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A b s t r a c t .  For composite n, we prove that  counting the number of points 
on elliptic curves over the ring Z~ is randomly computationally equivalent to 
factoring n. That  is, we prove that  if we can count it, we can easily factor 
n. Furthermore, we also prove that  if we can solve the elliptic curve discrete 
logarithm problem modulo n, we can easily factor n. 

1 I n t r o d u c t i o n  

Elliptic curves can be applied to public-key cryptosystems, and as such several 
schemes have been proposed [3, 4, 5, 6, 9, 11]. There are two typical elliptic curve 
cryptosystems: E1Gamal-type scheme [4, 11] and RSA-type schemes [3, 5, 6]. The 
security of the EIGamal-type elliptic curve cryptosystem is based on the difficulty 
of solving a discrete logarithm over elliptic curve modulo a prime. However, the 
security of an RSA-type elliptic curve cryptosystem is based on the difficulty of 
factoring a large composite. It has been conjectured that  completely breaking the 
original RSA is computationally equivalent to the factoring the used composite, 
although this has NOT been proved yet. In a certain RSA-type elliptic curve (or 
cubic curve) cryptosystem proposed in [6], however, this equivalence between 
the two problems was proved. In general RSA-type elliptic curve cryptosystems, 
including RSA-type cubic curve cryptosystems, the equivalence has not been 
proved. As the order r of Z* for a composite n have played a significant role 
in analyzing the security of the original RSA scheme, it is important to evaluate 
the complexity of counting the number of points on an elliptic curve over the 
ring Z,~ for RSA-type elliptic curve cryptosystems. 

We are interested in reductions of factoring to other problems in elliptic curve 
theory over Z~. In this paper, we will consider the following problems. 

F C T ( n )  : Given composite n, find the complete prime factorization of n. 
C O M P ( r  : Given composite n, compute the Euler phi function r -- 

IZ*I, which is the number of integers in the interval [1, n], each of which are 
relatively prime to n. 

C O M P ( ~ E , . , ( a , b ) )  : Given composite n and integers a and b, compute 
# E n ( a ,  b), which is the number of points over an elliptic curve E,~ : y2 _- 
x 3 + ax + b (mod n). 
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COMP(~q:En(a,  b) rood d) : Given composite n, an elliptic curve En(a, b) and 
prime d (= O(logn)), compute #E~(a,b) mod d. 

E D L P  m o d p  (Elliptic curve Discrete Logarithm Problem mod p): Given a 
prime p, an elliptic curve Ep and two points G and A over Ev, find the 
positive integer a such that aG = A. 

E D L P  rood n (Elliptic curve Discrete Logarithm Problem mod n): Given a 
composite n, an elliptic curve E,~ and two points G and A over En, find the 
positive integer ~ such that ~G = A. 

We would like to emphasize that for a prime p (not a composite), 
COMP(#Ev(a, b)) and COMP(#Ep(a, b) mod d) are computable in polynomial 
time [13]. Conversely, it is not known whether an algorithm exists for solving an 
EDLP mod p in polynomial time (or even in sub-exponential time). 

The purpose of this paper is to show possible reductions between the factor- 
ing problem and some problems in elliptic curve theory over Z~. We prove the 
equivalence of FCT(n) and COMP(#E,~(a, b)) in Sect. 3 and the equivalence of 
FCT(n) and COMP(#E,~(a, b) mod d) in Sect. 4. Finally, we prove that FCT(n) 
is randomly polynomial time reducible to EDLP mod n in Sect. 5. 

2 P r e l i m i n a r i e s  

First, we define the notation used in the computational relationships and then 
describe some of the previous work relating to the original RSA--scheme. Follow- 
ing this, we briefly describe elliptic curves over Z,~ and explain the elliptic curve 
factoring method [7, 14]. 

2.1 Notat ions  of  Computat ional  Relationship 

Let A, B and C be computational problems. We can define computational re- 
lationship among these problems in the following terms: A ~<p B, A ~--RP B, 
A =p B, A =RP B and A ~_p B �9 C. 

Definition 1 We say that problem A is polynomial time reducible to problem 
B, written as A _~p B, if there is an algorithm that solves A which uses an oracle 
(or a subroutine) for B, and the algorithm runs in polynomial time. 

Definition 2 We say that problem A is randomly polynomial time reducible to 
problem B, written as A _<RP B, if there is an algorithm that solves A which 
uses an oracle (or a subroutine) for B, and the algorithm runs in randomly 
polynomial time. 

Roughly speaking, A <p B or A ~--RP B implies that if solving B is easy, 
then solving A is also easy. 

Definition 3 If A <p B and B _<p A, then we say that A and B are computa- 
tionally equivalent, written as A =p B. 
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Defini t ion 4 If {A <p  B and B _<np A}, or {A <_nP B and B <~_p A}, or 
{A <_nP B and B <_RP A}, then we say that  A and B are randomly compu- 
rationally equivalent, written as A =np B. 

Defini t ion 5 We say that  A is polynomial time reducible to B and C, written 
as A <p  B ~ C, if there is an algorithm that  solves A which uses both an oracle 
for B and an oracle for C, and the algorithm runs in polynomial time. 

2.2 P r e v i o u s  W o r k  

For COMP(r and FCT(n),  the following two facts are widely known. 

Fact 1 Let n be a composite that  is a product of distinct odd primes. 
On the assumption that  Extended Riemann Hypothesis (ERH) is true, it 
holds that  C O M P ( r  FCT(n) [10]. Without the ERH assumption, 
it holds that  COMP(~b(n)) <_e FCT(n)  and FCT(n)  <_•p COMP(~(n)),  i.e. 
FCT(n) =RP COMP(r [8]. 

Fac t  2 For composite n' that  is a product of two distinct odd primes p and q, 
it holds that  COMP(r = p  FCT(n ' ) .  

Proof:  Using an oracle for FCT(n ' ) ,  we can obtain p and q. Therefore, 
we can obtain r  by computing (p - 1)(q - 1/. Hence, it follows that  
COMP(r <p  FCT(n') .  Conversely, using an oracle for COMP(r we 
can obtain p +  q by using the fact that  p + q  = n' + 1 - r  Thus, p and q c__a~ 
be determined by solving the quadratic equation: x 2 - (n' + 1 - r  ))x + n' = 

~'+1-r162 from which over a real field R. This leads to x = 2 , 
it follows that  FCT(n')  ___<p COMP(r Thus, COMP(r and FCW(n') 
are computationally equivalent, COMP(r  = f  FCT(n ' ) .  [] 

Woll [15] studied the reductions between numerous number theoretic prob- 
lems, including FCT(n) and COMP(r 

2.3 Elliptic Curve  M o d u l o  C o m p o s i t e  n [9] 

For simplicity, we assume that  n is a composite that  is a product of two distinct 
odd (unknown) primes p and q. The equation of an elliptic curve E is given as 
E : y2 _~ x3+ax+b. Let E~, E v and Eq be the elliptic curve E over Z~, Fp and Fq, 
respectively. A point P over Ep is expressed by x and y coordinates modulo p 
as P = (x, y) including infinity point Op. This infinity point is a zero element of 
group Ev, which we refer to as the zero point in this paper. The zero point over 
Eq is similarly denoted as Oq. The set of all points over Ep(, Eq) and the point 
Op, (Oq) forms an Abelian group under a certain addition, tangent-and-chord 
operation. 

A group E~ (i.e. a set of points on E~) can be defined as the direct sum of 
two groups: E~ = E v @ Eq. Hence, every element P over E~ can be represented 
by the pair P1 E Ep and P2 E Eq, which we denote as P = (/)1, P2)- In this group 
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En, the point (Ov, Oq) is the zero point O of En. The points (Op,P2(#  Oq)) 
and (P1 (# Or), Oq) are semi-zero points. Finally, ordinary points are any point 
other than the zero point or semi-zero points. The number of elements of E,~ is 
given by #E,~ -- #Ep .  #Eq. The group E,~ consists of ( ( # Ep  - 1)(#Eq - 1)) 
ordinary points and (#E  v + #Eq - 2) semi-zero points and one zero point O. 

k The case of general composites n -- I-[,=1 P, should also be mentioned. A 
group E,~ can be defined as a direct sum of k groups: E,~ = @~=lEp . Let Or, 
be the zero point of E p .  Hence, every element P over E,~ can be represented 
by k-tuples of P1 E Evl, P2 E Ep2 ... and Pk E Ep~, letting us denote P = 
(P1, P 2 , ' " ,  Pk). Note tha t  the point with all zero point in k-tuples is zero point 
O and the point with at least 1 zero point in k-tuples is a semi-zero point, except 
zero point of E,~. 

2.4 Elliptic Curve Factoring Method  [7] 

Suppose that  P E E~ and M P  is a M times point of P as M P  = 
P + P + - - - P  - (P~,P2). We compute M R  using the tangent-and-chord op- 

M t(mes 
eration modulo n without knowing the prime factors p and q. Suppose that  M P  
is calculated successively in a binary method as M1P(= P), M 2 P , . . . ,  MIP(= 
MP). If M P  is a semi-zero point as M P  = COp, MP2(~ Oq)), then at least one 
MiP (1 < i < l) is a semi-zero point. In this case, in the process to compute 
MP, we cannot obtain MiP using the tangent-and-chord operation modulo n, 
which includes a calculation of an multiplicative inverse of the number not prime 
to n. However, we can find a prime factor p of n. Hence, if P~ = (9 v and P2 ~ Oq, 
we can find a prime factor p. 

Denoting the order of point P over E v by ~v(P) ,  we can rewrite the above 
condition as follows. That  is, if ~p(P)IM and ~q(P)XM, we can find a prime 
factor p. 

3 F C T ( n )  a n d  C O M P ( C / = E n ( a , b ) )  

In this section, we examine FCT(n)  and COMP(#E,~(a,  b)). We shall prove 
Theorem 1 (described below). The following is well known. 

F a c t  3 For composite n that  is a product of distinct odd primes, it holds that  
C O M P ( # E ~ ( a ,  b)) < p  FCT(n) .  

P r o o f :  Using an oracle for FCT(n) ,  we can obtain prime factorization of n as 
n -- piP2 "'" Pk. We can compute #Ep,  for each p, by Schoof algorithm [13] and 
obtain # E n  k = 1-[,=1 # E p .  Since k is less than log 2 n, we can obtain # E n  in 
polynomial time. [] 

We will now prove the converse of Fact 3. 

T h e o r e m  1 For composite n that is a product  of district odd primes, it holds 
that  FCW(n) ~RP C O M P ( # E ~ ( a ,  b)) and FCW(n) =RP C O M P ( # E ~ ( a ,  b)). 
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P r o o f :  The following algorithm can factorize n in randomly polynomial time 
using an oracle for C O M P ( # E = ( a ,  b)). 

F a c t o r i n g  A l g o r i t h m  using an oracle for COMP(#E,~(a,  b)) 
I n p u t :  Composite n(= k H =xp,) 
O u t p u t :  Prime factors Pl,P'2," ' ,pk 
S t e p  1 Set a parameter S and set elliptic curve E=(a, b) : y2 = x 3 + ax + 

b (mod n) satisfying GCD(n,  4a 3 + 27b 2) = 1 and a point P over En. 
1.1 Set S that  is the largest prime less than [ lognj .  
1.2 Set the point P = (x0, Y0) randomly and set a randomly. 
1.3 Calculate b = y02 - x03 - axo. 

S t e p  2 Using an oracle for COMP(#E,~(a ,  b)), obtain #E,~(a, b). 
S t e p  3 Check the divisibility of #E,~(a, b) by S. If SI#E= and S2~#E~, 

proceed to step 4. Otherwise, return to step 1.2. 

S t e p  4 Set M =_ #En(a,  b) and t ry  to compute M P  over En(a, b). Sup- 
S 

pose that  M P  is calculated as M1P(= P), M2P, . . . ,  MtP(= MP).  
- If at least one M~P is a semi-zero point, then we can find a prime 

factor Pi. When n/pi is a prime, factoring is completed. When n/pi 
is a composite, set n = n/p,,  return to step 1. 

- If M P  is a zero point, then we cannot find a prime factor. Return 
to step 1.2. 

The following analysis leads us to the conclusion that  the above algorithm 
runs in randomly polynomial time O((logn)5).  

We use properties of elliptic curve and elliptic curve factoring method [7] 
described in Sect. 2. Let ~p, (P) be the order of point P over Ev .  In the elliptic 
curve method, the order of points plays an important  role. Note that ,  in the 
above algorithm, we only assumed an oracle to compute the number of points: 
#E,~, instead of an oracle to compute the order of a point. 

First, we will prove that  the point M P  in step 4 always becomes a zero point 
or a semi-zero point. In general, m P  is a zero point if ~p,(P)]m for all i, and 
m P  is a semi-zero point if ~p, (P)Im for at least one i and m P  is not a zero 
point. Note that  qSp,(P)[#Ep, and ~Ep,[#En and ~p,(P)l#En for all i and all 
P over En. Let Pl be the prime factor that  satisfies S I # E p .  Since SI#E,~ and 
S2~#E,~, such Pl uniquely exists. Since SI#Ep, and SI#Ep,  for 2 < i < k, M 

is denoted by M ~ _  k = l-L=2 #Ev, and then #Ep.  [M for 2 < i < k. Note that  
#Epl [M since #Ep l  is a multiple of S and M is not a multiple of S. Letting 
P = (P1,P2, . . . ,Pk),  M P  is denoted as M P  = (MP1 ,MP2 , . . . ,MPk) .  Since 
�9 p,(P)[~Ev, , then ~v , (P) [M and MP~ = Or, for 2 < i < k and all P over E~. 
Hence M P  is a zero point or a semi-zero point because qsp,(P)[M for at least 
one i. 

This classification of the above two cases depends on whether MP1 is a zero 
point 0 w or an ordinary point. This dependency corresponds to the divisibility 

of qsv, (P) by S as follows. If S[~pl (P), we can write M = ~P~(P) �9 C, where C s 
is not a multiple of S. Since M is not a multiple of 4~v~(P), MP1 is not a zero 
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point. Hence, MP is a semi-zero point if Sl~p: (P).  If SX~pl (P),  we can write 
M = ~pl (P) .  C, where C is not a multiple of S. Since M is a multiple of ~p~ (P),  
MP1 is a zero point Op:. Hence, MP is a zero point if SX~p~ (P).  

Next, we will evaluate the probability of passing step 3. If R is a uniformly 
distributed random number, then the probability tha t  SJIR is 1 ~-, where j is 
a small integer and S is a prime. For prime p and randomly chosen integers 
a and b, the value of #Ep(a,b) behaves as a pseudo random number. Strictly 
speaking, #Ep(a, b) is not uniformly distributed in the range p - 2V~ + 1 < 
#Ep(a, b) < p + 2vffi+ 1. However, we put the assumption: Pr{SJ]#Ep(a, b)} -- 

1 ~-7. The probability that  SI#E,~ and S2~#E,~ is equal to the probability tha t  
there exists Pl such that  S[#Ep, and S2I#Ep, and S~#Ep~ for all j ( ~  i). 

1 1 Since P r ( S [ # E p ,  and S2~#Ep, } is equal to 5(1 - 5) and Pr{S~#Ep, } is equal 
to (1 - ~) for each j on the above assumption, Pr{SI#E,~ and S2~#E,~} = 
-~(I--~)-(i- :~k-:-k=(1--i~kk ~J SJ ~" 

Next, we will evaluate the probability of finding a prime factor in step 4. 
From the previous analysis, this probability is equal to the probability that  a 
random point P over Ep: satisfies that  S[~p: (P).  This probability is given as 
1 : S"  

Hence, the probability Q(k, S) of finding a prime factor per curve is given by 

Q(k,S) =- (1- 1)k+: k (1) 

Note that  the average number of trial curves is given by 1/Q(k, S). 
By theoretical analysis, we find that  Q(k, S) is monotonically increasing in 

k < S, for a given S. From this property and that  k _< log n ~ S, an integer 
which minimizes Q(k,S) is k = 2. In this case the probability Q(k, logn) >_ 
Q(2,1ogn) -- (1 - 1"'!'-)3log ~ iog2'~ = O(log--~). Hence, the average number of trial 
curves needed to find one prime factor is less than O(logn).  Since the number 
of prime factors is less than log n, the average number of total  trial curves to 
find the complete prime factors is O((logn)2). 

Next, we will determine the computation amount per curve. Computing 
MP needs O( logM) group operations. Since M ___ #E,~ ~ n, the number 
of group operations is O(logn).  It is known that  the computation amount 
per group operation is O((logn)2). These results lead to the conclusion that  
the above algorithm runs in randomly polynomial time O((logn)5). Thus, 
FCT(n)  <•p C O M P ( # E n ( a ,  b)) has been proven. 

This property and Fact 3 (COMP(#E,~(a,  b)) < p  FCT(n))  imply 
FCW(n) -=RP COMP(#E,~(a,  b)). [] 

We show a simple example. 

E x a m p l e :  Let n -- 22657. When we set S -- 5, a -- 22651 and b = 9310, 
we have #E,~ = 28688 and 5X#E ~. This case fails at step 3. When we set 
S = 5, a = 20837 and b - 8047, we have #E,~ = 26400 and 52]#En. This 
case also fails at step 3. Next, we show an example of success. In step 1, 
we set S -- 5 and a -- 18405,b = 18024 and P = (3926, 16206). In step 
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2, we obtain #E,~(a,b) = 22080 by an oracle. In step 3, we confirm that  
#E,  = 4416, we compute M P  over 51#En and 52~#E,~. In step 4, since M -- 5 

E22657(18405, 18024) by using a binary method, which is calculated successively 
as P, 2P, 4P, 8P, 16P, 17P, 34P, 68P,69P = (15499, 8896). However, 138P can- 
not be calculated by tangent and chord operation because 138P is a semi-zero 
point (note that  8896 is not relatively prime to 22657). Since GCD(8896, n(= 
22657)) = 139, factoring is thus completed. 

As a result n -- 22657 is factored by n -- 22657 = pq -- 139 x 163. Note that  
�9 v(P) = 138,~q(P) = 10 and M -- 4416 imply ~v(P)lM and ~q(P)~M, and 
that  factoring is successful (refer to Sect. 2.4). The reason why factoring is done 
in computing 138P is that  "138P" occurs while in the process of computing 
4416P and "138" happens to satisfy ~v(P)l138 and #q(P)~138. We may note 
that  #E,~ = # E  v x #Eq =138 x160 = 26 x 3 x 5 x 2 3 .  

Remarks: 
(1) It may be interesting to compare Fact 1 and Theorem 1. If ERH 
is true, then FCT(n)  < p  COMP(r  and FCT(n)  <_nP COMP(#E,~(a,b)). 
Without  the assumption that  ERH is true, FCT(n)<---RP COMP(r  and 
FCT(n)  <--RP COMP(#E,~(a,  b)). 

(2) We check whether SI#E,~ and S2~#E,~ in step 3 of the factoring algorithm in 
the proof of Theorem 1. We can construct an algorithm to rule out the condition: 
S2~#En in step 3. Since the success probability of reconstructed algorithm is 
larger than that  of the previous algorithm, this algorithm runs in randomly 
polynomial time. Note that  the factoring algorithm in the proof of Theorem 1, in 
which analysis of success probability is easier, also runs in randomly polynomial 
time. 

(3) In the factoring algorithm in the proof of Theorem 1, we set one S and use 
several trial curves to factorize. Moreover, we can construct a dual algorithm with 
one curve by using several primes S, ranging from 2 to B. We define "partially 
B-smooth"  number as the integer whose smallest a prime factor is less than B. 
Step 3 and step 4 of the dual algorithm axe as follows. 

S t e p  3 If #E,~(a, b) is partially B-smooth, find prime factors less than  B 
of # E n  by trial division. Otherwise, return to step 1.2. Let 's denote 
#E,~ = ql~lq2 ~2 ...qs ~ x R, where ql,q2, '",q8 are all primes less than 
B with e i > 0  and R is not partially B-smooth.  

S t e p  4 Let M,j  = #En(a,b)/qi j for 1 < i < s and 1 < j < ei. Compute 

Mi,jP. If there exists M i j P  which is a semi-zero point, factoring is 

successful. Otherwise (i.e. all M~jP are zero points), factoring fails. 

We can approximately estimate the probability of success. The probability T 
that  #E,~(a, b) becomes partially B-smooth  is denoted by T = 1-1-I:=1 (1-q~)  if 

B << #E,~. From Mertens's Theorem [12], T is approximated ~-~ as 1 -  lo--~-g, where 
~/is Euler's constant. If B is sufficiently large, we have T ~ 1. The probability 
that  there exists qi with ei = 1 (1 < i < s) is almost 1. Let q* be the largest 

1 B-smooth number is an integer whose biggest prime factor is less than B. 
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of the primes. The probability U to succeed in factoring in step 4 is more than 
1 - ~ .  When B is sufficiently large, U ~ 1. Hence, the number of expected trial 

curves is almost 1. Let IMi,j] be the number of combination of suffix of Mi,j, 
s 1 where IMi,jl = ~i=1 ei. Since the average of e~ is given as q-7~-1, the average of 

IMi,~-jl, denoted by IMi,~'-jl, is given by the IM,,~-'~I = Z~=I 1 ~ loglogB [12]. 

From B << n, we have IMi,jl < loglogn. Hence, the computing all MijP is 
completed in polynomial time. Since T ~ 1 and U ~ 1, this reconstructed dual 
algorithm also runs in randomly polynomial time. 

In several variants of RSA-type cryptosystems, the multiple of r instead 
of r itself, can be easily known from public information. These schemes are 
insecure because Miller [10] proved that if the multiple of r is known, n can 
be easily factored. In relation to this fact, we prove the following. 

L e m m a  1 Let a value r#E,~(a,b) be the multiple of #En(a,b), where r is 
randomly distributed and independent of n, a and b. For composite n that is a 
product of odd primes, it holds that FCT(n) ~_RP COMP(r#E~(a, b)). 

Proof:  We can prove this lemma by revising the previous "Factoring Algo- 
rithm". This is achieved by replacing an oracle for COMP(#En(a,b)) with 
an oracle for COMP(r#En(a,b)) in step 2 of the proof of Theorem 1. Note 
that the above assumption about r implies Pr{SJlr } = 1 ~ .  From this prop- 
erty and Pr{S3[#Ep,} = ~ for each i and j from the assumption described 
above, the probability that SIr#E,~ and S2~r#E,~ is given as (1 - 1 ~k+l k• ~J S " 

1 The probability of succeeding of finding a prime factor in step 4 is 1 s 
as well as COMP(#En(a, b)). Hence, the probability of successful factoring is 
( 1  - 1 ~k+2 k+l As well as the analysis of COMP(#En(a, b)), this revised algo- ~J S " 
rithm finds complete prime factors in randomly polynomial time O((logn)~). 

[] 

4 FCT(n) and COMP(#En(a,b) mod d) 

In this section, we present reductions between two problems, FCT(n) and 
COMP(#E,~(a, b) mod d). 

The computation amount of the problem COMP(#Ep(a, b) mod d) is known 
to be equal O((logp)3dh), where p is a prime (not a composite)[13]. Hence, 
if d = O(logp), then COMP(#Ep(a, b) rood d) is computable in polynomial 
time. The Schoof algorithm 2 for calculating #Ep(a, b) runs in polynomial time 
O((logp) s) by using O(logp) times of COMP(#Ep(a, b)mod d). However, The- 

orem 2 (described below) states that COMP(#En(a, b) mod d) is not as easy as 
FCT(n). Consequently, before proving Theorem 2, we must establish the follow- 
ing lemma. 

2 Charlap, Coley and Robbins [2] showed an algorithm which calculates #Ep(a, b) in 
O((logp) 6) by revising Sehoof algorithm. 
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L e m m a  2 For composite n that is a product of distinct odd primes, it holds 
that COMP(#E~(a,  b)) <p  COMP(#E~(a,  b) mod d). 

Proof: Using the following algorithm, #E,~(a, b) is computable in polynomial 
time. 

Coun t ing  the  n u m b e r  of  poin ts  (#E,~(a, b)) Algor i thm using an or- 
acle for COMP(#E~(a,  b) mod d) 

Inpu t :  Composite n(= k I-L=l pi), elliptic curve E,~: y2 - x 3 + ax + 
b (mod n) 

O u t p u t :  #E,~(a, b) 
Step  1 Choose a number L such that (n + 1) 2 _ I-I l, where the product 

ranges over all primes l between 3 and L. 
S tep  2 Compute ~'t = #E,~(a,b) modl  by using an oracle for 

C O M P ( # E n ( a ,  b) mod l) for l = 3, 5, 7, 11,---, L, respectively. 
S tep  3 Solve the system of the congruences: #E~ = Tl(mod l) by the 

Chinese Remainder Theorem, where I is all the primes between 3 and 
L. 

The following analysis leads to the conclusion that this algorithm runs in 
polynomial time O((log n)2). 

Since L ~ log(n + 1) 2, we have L = O(logn). Therefore, obtaining each Tt 
is executable by an oracle for COMP(#En(a,  b) mod l). Since step 2 consists 
of at most L iterations to obtain rt, step 2 is completed in polynomial time. 
Since step 3 is computable in polynomial time O((logn)2), it follows from the 
above discussion that this algorithm completes in polynomial time to compute 
#E,~(a, b). [] 

T h e o r e m  2 For composite n that is a product of distinct odd primes, it 
holds that FCT(n)~_RP COMP(#E,~(a,b) mod d). In addition, it holds that 
FCT(n) =RP COMP(#E,~(a, b) mod d). 

Proof: We have the former part of Theorem 2 from Theorem 1 and Lemma 2 
because FCT(n) ~_RP COMP(#E,~(a, b)) ~_p COMP(#E,~(a, b) mod d). In ad- 
dition, COMP(#En(a ,b )  mod d ) < p  FCT(n) (this is trivially proven) and 
FCT(n) ~_RP COMP(#E,~(a,b)  mod d) imply the latter part of Theorem 2, 
FCT(n) =RP COMP(#E~(a,  b) mod d). D 

5 F C T ( n )  a n d  E D L P  m o d  n 

In this section, we will present the reductions between FCT(n) and the ellip- 
tic curve discrete logarithm problem modulo n, EDLP mod n. EDLP mod n 
is analogously related with DLPmod n, the ordinary discrete logarithm prob- 
lem modulo n. Letting DLP modp  be an ordinary discrete logarithm 
problem modulo prime p, it is known that FCT(n)~--RP DLP mod n and 
DLP mod n <_p FCT(n) @ DLP mod p [1]. Similar reductions also hold in 
FCT(n) and EDLP mod n. 
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T h e o r e m  3 For composite n that is a product of distinct odd primes, it holds 
that FCT(n) <_RP EDLP mod n. 

P r o o f :  We will present a factoring algorithm using an oracle for EDLP mod n. 
This algorithm is constructed by revising the factoring algorithm described in 
the proof of Theorem 1. 

F a c t o r i n g  Algor i thm using an oracle for EDLP mod n 
Inpu t :  Composite n(= k 1-I =1 
Outpu t :  k prime factors Pl,P2,--.,Pk 
Step 1 Set a parameter S and set elliptic curve En(a, b) : y2 = x 3 + ax + 

b (mod n) and a point P over En. 
Step 2 Compute the smallest positive integer M' satisfying M ' P  = 0 

using an oracle for EDLP rood n. 
Step 3 If S]M' and S2XM ', proceed to the next step. Otherwise, return 

to step 1. 
M' 

Step 4 Set M = y and compute MP.  
- If M P  is an ordinary point, then we fall to find a prime factor. 

Return to step 1. 
- Otherwise, since M P  is a semi-zero point, then we can find a prime 

factor Pi- When n/pi is a prime, factoring is completed. When n/pi 
is a composite, set n -- n/pi and return to step 1. 

The following analysis leads to the conclusion that this algorithm runs in 
randomly polynomial time O((logn)5). 

Note that M' is the point order of P. Since M' is the smallest positive 
integer satisfying M ' P  = O, M P  is not a zero point for M < M'.  Note that 
either {SX~v, (P)} or, {S]~p, (P) and S2~p,  (P)} satisfies for each i since M' = 
lcm (~px(P) ,~v2(P) , . . . ,~w(P)) .  If S]~p,(P) and S2/~p,(P) for all i, then 

4'v, (P)}[M for all i since M is not a multiple of S and ~v, (P) is a multiple 
of S. Hence, each MP~ is not a zero point Or .  Hence in this case, M P  is an 
ordinary point. Otherwise, (i.e. if there exists i that satisfies SXOp, (P)), M P  is 
a semi-zero point. 

The probability that M P  is a semi-zero point is bigger than Q(k, S) = (1 - 
1 ~ k + l  k ~j ~ in Eq. (1), since that SIM' and S2XM ' implies that SI#En and S2)[#E,~ 
and S[~v, (P). 

Hence, similar analysis as in Sect. 3 leads us to the conclusion that this 
algorithm runs in randomly polynomial time O((log n)5). [3 

Next, we will prove that if both FCT(n) and EDLP rood p are tractable, 
EDLP mod n is also tractable. 

T h e o r e m  4 For composite n that is a product of distinct odd primes, it holds 
that EDLP mod n _<p FCT(n) @ EDLP mod p. 

Proof:  The following algorithm solves EDLP mod n in polynomial time. 
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S o l v i n g  E D L P  m o d  n a l g o r i t h m  using an oracle for FCT(n)  and an or- 
acle for EDLP mod p 

I n p u t :  composite n ( =  k I-L=1 Pi), elliptic curve E~ : y2 ~ x a + a x + b  (mod n) 
and two points G and A over En. 

O u t p u t :  Integer (~ such that  a G  = A over E~. 
S t e p  1 Using an oracle for FCT(n) ,  find k prime factors of n as 

Pl, P2, --- ,Pa. 
S t e p  2 Using an oracle for EDLP modp , ,  solve a i G  = A over Ep~ for 

each i. 
S t e p  3 Calculate # E p ,  (a, b) for each i. 
S t e p  4 Obtain a which satisfies the system of the congruences: {a = 

c~i mod k #Ep,  }4=1 by using the Chinese Remainder Theorem. 
This algorithm is completed in polynomial time, O((logn)6). Structures of 

the direct sum of G and A are denoted by G = ( G I , G 2 , . . . , G k ) a n d A  = 
G k A k (A1 ,A2 , . . . ,Ak) ,  respectively, or simply as G = ( i)i=i and A = ( ~)i=i. It 

holds tha t  aiGi  = Ai  for each i from step 2. It follows that  a G  = a(Gi)k=t = 
(ctG~)k=l ((c~ mod #Ep,)Gi)k=l  (~,G~),k=l A k = = = ( i)i=1 = A - H e n c e ,  a ~  
tained in step 4 is the solution to the equation, a G  = A. [3 

6 C o n c l u s i o n  

We investigated the factoring problem and some problems in elliptic curve theory 
over Zn. We proved that  if we know # E ~ ,  we can easily factor n. We also proved 
that  if we know # E n  mod d for all primes d less than 21ogn, instead of # E ~  
itself, we can easily factor n. Finally, we also proved that  if we can solve the 
elliptic curve discrete logarithm problem modulo n, we can easily factor n. 
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