
Notes in Computer Science. Springer-Verlag, June 1991.

David Plainfossé and Marc Shapiro. Experience with fault-tolerant garbage col-
lection in a distributed Lisp system. In Bekkers and Cohen [5].

31]
(32]

[33]

[34]

[35]

[36]

(37]

(38]

(39]
[40]

[41]

David Plainfossé and Marc Shapiro. A survey of distributed garbage collection
techniques. In Baker [3].

S. P. Rana. A distributed solution to the distributed termination problem. Infor-
mation Processing Letters, 17:43—46, July 1983.

Helena C. C. D. Rodrigues and Richard E. Jones. A cyclic distributed garbage col-
lector for Network Objects. In International Workshop on Distributed Algorithms
WDAG’96, Bologna, October 1996.

Helena C.C.D. Rodrigues. Cyclic Distributed Garbage Collection. PhD thesis,
Computing Laboratory, The University of Kent at Canterbury, 1998. In prepara-
tion.

Marc Shapiro. A fault-tolerant, scalable, low-overhead distributed garbage col-
lection protocol. In Symposium on Reliable Distributed Systems, Pisa, September
1991.

Marc Shapiro, Peter Dickman, and David Plainfossé. SSP chains: Robust, dis-
tributed references supporting acyclic garbage collection. Rapports de Recherche
1799, Institut National de la Recherche en Informatique et Automatique, Novem-
ber 1992.

N.G. Shivaratri, P. Krueger, and M. Singhal. Load distributing for locally dis-
tributed systems. Computer, 25(12):33-44, December 1992.

Gerard Tel and Friedmann Mattern. The derivation of distributed termination
detection algorithms from garbage collection schemes. ACM Transactions on Pro-
gramming Languages and Systems, 15(1), January 1993.

Paul Watson and Ian Watson. An efficient garbage collection scheme for parallel
computer architectures. In de Bakker et al. [12], pages 432-443.

Paul Wilson. Distr. gc general discussion for faq. gclist mailing list
(gclist@iecc.com), March 1996.

Paul Wilson. Garbage collection and memory hierarchy. In Bekkers and Cohen

[5].

