
Computing Discrete Logarithms

with Quadratic Number Rings

Damian Weber

Institut fiir Techno- und Wirtschaftsmathematik
Erwin-SchrSdinger-Str. 49

D-67663 Kaiserslautern
Germany

e-mail: weber~itwm.uni-kl.de

Abstract

At present, there are two competing index calculus variants for computing
discrete logarithms in (7//p7/)* in practice. The purpose of this paper is to
summarize the recent practical experience with a generalized implementation
covering both a variant of the Number Field Sieve and the Gaussian integer
method. By this implementation we set a record with p consisting of 85 decimal
digits. With regard to computational results, including the running time, we
provide a comparison of the two methods for this value of p.

K e y w o r d s : Discrete Logarithms, Number Field Sieve, Index Calculus

1 I n t r o d u c t i o n

Let (G, .) be a finite group and a, b E G. If there exists x E 7/, x > 0, such that

a * = b, (1)

we call the minimal x satisfying (1) the discrete logarithm of b to the base a.
In this article we consider the cyclic group G = (7//p7/)* of the finite prime

field with characteristic p. This is the group the Number Field Sieve discrete
log algorithm has been designed for [6]. For ease of use we call it NFS-DL. At
ANTS-II (1996) we presented a computation involving a 65-digit p [13]. Our
latest endeavours resulted in a computation with a 85-decimal-digit p = 2q + 1
where q is prime.

As with factoring we have two different algorithms for the most difficult
problem instances. On the one hand we have the Gaussian integer algorithm
COS [1], a special case of the Number Field Sieve algorithm [12] with conjectured
running time Lv[�89 1], on the other hand the NFS-DL algorithm [6, 11] with

conjectured running time Lp[�89 (~) {] , where

Lp[s, c] := exp((c + o(1)) (logp)*(loglogp)l-s).

It remains the question: when does the NFS-DL beat COS?
This paper provides a partial answer: NFS-DL is slower as long as p does

not consist of more than 85 decimal digits.

172

2 S k e t c h o f t h e N F S A l g o r i t h m

We start by providing a rough outline how our implementation computes discrete
logarithms. In the subsequent sections we will focus our at tention to steps 1, 2
and 5. In step 1, a new sieving method is employed, which reduces the size of
the right hand side of the discrete logarithm problem (1). In step 2, we were able
to use Montgomery's method of finding two quadratic polynomials with small
coefficients, which produces two suitable (quadratic) number rings [9]. Different
from the factoring case, however, a few additional relations have to be found
when applying this variation (step 5). For an explicit description of step 6, we
refer the reader to [13].

1. reduce the original problem (1) to congruences

a z = s mod p,

s E S where S is a set of "sufficiently" small natural numbers

2. choose two polynomials g l (X) ,g2(X) �9 7/[X] of degree nl , n2 respectively
with common root m mod p;
for j = 1, 2:

- let hj E 7] be the coefficient of X 'b in polynomial g~,

- let a j E C be a root of gj

- let Oj D Z[h3aj] be the ring of integers of K 3 := Q(a j)

each s �9 S must split into first degree prime ideals in one of the Oj (*)

3. choose factor base bounds Bj E 7] and factor bases
Fj = {first degree prime ideals of Oj with norm < Bj} O { h j O j }

and large prime bounds Lj �9 7]

4. find set of pairs C := {(c, d)} C 7] • 7] with

hi �9 (c + da l) smooth over F1

h2. (c + da2) smooth over F2 by sieving, with IV[> [Fll + IF2[
5. for each s �9 S choose j := j~ �9 {1, 2}, such that s satisfies condition (*) in

Oj; then find special relations:

hi �9 (c + d a j) / p s smooth over F1

h2 �9 (c + d a 3 - j) smooth over F2

for each prime ideal Ps C O~ lying above s
6. for every "sufficiently large" prime divisor q dividing p - 1:

- construct a sparse matr ix A by processing the data found in steps 4 and
5

- solve A x - 0 mod q

For smaller prime divisors q, apply the Pohlig-Hellman method [10]. Without
any difficulties, this method may be applied to q <_ 1016 [13].

173

3 T h e R e d u c t i o n S t e p

This section is devoted to step 1 of the survey at the end of the previous section.
We are interested in reducing the original task of solving

a x ~ b mod p

to several tasks

a x~ ~ s i m o d p , s i E ~Y, 1 < i < k ,

where s~ _< B for some bound B. In practice, B ~ 101~ is a reasonable size.
Such a reduction is necessary because in the NFS step 5 the simultaneous

smoothness of the terms (let s run through the s,)

(c + da3)/ps and (c + da3-3), with p8 D sOj (2)

is required. The difficulty of finding a relation of type (2), however, raises with
the size of s: let the prime ideal P8 be generated by (s, aj - r) over Oj, r E 7/.
Then p, divides (c + daj) if and only if - c / d -= r mod s. So we expect either c
or d to be of size s. The subject of this section is a new sieving method which
can be used to minimize the maximal value of s for a given DL problem.

Our method resembles the computation of individual logarithms with the
residue list sieve (see [1]). The difference lies in allowing simultaneous sieving of
two polynomials instead of performing two separate sieving steps.
To begin with, fix some smoothness bound B; usually this will be one of the
large prime bounds Lj.

For b E 7], we find a representation b =- t i l t2 mod p, It1[, It21 < v/'p, aS
follows: compute the partial quotients p~/ql of the continued fraction of b/p until
qz < vrP < ql+l. We know (see, for example, [7, Th. 10.2.4])

p~ ~_ 1
- - .

qlq~+l

Set t2 : : ql, t l : : qlb -P lP . We have t2 < v ~ by construction and Itll < V~
because of

Pl Pql
tp p- q bl = Ipq l �9 - < - - < v % q~ql+l

So we are left with the following problem. Given a number t < x/P, find a
B-smooth representation of t. Multiply t by an appropriate power of 2 such that
v/~/2 < t < v~- Set t' := Lt ~j + 1 and define homogeneous polynomials of degree
one aS

f l (X, Y) := X + t 'Y
]2(X, Y) := t X + (tt' - p) r . (3)

174

Search for (x, y) E 772, such that f l , f2 are simultaneously B-smooth . This can
be achieved by sieving. Having found such a pair we have

x + tt y = ~ I PeP
p<_B

tx + tt' y =_ t(x + t'y)

I I ' = p% mod p
p<_B

(4)

and therefore
t

t ~ Hp<B pep
- m o d p (5)

Hp<B pep

which is a B-smooth representation of t mod p. In case of x, y being bounded,
the size of the numbers tested for smoothness is O(x/~), as we see from Lemma
1. At the end of this section we give appropriate bounds for x, y which lead to
a relation of type (5) with probability close to 1 - 1/e.

L e m m a l . Let C > 0 be a constant, x , y < C, and f l , f 2 as in (3). Then

A (x, y) < C(1 + 2v~),
f2(z,y) < 2Cv%

Proof.

] l (x ,y) <_ C(1 + t') < C(1 + 2v/~),

f2(x ,y) = tx + (tt' - p) y <_ tx + (t(p/t + 1) - p) y = tx + ty < 2Cx/~.

Our experiments show that for p having at most 85 decimal digits, one can
expect to find at least one relation which reduces the original DLP modulo p
to problems where the right hand side consists of maximal ten decimal digits
within acceptable time (table 1). Thus we are left with computing a solution to

a = ~ s mod p,

with s < 101~

Table 1. Reduction Step

loglop max Ixl maxy B # rels time (s) time/tel (s)

1215
18510

175

Let us take a look at the row corresponding to the 85-digit number. The
numbers t, t ~ consist of 40 and 45 digits respectively, the maximal value of x is
below 107, while the maximal value of y is about 103. So we split 47-digit and
48-digit numbers into numbers below B = 2.0.109. Sieving the two polynomials
]1, f2 was done by using a factor base of primes below 3.5.107 and allowing one
large prime up to 2.0- 109. So it is required that the second largest prime factor
is at most 3.5. 10 7. To estimate the running time in order to find a relation
satisfying these requirements, it turns out to be useful to have a look at the p -
function ([8]) which tells us that we can expect this to happen with probability

1.90.10 - 4 . 3 .20.10 -1 �9 1.39.10 -4 �9 3.11.10 -1 ~ 2.62.10 -~.

Therefore it can be expected that there is one B-smooth value among 3 .8 .10 s
coprime pairs (x, y). Since there are approximately 3.42.109 coprime pairs within
the rectangle

{(x,y) ET/•

we expect to find

3.42. 109/3.8 �9 10 s ~ 9

relations producing B-smooth expressions; in fact, we have found six relations.
Note that only one of them suffices for satisfying our purposes.

The timings hold for a Sparc 20-167 workstation.
When taking values for B, x and y from table 2 one may expect to find a

relation of type (5) with probability close to 1 - 1/e. In case of not finding any
relation, we may proceed with two strategies:

- increase the bounds for x, y, B, or
- generate b' - a z mod p for random z and obtain other values for tl, t2.

Table 2. Recommended Parameters for Reduction Sieve

logp B
65 10 s

75 109

85 2.109

95 2.109

105 2.109

x-bound y-bound

200000 10

350000 100

500000 1000

2000000 10000

30000000 100000

176

4 Adapta t ion of t h e T w o - Q u a d r a t i c s - M e t h o d

By using our new NFS-DL version with two quadratic polynomials, we solved

59 = = 29 mod p

59 ~ = 53 mod p,

where

p = 31081938080419611412191112051968261019660101196403
09197118051941271219700607191207059

is a prime of 85 decimal digits with q := (p - 1)/2 prime.
We computed the two solutions

x = 30510320398109765754475052908348052559852331892660
mod p - 1

22096531322524429784944990676327395

y = 12445261273448784489646035237768063038577529049189
mod p - 1.

59081249797500704003169233661409571

Originally invented by Montgomery [9], the use of two quadratic polynomials
in the NFS algorithm has been exploited to achieve impressive factorizations of
large integers by Elkenbracht-Huizing [4]. For discrete log problems within the
currently solvable range, it turned out to be the preferred method to the standard
NFS method considered in [13], see [14]. Considering NFS it seems at first sight
that at least one of the number rings should be a principal ideal ring, since
computing discrete logarithms of elements requires access to elements of some
number ring. Every index calculus algorithm for 77/p77 published so far satisfies
this need because one of the two number rings is the principal ideal ring 77.
With a modification of a few relations, however, we can even compute discrete
logarithms if both number rings have class number strictly greater than 1.

To begin with, two quadratic polynomials, which defined the auxiliary num-
ber rings, were chosen by Montgomery's method (cf. [5, section 5]) as follows:

Set

g l (X , Y) = 12088651913597925810.X ~
+905452079113038068089.XY
+8749043915900881108603Y 2

g 2 (X , Y) = 1146890895334804811.X 2
+5297984501155169639345.XY
-3247049136460419754715Y ~.

m : = 90032406615008104576059194778390117845110494177770
7468193881618077848960434289779843.

Then gl, g2 have the common root (m, 1) mod p.

177

Table 3. Collected Partials

I FBI LP I ro, ions t ips
full I single [double [triple I quad years

17033918.1~176176 1 44.5

The factor bases were of size 35346 and 34995 respectively.
The sieving procedure was done on about 100 workstations using their idle

time of 44.5 mips years. The following amount of partials was found
Here we pause only to comment on the fact that we do not get # doubles <

#t r ip les < quadruples as one would expect (the reader not interested in sieving
details may skip this paragraph without loss). This is due to a slight modification
of our double large prime variation. In this variation one observes that a non-
negligible part of the sieving process is factoring numbers u with L < u < L 2
where L is a large prime bound. In case of u being close to L 2 we have two
drawbacks: Firstly, factoring u = 1112 is expensive. Secondly, 11, 12 do less likely
contribute to a full relation, because the bigger the l's are, the smaller is the
probability that other relations containing the same I are found. The bot tom line
is that we want to avoid u's close to L 2. We briefly sketch the way to do this. If a
large prime variation gets applied, the sieving bound is changed by the amount
of c �9 log L, where c is the number of large primes allowed. Thus, in the double
large prime variation we would normally have c close to 2.0. Our modification is
to set c = 1.3. A test sieving step with this modification gives satisfying results,
see table 4 - we use the usual convention of declaring the large prime relations:
for example fppp denotes one large prime for the polynomial gl and two large
primes for the polynomial g2. The first observation is that we get more than
half of the relations in less than 10 % of the time as denoted in the following
table (sieve array x �9 [-600000; 600000], y �9 [1, 1000]). The second observation
is that we lose only 10 % of the worthy double large prime relations.

In order to be able to compute the logarithm of two elements with respect
to 59, we define sl := 59, s2 := 29, s3 := 53. By factoring g l (X) mod si and

2 does not divide discgl, we know the decomposition of the si's verifying that s i

into prime ideals Pll,P12,P21,P22,P31,P32 C O1:

S l O 1 = PllPl2
8201 ---- P21P22
8301 = P31P32"

So we have js : 1 for each s (cf. section 2, step 5). In order to create relations
containing the s='s, we modified three relations (ci, d,), 1 < i < 3 according to

Si(Ci + d,(~l) --- OilPi2 H qe, 1 < i < 3. (6)
qEF,

These relations will be used to compute logs1 s2, log~l s3 at the end of this
section.

178

Table 4. Test Sieve for Large Prime Modification

type of relation

f f f f

fpff

fffp

fpfp
ppff

ffpp

ppfp

fppp

pppp

total

time (s)

c = 1.9 cumulated c = 1.3 cumulated

5 5 5 5

131 131

60 191 60 191

1178 1174

269 167

190 1637 129 1470

2305 1432

2967 5272 1839 3271

6266 6266 2730 2370

13371 7667

47686 3434

In the sequel we consider building the relation matr ix. The part ial relations
resulted in 539 238 full relations by applying the cycle finding algori thm of [16].
As we merely need 70 000 of them, it was advisable to pick the subset of rela-
tions which produce not too many entries in our linear system (section 2, step
6). Intuitively, the number of entries (weight) of a full relation correlates with
the number of partial relations which contributes to the full relation. This as-
sumption is confirmed by table 5. We learn from this statistics tha t we actually
do not need to build the full relation only to find out tha t its weight is too high.
Instead, we fix a maximal number of partials a full relation should consist of
and accept this relation, when fewer partials are contributing to it. The rows of
table 5 read as follows. There were 4 322 fulls consisting of 2 partials. The full
relation with minimal respectively maximal weight among these consisted of 28
entries respectively 44 entries. The average weight of the fulls consisting of 2
partials was 36.2. In this computat ion the maximal number of partials per full
relation has been set to 19, eventually resulting in 158 841 fulls. Adding 16 235
fulls found by the sieving step, we got a total of 175 046.

In order to actually compute a solution to our DL problem, we need four
solutions to eliminate additive characters, which are kept separately, and we
need three solutions to produce three congruences of the form

s~'~s~'2s~'3 - + l 1 < i < 3 .

To be quite confident tha t the vectors ei are linearly independent over 7/ /q7] ,
we computed three additional solutions. These considerations lead to computing
ten dependencies among the rows of the resulting 175046 • 70342 linear system
modulo q. The linear algebra computat ion has been split into the following two
steps:

179

Table 5. Correlation of # Partials and Weight

partials

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

min weight

28
43
57
70
76
96

106
120
129
144
155
169
176
186
199
213
226
232

max weight

44
63
77
93

107
121
136
150
163
177
192
205
214
228
242
258
264
278

avg weight I #

36.2
52.6
66.3
81.3
94.4

108.7
121.2
135.0
147.3
160.5
172.5
185.5
197.2
209.9
221.4
233.9
245.1
257.4

fulls

4322
3911
4241
5064
5935
6963
8312
9680

11046
12330
13012
13354
13595
12846
11825
9969
7774
4662

- a compactification step, which constructed a 54866 x 54856 system
- the Lanczos algorithm on the parallel PARAGON machine at the KFA in

J i i l i ch /Germany within 64 hours on 64 nodes.

Due to the compactification step, the computing time for the linear algebra
step was reduced by more than 30%. The reader, who is interested in the sub-
ject of minimizing the running time of a parallel Lanczos implementation by
compactification, is referred to [2].

Each solution to the linear system gives exponents ec,d of the elements c+dal,
c+da2, such that the power products give two q- th powers simultaneously which
is the effect of modification (6):

3
1] =lCS (c + �9 IJcc,)(c + d l) =

I'I(c,d) (c + da2) e~ = 7g. (7)

Applying ~1, ~2, we get three relations of type (8) from three of type (7).

s;Cl,dl ec2,d2 ee 3 d 3 s2 s3 ' H (c + d m) e r

(8)
H (c + dm)e"d ~ g~ mod p
(c,d)

for some gl, g: E 77. From the resulting 3 x 3-system (divide the first congru-

180

ence of (8) by the second), the logarithms of s2 and sa with respect to sl could
be computed without difficulty.

5 A N e w C O S R e c o r d

In order to get a comparison between NFS and COS, we solved another discrete
log problem in the prime field of section 4 by the Gaussian-Integer method. This
was achieved by configuring our NFS implementation to meet the requirements
of tha t algorithm.

With the same 85-decimal-digit p as in section 4, we solved the discrete
logarithm problem

2 ~ ~ 314159265358979323846264338327950288419716939937510582097494
459230781640628620899862mod p.

The right hand side of the congruence consists of the first 84 digits of 7r.
We found the solution

x ~ 756823288306878728158503093002882408211087576743681636958030
065477607481720402869192mod p - 1.

Since the integer - 2 is a square modulo p, we may choose the Number Field
as Q(x/-~)- Explicitely, the relations consisted of simultaneously smooth values
of

f l (X , Y) = 1323274340819980392303558671985532821598359.X
+823753247935753973397875723738676394183967. Y

and

f 2 (X , Y) = X 2 + 2 Y 2

with common root

(m, 1) - (2162322945188147184111028427356103220656020834906357488
905312282872925396535625611903, 1) mod p.

The factor bases were of size 58000 and 11981 respectively.
The sieving procedure was done on 120 workstations using their idle time of

about 30.6 mips years. This is faster than using NFS with two quadratic poly-
nomials (44.5 mips years with equal total factor base size). During the sieving
step the following amount of partials was collected.

Computing one dependency among the columns of the resulting 119951 x
69984 linear system modulo q was done by the following steps:

- a compactification step, which resulted in a 51855 x 51855 system
- the Lanczos algorithm on a Sparc 20 station within 23.2 CPU days using 35

MB of main memory.

181

~FB I LP

69981] 107

Table 6. Collected Partials

relations mips
full I single I double I triple I quad years

15115113680313358901280808159078 I 30.6

Ideally, the solution of the linear system almost immediately gives the logari thm
of all the factor base elements. But we did not get all of them at once, because,
for the sake of efficiency, the compactification step removes some relations from
the original system. Indeed, applying compactification removed 1088 factor base
elements from the linear system. This caused no harm since with the aid of the
full relations, the logarithms of these elements could be computed in a negligible
amount of time.

In order to be able to compute logs of arbi t rary elements, we extended our
table of the 69981 factor base logs by creating a da ta base of 626419 logs of
elements with norm up to 107 .

These were obtained within less than two hours on a Sparc 20 workstat ion
from the part ial relations collected during the sieving step.

The log of the element above was derived from the following identities:

314159265358979323846264338327950288419716939937510582097494
459230781640628620899862
-1107911020245284271895336948767925749763403
/123838534563412835872697345488248404183959

: 7.61.2594639391675138810059337116552519320289
/13 .2207 .3779 .5053313-38665007 .78959357 .74034701813mod p.

We could have set tl , t2 to the numerator and the denominator of the first
quotient and then proceed with the reduction of section 3. After factoring these
two numbers, we observed tha t all logarithms of the last congruence except from
the 40-digit factor

p4o:= 2594639391675138810059337116552519320289

and the l l - d i g i t factor

Pll := 74034701813

have already been in our da ta base. Hence we carried out the reduction step for
these two elements.

By applying the reduction step of section 3 (8 hours on Sparc 20), we found
tha t

33613 �9 40829 �9 83617 �9 851761. 2115961 �9 2443219 �9 4287211 �9 4976687
p4o = 22.19 �9 6803 �9 8387 �9 59387 �9 152239 �9 586501 �9 628997 �9 18636193 �9 210112139 mod p.

182

By s ieving (33 minu tes on Sparc 20), we found t h a t

- 3 �9 17 �9 37. 1109 �9 6199 �9 24989 �9 46957 �9 120661 �9 936667 �9 4133219 �9 p9 mod p,
p l l - 2a o . 529 . 13 �9 727 �9 1303 �9 2399 �9 9157 �9 32251 �9 630299 �9 3862493 �9 5308663 �9 po,

where P9 = 515357041 and Pg, = 422591069.
The l oga r i t hms of a p r ime number s, wi th l0 T < s < 101~ were found by

l a t t i ce sieving. In th is s tep, we t e s t ed the express ions

f l (c, d) and f2 (c, d)
r

for smoo thness over the fac tor base, where r r an t h r o u g h the p r imes of the
r ep re sen t a t i ons of P40 and P l l w i th r > 719503. This c o n s u m e d 1:15 min on a
Sparc 20 for each r.

6 Concluding Remarks

C o m p a r i n g the p r ac t i c a l effectiveness of two different index calculus m e t h o d s for
the same p r ime field is a non t r iv i a l task.

T h e r e are aspects , which seem no t to be c o m p a r a b l e . W i t h the COS m e t h o d ,
for ins tance , you can bu i ld a d a t a b a s e of l oga r i t hms , which cons ide rab ly s impl i -
fies t he t a s k of c o m p u t i n g i nd iv idua l l oga r i thms . So if one were on the way to
b r e a k the i m p l e m e n t a t i o n of a c r y p t o g r a p h i c p ro toco l , one ce r t a in ly would pre-
fer the COS m e t h o d if feasible, even if N F S - D L b e a t COS. This is because for
each i nd iv idua l l oga r i t hm, N F S - D L needs solving a la rge l inear sy s t em m o d u l o
a b ig pr ime. In theory, the re is even need of r e p e a t e d l y c a r r y i n g ou t the s ieving
task .

A n o t h e r a spec t is the dens i ty of the m a t r i x in t he l inear a l g e b r a step. In our
85 -d ig i t example , the compar i son has no t been a p rob l em, because wi th COS
we found a sparse r sys t em in shor t e r t ime . I t is not c lear imme d ia t e ly , how to
eva lua t e t he a l g o r i t h m if we find a sparse r sys tem; b u t we have to p a y for t h a t
by longer s ieving t ime . The t o t a l (real) t ime here also de pe nds on the number
of ava i lab le works t a t ions t h a t can be used for sieving.

Never theless , our compar i son of COS and N F S - D L on c o m p u t i n g l oga r i t hms
in (7]/p7])* with a 85 -d ig i t p shows t h a t COS is supe r io r for th is m a g n i t u d e
of p. A chal lenging p ro j ec t would be to d e t e r m i n e the a c t u a l crossover po in t of
COS and N F S - D L .

References

1. D. Coppersmith, A. Odlyzko, and R. Schroeppel. Discrete logarithms in GFO) .
Algorithmica 1, pages 1-15, 1986.

2. Th. Denny. L6sen grosser diinnbesetzter Gleichungssysteme iiber endlichen
Primk6rpern. PhD thesis, Universit~it des Saarlandes/Germany, 1997.

183

3. Th. Denny and V. M/iller. On the reduction of composed relations from the number
field sieve. In Algebraic Number Theory II, number 1122 in Lecture Notes in
Computer Science, 1996.

4. M. Elkenbracht-Huizing. Factoring integers with the Number Field Sieve. PhD
thesis, Rijksuniversiteit te Leiden, 1996.

5. M. Elkenbracht-Huizing. A multiple polynomial general number field sieve. In
Algebraic Number Theory II, number 1122 in Lecture Notes in Computer Science,
1996.

6. D. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM J.
Discrete Math., 6:124-138, 1993.

7. L. Hua. Introduction to Number Theory. Springer, 1982.
8. D. E. Knuth and L. Trabb Pardo. Analysis of a simple factorization algorithm.

Theoretical Computer Science, 3:321-348, 1976.
9. P. L. Montgomery. Number field sieve with two quadratic polynomials, presenta-

tion at Centrum for Wiskunde en Informatica, Amsterdam, 1993.
10. S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over

GF(p) and its cryptographic significance. IEEE Trans. on Information Theory,
24:106-110, 1978.

11. O. Schirokauer. Discrete logarithms and local units. Phil. Trans. R. Soc. Lond. A
345, pages 409-423, 1993.

12. O. Schirokauer, D. Weber, and Th. F. Denny. Discrete logarithms: the effective-
ness of the index calculus method. In H. Cohen, editor, Algorithmic Number The-
ory - A N T S II, number 1122 in Lecture Notes in Computer Science, 1996.

13. D. Weber. Computing discrete logarithms with the number field sieve. In
H. Cohen, editor, Algorithmic Number Theory - A N T S II, number 1122 in Lecture
Notes in Computer Science, 1996.

14. D. Weber. On the computation of discrete logarithms in finite prime fields. PhD
thesis, UniversitEt des Saarlandes/Germany, 1997.

15. D. Weber and Th. F. Denny. The solution of McCurley's challenge. 1998. To
appear.

16. J. Zayer. Faktorisieren mit dem Number Field Sieve. PhD thesis, Universit~it des
Saarlandes/Germany, 1995.

