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Abstract  

At present, there are two competing index calculus variants for computing 
discrete logarithms in (7//p7/)* in practice. The purpose of this paper is to 
summarize the recent practical experience with a generalized implementation 
covering both a variant of the Number Field Sieve and the Gaussian integer 
method. By this implementation we set a record with p consisting of 85 decimal 
digits. With regard to computational results, including the running time, we 
provide a comparison of the two methods for this value of p. 
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1 I n t r o d u c t i o n  

Let (G, .) be a finite group and a, b E G. If there exists x E 7/, x > 0, such that  

a * = b, (1) 

we call the minimal x satisfying (1) the discrete logarithm of b to the base a. 
In this article we consider the cyclic group G = (7//p7/)* of the finite prime 

field with characteristic p. This is the group the Number Field Sieve discrete 
log algorithm has been designed for [6]. For ease of use we call it NFS-DL. At 
ANTS-II  (1996) we presented a computation involving a 65-digit p [13]. Our 
latest endeavours resulted in a computation with a 85-decimal-digit  p = 2q + 1 
where q is prime. 

As with factoring we have two different algorithms for the most difficult 
problem instances. On the one hand we have the Gaussian integer algorithm 
COS [1], a special case of the Number Field Sieve algorithm [12] with conjectured 
running time Lv[ �89 1], on the other hand the NFS-DL algorithm [6, 11] with 

conjectured running time Lp[�89 ( ~ ) { ] ,  where 

Lp[s, c] := exp((c + o(1)) (logp)*(loglogp)l-s). 

It remains the question: when does the NFS-DL beat COS? 
This paper provides a partial answer: NFS-DL is slower as long as p does 

not consist of more than 85 decimal digits. 
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2 S k e t c h  o f  t h e  N F S  A l g o r i t h m  

We start  by providing a rough outline how our implementation computes discrete 
logarithms. In the subsequent sections we will focus our at tention to steps 1, 2 
and 5. In step 1, a new sieving method is employed, which reduces the size of 
the right hand side of the discrete logarithm problem (1). In step 2, we were able 
to use Montgomery's method of finding two quadratic polynomials with small 
coefficients, which produces two suitable (quadratic) number rings [9]. Different 
from the factoring case, however, a few additional relations have to be found 
when applying this variation (step 5). For an explicit description of step 6, we 
refer the reader to [13]. 

1. reduce the original problem (1) to congruences 

a z = s mod p, 

s E S where S is a set of "sufficiently" small natural  numbers 

2. choose two polynomials g l (X) ,g2(X)  �9 7/[X] of degree nl ,  n2 respectively 
with common root m mod p; 
for j = 1, 2: 

- let hj E 7] be the coefficient of X 'b  in polynomial g~, 

- let a j  E C be a root of gj 

- let Oj D Z[h3aj] be the ring of integers of K 3 := Q(a j )  

each s �9 S must split into first degree prime ideals in one of the Oj (*) 

3. choose factor base bounds Bj E 7] and factor bases 
Fj = {first degree prime ideals of Oj with norm < Bj}  O { h j O j }  

and large prime bounds Lj �9 7] 

4. find set of pairs C := {(c, d)} C 7] • 7] with 

hi �9 (c + da l )  smooth over F1 

h2.  (c + da2) smooth over F2 by sieving, with IV[ > [Fll + IF2[ 
5. for each s �9 S choose j := j~ �9 {1, 2}, such that  s satisfies condition (*) in 

Oj; then find special relations: 

hi �9 (c + d a j ) / p s  smooth over F1 

h2 �9 (c + d a 3 - j )  smooth over F2 

for each prime ideal Ps C O~ lying above s 
6. for every "sufficiently large" prime divisor q dividing p - 1: 

- construct a sparse matr ix  A by processing the data  found in steps 4 and 
5 

- solve A x  - 0 mod q 

For smaller prime divisors q, apply the Pohlig-Hellman method [10]. Without  
any difficulties, this method may be applied to q <_ 1016 [13]. 
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3 T h e  R e d u c t i o n  S t e p  

This section is devoted to step 1 of the survey at the end of the previous section. 
We are interested in reducing the original task of solving 

a x ~ b mod p 

to several tasks 

a x~ ~ s i m o d p ,  s i E  ~Y, 1 < i < k ,  

where s~ _< B for some bound B. In practice, B ~ 101~ is a reasonable size. 
Such a reduction is necessary because in the NFS step 5 the simultaneous 

smoothness of the terms (let s run through the s,) 

(c + da3)/ps and (c + da3-3), with p8 D sOj ( 2 )  

is required. The difficulty of finding a relation of type (2), however, raises with 
the size of s: let the prime ideal P8 be generated by (s, aj  - r) over Oj, r E 7/. 
Then p, divides (c + daj)  if and only if - c / d  -= r mod s. So we expect either c 
or d to be of size s. The subject of this section is a new sieving method which 
can be used to minimize the maximal value of s for a given DL problem. 

Our method resembles the computation of individual logarithms with the 
residue list sieve (see [1]). The difference lies in allowing simultaneous sieving of 
two polynomials instead of performing two separate sieving steps. 
To begin with, fix some smoothness bound B; usually this will be one of the 
large prime bounds Lj.  

For b E 7], we find a representation b =- t i l t2  mod p, It1[, It21 < v/'p, aS 
follows: compute the partial quotients p~/ql of the continued fraction of b/p until 
qz < vrP < ql+l. We know (see, for example, [7, Th. 10.2.4]) 

p~ ~_ 1 
- -  . 

qlq~+l 

Set t2 : :  ql, t l  : :  qlb -P lP .  We have t2 < v ~  by construction and Itll < V~ 
because of 

Pl Pql 
tp p- q bl = Ipq l �9 - < - -  < v %  q~ql+l 

So we are left with the following problem. Given a number t < x/P, find a 
B-smooth  representation of t. Multiply t by an appropriate power of 2 such that  
v/~/2 < t < v~- Set t' := Lt ~j + 1 and define homogeneous polynomials of degree 
one  aS 

f l  (X,  Y)  := X + t 'Y  
]2(X, Y) := t X  + (tt' - p ) r .  (3) 
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Search for (x, y) E 772, such that  f l ,  f2 are simultaneously B-smooth .  This can 
be achieved by sieving. Having found such a pair we have 

x + tt y = ~ I  PeP 
p<_B 

tx + tt' y =_ t(x + t'y) 

I I '  = p% mod p 
p<_B 

(4) 

and therefore 
t 

t ~ Hp<B pep 
- m o d  p (5 )  

Hp<B pep 

which is a B-smooth  representation of t mod p. In case of x, y being bounded, 
the size of the numbers tested for smoothness is O(x/~ ), as we see from Lemma 
1. At the end of this section we give appropriate bounds for x, y which lead to 
a relation of type (5) with probability close to 1 - 1/e. 

L e m m a l .  Let C > 0 be a constant, x , y  < C, and f l , f 2  as in (3). Then 

A (x, y) < C(1 + 2v~ ), 
f2(z,y) < 2Cv% 

Proof. 

] l (x ,y )  <_ C(1 + t') < C(1 + 2v/~), 

f2(x ,y)  = tx + (tt' - p ) y  <_ tx + (t(p/t  + 1) - p ) y  = tx + ty < 2Cx/~. 

Our experiments show that  for p having at most 85 decimal digits, one can 
expect to find at least one relation which reduces the original DLP modulo p 
to problems where the right hand side consists of maximal ten decimal digits 
within acceptable time (table 1). Thus we are left with computing a solution to 

a = ~ s mod p, 

with s < 101~ 

Table  1. Reduction Step 

loglop max Ixl maxy  B # rels time (s) time/tel (s) 

1215 
18510 
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Let us take a look at the row corresponding to the 85-digit number. The 
numbers t, t ~ consist of 40 and 45 digits respectively, the maximal value of x is 
below 107, while the maximal value of y is about 103. So we split 47-digit and 
48-digit numbers into numbers below B = 2.0.109. Sieving the two polynomials 
]1, f2 was done by using a factor base of primes below 3.5.107 and allowing one 
large prime up to 2.0- 109. So it is required that  the second largest prime factor 
is at most 3.5. 10 7. To estimate the running time in order to find a relation 
satisfying these requirements, it turns out to be useful to have a look at the p -  
function ([8]) which tells us that  we can expect this to happen with probability 

1.90.10 - 4 .  3 .20.10 -1 �9 1.39.10 -4 �9 3.11.10 -1 ~ 2.62.10 -~. 

Therefore it can be expected that  there is one B-smooth  value among 3 .8 .10  s 
coprime pairs (x, y). Since there are approximately 3.42.109 coprime pairs within 
the rectangle 

{(x,y) ET/• 

we expect to find 

3.42. 109/3.8 �9 10 s ~ 9 

relations producing B-smooth  expressions; in fact, we have found six relations. 
Note that  only one of them suffices for satisfying our purposes. 

The timings hold for a Sparc 20-167 workstation. 
When taking values for B, x and y from table 2 one may expect to find a 

relation of type (5) with probability close to 1 - 1/e. In case of not finding any 
relation, we may proceed with two strategies: 

- increase the bounds for x, y, B, or 
- generate b' - a z mod p for random z and obtain other values for tl,  t2. 

Table 2. Recommended Parameters for Reduction Sieve 

logp B 
65 10 s 

75 109 

85 2.109 

95 2.109 

105 2.109 

x-bound y-bound 

200000 10 

350000 100 

500000 1000 

2000000 10000 

30000000 100000 
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4 Adapta t ion  of  t h e  T w o - Q u a d r a t i c s - M e t h o d  

By using our new NFS-DL version with two quadratic polynomials, we solved 

59 = = 29 mod p 

59 ~ = 53 mod p, 

where 

p = 31081938080419611412191112051968261019660101196403 
09197118051941271219700607191207059 

is a prime of 85 decimal digits with q := (p - 1)/2 prime. 
We computed the two solutions 

x = 30510320398109765754475052908348052559852331892660 
mod p -  1 

22096531322524429784944990676327395 

y = 12445261273448784489646035237768063038577529049189 
mod p -  1. 

59081249797500704003169233661409571 

Originally invented by Montgomery [9], the use of two quadratic polynomials 
in the NFS algorithm has been exploited to achieve impressive factorizations of 
large integers by Elkenbracht-Huizing [4]. For discrete log problems within the 
currently solvable range, it turned out to be the preferred method to the standard 
NFS method considered in [13], see [14]. Considering NFS it seems at first sight 
that  at least one of the number rings should be a principal ideal ring, since 
computing discrete logarithms of elements requires access to elements of some 
number ring. Every index calculus algorithm for 77/p77 published so far satisfies 
this need because one of the two number rings is the principal ideal ring 77. 
With a modification of a few relations, however, we can even compute discrete 
logarithms if both number rings have class number strictly greater than 1. 

To begin with, two quadratic polynomials, which defined the auxiliary num- 
ber rings, were chosen by Montgomery's method (cf. [5, section 5]) as follows: 

Set 

g l (X ,  Y )  = 12088651913597925810.X ~ 
+905452079113038068089.XY 
+8749043915900881108603Y 2 

g 2 ( X , Y )  = 1146890895334804811.X 2 
+5297984501155169639345.XY 
-3247049136460419754715Y ~. 

m : =  90032406615008104576059194778390117845110494177770 
7468193881618077848960434289779843. 

Then gl, g2 have the common root (m, 1) mod p. 
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Table 3. Collected Partials 

I FBI LP I  ro, ions t ips 
full I single [ double [ triple I quad years 

17033918.1~176176 1 44.5 

The factor bases were of size 35346 and 34995 respectively. 
The sieving procedure was done on about 100 workstations using their idle 

time of 44.5 mips years. The following amount of partials was found 
Here we pause only to comment on the fact that  we do not get # doubles < 

#t r ip les  < quadruples as one would expect (the reader not interested in sieving 
details may skip this paragraph without loss). This is due to a slight modification 
of our double large prime variation. In this variation one observes that  a non-  
negligible part  of the sieving process is factoring numbers u with L < u < L 2 
where L is a large prime bound. In case of u being close to  L 2 we have two 
drawbacks: Firstly, factoring u = 1112 is expensive. Secondly, 11, 12 do less likely 
contribute to a full relation, because the bigger the l's are, the smaller is the 
probability that  other relations containing the same I are found. The bot tom line 
is that  we want to avoid u's close to L 2. We briefly sketch the way to do this. If a 
large prime variation gets applied, the sieving bound is changed by the amount 
of c �9 log L, where c is the number of large primes allowed. Thus, in the double 
large prime variation we would normally have c close to 2.0. Our modification is 
to set c = 1.3. A test sieving step with this modification gives satisfying results, 
see table 4 - we use the usual convention of declaring the large prime relations: 
for example fppp denotes one large prime for the polynomial gl and two large 
primes for the polynomial g2. The first observation is that  we get more than 
half of the relations in less than 10 % of the time as denoted in the following 
table (sieve array x �9 [-600000; 600000], y �9 [1, 1000]). The second observation 
is that  we lose only 10 % of the worthy double large prime relations. 

In order to be able to compute the logarithm of two elements with respect 
to 59, we define sl := 59, s2 := 29, s3 := 53. By factoring g l (X)  mod si and 

2 does not divide discgl, we know the decomposition of the si's verifying that  s i 

into prime ideals Pll,P12,P21,P22,P31,P32 C O1: 

S l O 1  = PllPl2 
8201 ---- P21P22 
8301 = P31P32" 

So we have js : 1 for each s (cf. section 2, step 5). In order to create relations 
containing the s='s, we modified three relations (ci, d,), 1 < i < 3 according to 

Si(Ci + d,(~l) --- OilPi2 H qe, 1 < i < 3. (6) 
qEF, 

These relations will be used to compute logs1 s2, log~l s3 at the end of this 
section. 
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Table  4. Test Sieve for Large Prime Modification 

type of relation 

f f f f  

fpff 

fffp 

fpfp 
ppff 

ffpp 

ppfp 

fppp 

pppp 

total 

time (s) 

c = 1.9 cumulated c = 1.3 cumulated 

5 5 5 5 

131 131 

60 191 60 191 

1178 1174 

269 167 

190 1637 129 1470 

2305 1432 

2967 5272 1839 3271 

6266 6266 2730 2370 

13371 7667 

47686 3434 

In the sequel we consider building the relation matr ix.  The part ial  relations 
resulted in 539 238 full relations by applying the cycle finding algori thm of [16]. 
As we merely need 70 000 of them, it was advisable to pick the subset of rela- 
tions which produce not too many  entries in our linear system (section 2, step 
6). Intuitively, the number  of entries (weight) of a full relation correlates with 
the number  of partial  relations which contributes to the full relation. This as- 
sumption is confirmed by table 5. We learn from this statistics tha t  we actually 
do not need to build the full relation only to find out tha t  its weight is too high. 
Instead, we fix a maximal  number  of partials a full relation should consist of 
and accept this relation, when fewer partials are contributing to it. The rows of 
table 5 read as follows. There were 4 322 fulls consisting of 2 partials. The full 
relation with minimal respectively maximal  weight among these consisted of 28 
entries respectively 44 entries. The average weight of the fulls consisting of 2 
partials was 36.2. In this computat ion the maximal  number  of partials per full 
relation has been set to 19, eventually resulting in 158 841 fulls. Adding 16 235 
fulls found by the sieving step, we got a total  of 175 046. 

In order to actually compute a solution to our DL problem, we need four 
solutions to eliminate additive characters, which are kept separately, and we 
need three solutions to produce three congruences of the form 

s~'~s~'2s~'3 - + l  1 < i < 3 .  

To be quite confident tha t  the vectors ei are linearly independent over 7/ /q7] ,  
we computed three additional solutions. These considerations lead to computing 
ten dependencies among the rows of the resulting 175046 • 70342 linear system 
modulo q. The linear algebra computat ion has been split into the following two 
steps: 



179 

Table 5. Correlation of # Partials and Weight 

# partials 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

min weight 

28 
43 
57 
70 
76 
96 

106 
120 
129 
144 
155 
169 
176 
186 
199 
213 
226 
232 

max weight 

44 
63 
77 
93 

107 
121 
136 
150 
163 
177 
192 
205 
214 
228 
242 
258 
264 
278 

avg weight I # 

36.2 
52.6 
66.3 
81.3 
94.4 

108.7 
121.2 
135.0 
147.3 
160.5 
172.5 
185.5 
197.2 
209.9 
221.4 
233.9 
245.1 
257.4 

fulls 

4322 
3911 
4241 
5064 
5935 
6963 
8312 
9680 

11046 
12330 
13012 
13354 
13595 
12846 
11825 
9969 
7774 
4662 

- a compactification step, which constructed a 54866 x 54856 system 
- the Lanczos algorithm on the parallel PARAGON machine at the KFA in 

J i i l i ch /Germany within 64 hours on 64 nodes. 

Due to the compactification step, the computing time for the linear algebra 
step was reduced by more than 30%. The reader, who is interested in the sub- 
ject of minimizing the running time of a parallel Lanczos implementation by 
compactification, is referred to [2]. 

Each solution to the linear system gives exponents ec,d of the elements c+dal, 
c+da2, such that the power products give two q- th powers simultaneously which 
is the effect of modification (6): 

3 
1] =lCS (c  + �9 IJcc, )(c + d l) = 

I'I(c,d) (c + da2) e~ = 7g. (7) 

Applying ~1, ~2, we get three relations of type (8) from three of type (7). 

s;Cl,dl ec2,d2 ee 3 d 3 s2 s3 ' H ( c + d m )  e r  

(8) 
H (c + dm)e"d ~ g~ mod p 
(c,d) 

for some gl, g:  E 77. From the resulting 3 x 3-system (divide the first congru- 
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ence of (8) by the second), the logarithms of s2 and sa with respect to sl could 
be computed without difficulty. 

5 A N e w  C O S  R e c o r d  

In order to get a comparison between NFS and COS, we solved another discrete 
log problem in the prime field of section 4 by the Gaussian-Integer method. This 
was achieved by configuring our NFS implementation to meet the requirements 
of tha t  algorithm. 

With the same 85-decimal-digit p as in section 4, we solved the discrete 
logarithm problem 

2 ~ ~ 314159265358979323846264338327950288419716939937510582097494 
459230781640628620899862mod p. 

The right hand side of the congruence consists of the first 84 digits of 7r. 
We found the solution 

x ~ 756823288306878728158503093002882408211087576743681636958030 
065477607481720402869192mod p - 1. 

Since the integer - 2  is a square modulo p, we may choose the Number Field 
as Q(x/-~)-  Explicitely, the relations consisted of simultaneously smooth values 
of 

f l ( X ,  Y) = 1323274340819980392303558671985532821598359.X 
+823753247935753973397875723738676394183967. Y 

and 

f 2 ( X ,  Y )  = X 2 + 2 Y  2 

with common root 

(m, 1) - (2162322945188147184111028427356103220656020834906357488 
905312282872925396535625611903, 1) mod p. 

The factor bases were of size 58000 and 11981 respectively. 
The sieving procedure was done on 120 workstations using their idle time of 

about 30.6 mips years. This is faster than using NFS with two quadratic poly- 
nomials (44.5 mips years with equal total factor base size). During the sieving 
step the following amount of partials was collected. 

Computing one dependency among the columns of the resulting 119951 x 
69984 linear system modulo q was done by the following steps: 

- a compactification step, which resulted in a 51855 x 51855 system 
- the Lanczos algorithm on a Sparc 20 station within 23.2 CPU days using 35 

MB of main memory. 
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~FB I LP 

69981 ] 107 

Table  6. Collected Partials 

# relations mips 
full I single I double I triple I quad years 

15115113680313358901280808159078 I 30.6 

Ideally, the solution of the linear system almost  immediately  gives the logari thm 
of all the factor base elements. But we did not get all of them at once, because, 
for the sake of efficiency, the compactification step removes some relations from 
the original system. Indeed, applying compactification removed 1088 factor base 
elements from the linear system. This caused no harm since with the aid of the 
full relations, the logarithms of these elements could be computed in a negligible 
amount  of time. 

In order to be able to compute logs of arbi t rary  elements, we extended our 
table of the 69981 factor base logs by creating a da ta  base of 626419 logs of 
elements with norm up to 107 . 

These were obtained within less than two hours on a Sparc 20 workstat ion 
from the part ial  relations collected during the sieving step. 

The log of the element above was derived from the following identities: 

314159265358979323846264338327950288419716939937510582097494 
459230781640628620899862 
-1107911020245284271895336948767925749763403 
/123838534563412835872697345488248404183959 

: 7.61.2594639391675138810059337116552519320289 
/13 .2207 .3779 .5053313-38665007 .78959357 .74034701813mod p. 

We could have set tl ,  t2 to the numerator  and the denominator  of the first 
quotient and then proceed with the reduction of section 3. After factoring these 
two numbers,  we observed tha t  all logarithms of the last congruence except from 
the 40-digit  factor 

p4o:= 2594639391675138810059337116552519320289 

and the l l - d i g i t  factor 

Pll := 74034701813 

have already been in our da ta  base. Hence we carried out the reduction step for 
these two elements. 

By applying the reduction step of section 3 (8 hours on Sparc 20), we found 
tha t  

33613 �9 40829 �9 83617 �9 851761. 2115961 �9 2443219 �9 4287211 �9 4976687 
p4o = 22.19 �9 6803 �9 8387 �9 59387 �9 152239 �9 586501 �9 628997 �9 18636193 �9 210112139 mod p. 
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By s ieving (33 minu tes  on Sparc  20), we found t h a t  

- 3  �9 17 �9 37. 1109 �9 6199 �9 24989 �9 46957 �9 120661 �9 936667 �9 4133219 �9 p9 mod p, 
p l l  - 2a o . 529 . 13 �9 727 �9 1303 �9 2399 �9 9157 �9 32251 �9 630299 �9 3862493 �9 5308663 �9 po, 

where  P9 = 515357041 and  Pg, = 422591069. 
The  l oga r i t hms  of a p r ime  number  s, wi th  l0  T < s < 101~ were found by  

l a t t i ce  sieving.  In  th is  s tep,  we t e s t ed  the  express ions  

f l  (c, d) and  f2 (c, d) 
r 

for smoo thness  over the  fac tor  base,  where  r r an  t h r o u g h  the  p r imes  of the  
r ep re sen t a t i ons  of P40 and  P l l  w i th  r > 719503. This  c o n s u m e d  1:15 min  on a 
Sparc  20 for each r. 

6 Concluding Remarks 

C o m p a r i n g  the  p r ac t i c a l  effectiveness of two different  index  calculus  m e t h o d s  for 
the  same  p r ime  field is a non t r iv i a l  task.  

T h e r e  are  aspects ,  which seem no t  to  be c o m p a r a b l e .  W i t h  the  COS m e t h o d ,  
for ins tance ,  you can bu i ld  a d a t a b a s e  of l oga r i t hms ,  which cons ide rab ly  s impl i -  
fies t he  t a s k  of c o m p u t i n g  i nd iv idua l  l oga r i thms .  So if one were on the  way to 
b r e a k  the  i m p l e m e n t a t i o n  of a c r y p t o g r a p h i c  p ro toco l ,  one ce r t a in ly  would  pre-  
fer the  COS m e t h o d  if feasible,  even if N F S - D L  b e a t  COS.  This  is because  for 
each i nd iv idua l  l oga r i t hm,  N F S - D L  needs solving a la rge  l inear  sy s t em m o d u l o  
a b ig  pr ime.  In  theory,  the re  is even need of r e p e a t e d l y  c a r r y i n g  ou t  the  s ieving 
task .  

A n o t h e r  a spec t  is the  dens i ty  of the  m a t r i x  in t he  l inear  a l g e b r a  step.  In  our  
85 -d ig i t  example ,  the  compar i son  has  no t  been  a p rob l em,  because  wi th  COS 
we found  a sparse r  sys t em in shor t e r  t ime .  I t  is not  c lear  imme d ia t e ly ,  how to 
eva lua t e  t he  a l g o r i t h m  if we find a sparse r  sys tem;  b u t  we have  to  p a y  for t h a t  
by  longer  s ieving t ime .  The  t o t a l  (real)  t ime  here  also de pe nds  on the  number  
of ava i lab le  works t a t ions  t h a t  can be  used for sieving. 

Never theless ,  our  compar i son  of COS and  N F S - D L  on c o m p u t i n g  l oga r i t hms  
in (7]/p7])* with  a 85 -d ig i t  p shows t h a t  COS is supe r io r  for th is  m a g n i t u d e  
of p. A chal lenging  p ro j ec t  would be  to  d e t e r m i n e  the  a c t u a l  crossover  po in t  of 
COS and  N F S - D L .  
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