
A Formal Treatment of Remotely Keyed
Encryption

(Extended Abstract)*

Matt Blaze, 1 Joan Feigenbaum, x Moni Naor 2

1 AT&T Labs - Research
180 Park Avenue

Florham Park, NJ 07932 USA
{mab, jf }@research. att. com

Dcpt. Applied Math. and Computer Science
Weizmann Institute of Science

Rehovot 76100, ISRAEL
naor@w isdom, we izmann, ac. il

A b s t r a c t . Remotely keyed encryption schemes (RKESs), introduced by
Blaze [6], support high-bandwidth cryptographic applications (such as
encrypted video conferences) in which long-lived secrets (such as users'
private keys) never leave lower-bandwidth environments such as secure
smart-cards. We provide a formal framework in which to study the se-
curity of RKESs and give an RKES that satisfies our formal security
requirements. Our RKES is efficient in that the amount of communica-
tion and computation required of the smart-card is independent of the
input size. Our proof of security uses the pseudorandom permutation
framework of Naor and Reingold [14] in an essential way.

K e y w o r d s : Block Ciphers, Pseudorandomness, Remotely Keyed Encryption,
Session Keys, Smart-cards

1 Introduction

No cryptographic protocol is stronger than the mechanism protecting its se-
cret keys. However, in many computing and communication systems, there is no
"safe place" in which secret keys can be stored and cryptographic computations
can be performed. This is especially true of modern networked computers; in
some sense, every computer that communicates extensively with the world is
bound at some point to be partly controlled by an unfriendly entity. Therefore,
it is natural to consider adding an external, special-purpose device, such as a
smart-card or a PCMCIA card, for storing cryptographic keys and computing

* A preliminary version of the full paper is available from the authors. The third author
was supported by a RAND2 grant from the EC.

252

cryptographic functions. Because they have only one purpose and communicate
only via a limited set of functions, such devices can be made much more secure
than their general-purpose host machines. However, it is not always practical
to rely on such devices to perform all sensitive cryptographic operations. Inex-
pensive smart-cards, for example, are also characterized by their limited band-
width, memory, and processor speed. If the host computer used such devices
simple-mindedly, by just encrypting all external communication and all disk
traffic, then the bandwidth of the link between the host and the cryptographic
module would have to be at least as high as that between the host and the
outside world. Even if the engineering problems of developing inexpensive high-
bandwidth, high-performance cryptographic modules were completely solved, it
would still be the case that, whenever the host's link to the outside world was
upgraded, the modules and the secret keys they store would have to be changed,
because cryptographic modules are typically designed never to reveal their keys.

This paper provides a formal treatment of the remotely keyed encryption
problem: how to do bulk encryption and decryption for high-bandwidth applica-
tions in a way that takes advantage of both the superior power of the host and
the superior security of the smart-card? If adversary A takes control of the host
for a certain period, then clearly ,4 will obtain whatever plaintext or ciphertext
is resident in the host during that period. We would like to say formally that this
is all it obtains: Once ,4 loses control of the host, it cannot compute anything
that it couldn't compute before it took control, except for the values it obtained
explicitly while it was in control.

Note that we are concerned with attacks on the host but not with direct at-
tacks on the card; we assume that the card owner wants to safeguard the "remote
keys" and that an attacker can only communicate with the card via its official
communication channels. See, e.g., Boneh et al. [7] and Biham-Shamir [5], for a
discussion of direct attacks on cards. Note as well that the remotely keyed en-
cryption problem is different from the one of having a smart-card take advantage
of a host's superior processing power in order to do a public-key computat ion
without leaking the input to the host. For a discussion of the (well-studied)
problem of host-assisted public-key cryptography, see e.g., Feigenbaum [8], Mat-
sumoto et al. [13], and the references therein. Finally, note that the goal of a
remotely keyed encryption scheme (RKES) is not "session-key exchange" be-
tween two different hosts each connected to a card, where the two cards share
a key. In an RKES application, such as the encryption of disk traffic, there is
only one host; it encrypts at some point in time and then decrypts the stored ci-
phertext later. In settings in which the reason for exchanging keys is encryption,
an RKES may replace a session-key exchange protocol and has the advantage
of no interaction; however, there are other reasons for key exchange. See, for
example, Shoup and Rubin [15] for a rigorous treatment of session-key exchange
(following Bellare and Rogaway [3]), in which the adversary is similar in power
to the one we consider here. The Shoup-Rubin protocol requires several rounds
of communication between the hosts.

253

We give a formal definition that captures the notion of "security" needed in
our scenario and an RKES that satisfies the definition. Our RKES is efficient as
well as secure, because the amount of communication and computat ion required
of the smart-card is independent of the input size.

History

Blaze [6] was the first to use the term "remotely keyed encryption" and to focus
attention on the fact that many high-bandwidth applications need symmetric-
key encryption schemes that store long-lived secret keys in low-bandwidth smart-
cards3 He proposed a specific scheme but did not give a formal statement of
the properties that an RKES should satisfy. Although the scheme in [6] does not
satisfy the formal security requirements that we give in this paper, the basic idea
of the scheme is sound, and we use it as a starting point in the design of an RKES
that does satisfy our formal requirements. One weakness of the original scheme
in [6] is that it may enable an adversary that has controlled the host during m
interactions with the card subsequently to "forge" a plaintext/ciphertext pair
that is not one of the m pairs he has obtained during the interaction.

Lucks [12] first noted that the RKES in [6] was not completely satisfactory;
in particular, he noted the forgery weakness just described. Lucks [12] a t tempted
to formalize the security properties that an RKES should have and to construct
schemes that have them. Although the properties proposed in [12] are indeed
desirable, we believe that the overall formalism and construction are flawed.
Roughly speaking, [12] proposed that an RKES should have three properties:
(i) Forgery security: If the adversary has controlled the host for m interactions,
then it cannot produce m + 1 plaintext/ciphertext pairs; (ii) Inversion security:
Access to encryption should not imply the ability to decrypt and vice versa;

(iii) Pseudorandomness: The encryption function should be a pseudorandom
permutation. We suggest that an RKES might have these three properties but
still be "insecure" in an intuitive sense.

In fact, the scheme in [12] is a good example of one that has properties (i),
(ii), and (iii) but is intuitively insecure. That scheme uses the first two plaintext
blocks in order to define an encryption key for the rest of the message; the
encryption of these two blocks depends on the entire message, thus allowing
property (i) to be satisfied. However, because the encryption key depends only
on the first two plaintext blocks, an arbitrarily large set of messages all of which
start with the same two blocks will always be encrypted with the same key.
This is not a hypothetical situation: A set of files in a computer file system, for
example, might always start with the same few bytes of structural information.
An adversary that controls the host during the encryption or decryption of one

file in such a set could subsequently decrypt the encryption of any file in the set.
More fundamentally, the framework in [12] fails to recognize that it is nontrivial
in this scenario to give a precise meaning to the statement that "the encryption

1 Blaze [6] used the phrase "remotely keyed encryption protocol," and we use "remotely
keyed encryption scheme." The terms are interchangeable.

254

function is a pseudorandom permutation." Once the adversary has witnessed one
host/card interaction, it can subsequently distinguish between the encryption
function and a random permutation by asking for the value on a single point.

We thus conclude that the formalism in [12] is inadequate. In this paper, we
develop a formal framework that is both more precise and more stringent than
those in the previous literature. In particular, we define pseudorandomness in a
way that is meaningful for remotely keyed encryption.

In this Extended Abstract, we restrict attention to length-preserving RKESs,
in which ciphertexts are of exactly the same length as the corresponding plain-
texts. The full paper also treats length-increasing RKESs, in which ciphertexts
are slightly longer than the corresponding plaintexts. The advantage of allowing
increased length is that one can also achieve a stronger notion of security.

2 Notation, Terminology, and Building Blocks

Definitions of standard cryptographic and complexity theoretic terms can be
found in, for example, Goldreich [9], Luby [11], and Naor and Reingold [14]. The
following is a description of the building blocks and terminology used throughout.

- The plaintext and the ciphertext are, respectively, X and Y. Usually, both
are given in blocks and hence are denoted X = (X1, . . . ,Xn) and Y --
(Y1,.-., Yn), where each of Xi and Y, is in {0, 1} b.

- The encryption and decryption functions of a block cipher are E and D.
Es(Xj) denotes the encryption of plaintext block Xj with encryption key
S, i.e., Es, Ds: {0, 1} b ~ {0, 1} b and Ds(Es(Xj)) = Xj.
The security property required of Es(.) is that it should be a strong pseudo-
random permutation, i.e., that any probabilistic, polynomial-time adversary
given access to Es (-) and Ds (.) cannot distinguish them from a truly random
permutation. A thorough treatment of strong pseudorandom permutations
is given by Luby [11], who calls them "super" pseudorandom permutations.

- A pseudorandom function Fs : {0,1} b ~-~ {0,1}b; it may or may not be
identical to the encryption function E of the block cipher. (Note that ev-
ery pseudorandom permutation is also a pseudorandom function, where the
added advantage of a distinguisher is bounded by m2/2b.) We use Is , rather
than Es, in situations that never require the function to be inverted.

- A length-preserving method Gs for encrypting an n-block plaintext (X1, .. . ,
Xn) using encryption key S. GJ(x1,. . . ,Xn) denotes the jth block of the
resulting ciphertext. The corresponding decryption function is denoted Gs,
and the jth block of the plaintext that results from decrypting (Y1,...,]In)
is denoted GJ(Y1,..-, Yn).
The security requirement for Gs is that, for any X1,X2,...,X,~, if S is
chosen uniformly at random, then Gs(X1,... ,Xn) is pseudorandom (i.e.,
indistinguishable from a random string of similar length). We impose a sim-
ilar requirement on Gs. Possible realizations of Gs are:

�9 Apply a pseudorandom generator to S and Xor the resulting sequence
with X1, �9 �9 X..

255

�9 Use Es with some sort of chaining, e.g., CBC. The security of such an
operation follows from [2].

- A collision-intractable hash function H : {0, 1}* ~ {0, 1} b. "Collision-intrac-
tability" means that it is computationally infeasible to find distinct X and
X' such that H(X) = H(X').

- The adversary is in general an oracle machine M where M(LI - ') that has
access to the function pair (f, f - l) . As in [14], M may submit two forms of
queries to the function-pair oracle: A query of the form (+, x) results in the
answer f(x), and one of the form (- , y) results in the answer f - l (y) .

As usual, various parameters are needed in order to express things in full
detail. In particular, there is an underlying size (security) parameter u, and there
are three polynomially bounded functions that measure the key length g(u), the
block length b(u), and the number of blocks n(u). The total length of the input to
any of our protocols is a polynomial function of g(u), b(u), and n(u). For clarity
of presentation, we suppress these parameters whenever possible, but they are
an implicit part of everything that follows. For example, the statement "F is
a pseudorandom function" means that F : {0, 1} ~(~) • {0, 1} b(u) -+ {0, l} b(u)
is a pseudorandom function generator, in the sense of [10] or [11, Lecture 12].
Similarly, additional (but standard) detail is also required to say precisely what
is meant by a "random" function, permutation, or function pair. These details
can be found in, for example, [9,11,14].

3 D e f i n i t i o n o f S e c u r e R e m o t e l y K e y e d E n c r y p t i o n

Intuitively, we would like an RKES to resist the following form of attack. Ad-
versary .4 may gain control of the host temporarily. During this host phase of
his attack, ,4 may have a total of m interactions with the card, where m is poly-
nomially bounded. He may send any message to the card during one of these
interactions and may deviate from the protocol. However, since m is an upper
bound on the total number of interactions, .4 obtains at most m plaintexts and
m ciphertexts during the host phase. After these m interactions with the card,
.4 loses control of the host. He should subsequently have no advantage in his
attempts to find the encryption (resp., decryption) of plaintexts (resp., cipher-
texts) other than those m that he found explicitly during the host phase.

One step in formalizing this intuition is to make precise what we mean by
"no advantage." We will do this in terms of pseudorandomness. That is, the
encryption and decryption protocols of the RKES compute some function pair
(f, f - i) , and this function pair should appear truly random to .4. During the
host phase, .4 learns the value of f and f -1 each at m points. This should give
him "no advantage" in the sense that if, in a distinguishing phase that takes place
after he loses control of the host, ,4 is asked to distinguish between (f, f - 1) and
a truly random function pair, he should be able to do so only with negligible
probability.

Because the amount of communication between the host and the card in
an efficient RKES should be much shorter than the input length, there is a

256

complication that is missing in the standard definition of pseudorandomness. If,
during the host phase, .4 learns the value of f on m points X 1 , X ~ , . . . , X ~,
then f almost certainly does not look random to .A on these points, because
the transcript of the host phase and the description of the protocol constitute a
short description of (X 1 , f (X1)) , (X ~, f (X 2)) , . . . , (X m , f (Xm)) . Our formalism
addresses this by requiring that , between the host phase and the distinguishing
phase, a nondeterministic choice occurs: Either (f, f - l) is replaced with a truly
random function pair or it is kept the same . .4 ' s challenge is thus to decide
whether or not a switch occurred or not.

Now a new complication arises: We cannot allow the adversary, during the
distinguishing phase, to query the oracle about any of the m plaintexts and m
ciphertexts that he obtained during the host phase. If the adversary ,4 does
so and receives the same answers as he did the first t ime around, then .A will
know, with high probability, that there was no switch and (f, f - l) remained
unchanged. If .A receives a different answer on one of these queries during the
distinguishing phase than he did during the host phase, then he can conclude
with certainty that the oracle is not (f, f - l) .

We would like therefore to "filter" those values that appeared in the host
phase. The problem with making this discussion rigorous is that the adversary's
actions during the host phase do not necessarily correspond to specific inputs,
and certainly there are many inputs that yield the same (host,card) transcript.
To overcome this problem, we introduce an arbiter into our definition of secure
remotely keyed encryption. The purpose of the arbiter, which we denote by B,
is to make sure that ,4 does not ask during the distinguishing phase any of the
queries that it asked during the host phase. /3 should be a simple function of
the transcript of the communication that occurred during the host phase and
should have limited filtering ability. Instead of saying that the inputs queried
during the host phase are excluded (which is not well-defined), we say that i f .4
has had m interactions with the card during the host phase, then/3 is allowed to
filter no more than m queries during the distinguishing phase. Note that there
is no need actually to implement this arbiter; rather, a (host,card) protocol is
secure if there exists such an arbiter.

This discussion can be summarized as follows.

Def in i t ion 1. A l e n g t h - p r e s e r v i n g R K E S is a pair of protocols, one for en-
cryption and one for decryption, to be executed by a host and a card. The length
of a ciphertext must be the same as that of the corresponding plaintext. The
RKES is s e c u r e if there is a polynomiM-time arbiter 13 tha t can enforce the
following restriction on any probabilistic, polynomial-time adversary A and any
polynomial bound m: During the host phase, A may play the role of the host
in a total of m interactions with the card. During this phase, A may send any
message to the card and does not necessarily follow the encryption or decryption
protocol. Between the host phase and the d~stingmshing phase, a nondeterminis-
tie choice is made between continuing to use the RKES or switching to a random
function pair. The arbiter B receives as input the transcript of the host-phase
communication between the host and the card. During the distinguishing phase,

257

,4 may run any probabilistic, polynomial-time test T that submits plaintexts or
ciphertexts to B; on at most m of the plaintexts and m of the ciphertexts, B
may choose to run the RKES, even if a switch to a random function pair was
made between phases. Otherwise the plaintext (resp. ciphertext) is given to the
encryption (resp. decryption) protocol if no switch was made between phases
and to the random function f (resp. f - l) if a switch was made. The differ-
ence between the probability that T accepts on a continuation of the RKES and
the probability that T accepts on a switch to a random function pair must be
negligible.

A natural way to relax the above requirement is to allow B to reject polynomi-
ally in m many input /output , instead of exactly m. However, the constructions
given in Section 4 achieve the stricter notion.

Three remarks are in order about this definition. First, it generalizes the
corresponding definitions in standard (i.e., not remotely keyed) encryption. If
one fixes m = 0, i.e., makes the host phase trivial, then Definition 1 reduces
to the definition of a strong pseudorandom permutation. Second, Definition 1 is
concerned with security rather than efficiency. Note, for instance, that a strong
pseudorandom permutat ion evaluated solely by the card satisfies the Definition.
Clearly, an RKES is most useful if the computational, memory, and bandwidth
demands on the card are small. In particular, it is desirable for all to be slowly
growing functions of the block length b and key length ~ and to be independent
of n, the number of blocks in the plaintext. Finally, we assume that the length of
the message is known. It may be implicitly known, e.g., the size of a disk sector
or a data packet, or it may be conveyed by some other protocol. Note that it is
possible to set our protocols so that they yield a different permutat ion for each
message length.

4 A S e c u r e , L e n g t h - P r e s e r v i n g R K E S

Figure 1 below contains Scheme P, a secure, length-preserving RKES. 2 The
card's secret key has four components kl, k2, k3, and k4. We have designed
Scheme P for maximum clarity and have not sought to optimize by, for example,
minimizing the number of distinct key components or cryptographic building
blocks.

The scheme is best understood as part of the Naor-Reingold [14] framework
for constructing and proving the security of pseudorandom permutations. In
this framework, the pseudorandom permutat ion H is the composition of three
permutations: H - - p21 o A opl . In general, Pl and p~l are "lightweight," and A
is where most of the work is done. In our setting, A will be the part performed
mostly by the host, and Pl and p~-i will be done mostly by the card.

The "heavyweight" building block A should behave as a random permutat ion
on most inputs. An important step in applying the Naor-Reingold framework is

2 The "P" is for "preserving." In the full paper, we also present Schemes I1 and I2,
which are both length-increasing.

258

the identification of a collection of input-output sequences that are called "A-
good." For an input-output sequence ((X 1, y1), . . . , (X m, y m)) to be A-good,
PrA[Y i = A (X i) , 1 < i < m] should be close to 2 - I m , where g = n �9 b, i.e., the
probability should be close to what it would be i fA were a truly random function.
The role of the permutations Pl and P2 is to ensure that, with overwhelming
probability, the inputs and outputs to A form an A-good sequence, even if the
inputs t o / / a r e chosen by an adaptive adversary, under a chosen plaintext and
ciphertext attack. Thus a sequence is A-good or not based on pl and P2.

Encryption protocol: input X1,.. . , Xn; output Y1,..., Y~

P1 Host: h= +-- H(X2 Xn)
P2 Host -+ Card: h=, X1
P3 Card: W +- EFkl(h=)(X1)
P4 Card: Z e- Ek2 (W)
P5 Card: S +-- Fk3(W)
P6 Card --+ Host: S
P7 Host: For 3 ~ 2 to n, Y~ e-- G~(X2, . . . , X ,) .
P8 Host: hu +-" H(Y2 Yn)
P9 Host --+ Card: h u

P10 Card: Y~ +-- EF~ (hy)(Z)
P l l Card ~ Host:

Decryption protocol: input Yi,. . . , Yn; o u t p u t X1, . . . , Xn

P12 Host: hy +-- H(Y2 Yn)
P13 Host --~ Card: hu, Y1
P14 Card: Z +-- DFk4(hy)(Y1)
P15 Card: W ~ Dk:(Z)
P16 Card: S ~-- Fka(W)
P17 Card ~ Host: S
P18 Host: For j +-- 2 to n, Xj e-- G~(Y2 , yn).
P19 Host: h= +-- H(X2 , . . . , Xn)
P20 Host --+ Card: h~
P21 Card: XI +-- DFkI(h=)(W)
P22 Card --+ Host: X1

Fig. 1. Scheme P: Length-Preserving RKES

In our construction, Pl and P2 produce output that depends on all the input
blocks, but they change only the first block. That is

pl : (xl , x2 , . . . , x ,) (w, x2 , . . . , x ,) ,

where W is a function of X1 and h , = H (X 2 , . . . ,Xn) , and

P2 : (Y1, Y2, . . . ,Yn) ~ (Z, Y~, . . . , Y,),

259

where Z is a function of Y1 and h u = H(Y2 , . . . , yn).
Good sequences will be those in which different X 1 , . . . , Xn and X ~ , . . . , X"

are mapped by Pl to different W and W ~ , and similarly different Y's are mapped
by P2 to different Z's. To obtain permutations Pl and P2 with the right properties,
we define a new primitive called non-colliding encryption.

Def in i t i on 2. A non-colliding encrypt ion scheme is a pair of keyed functions
Ck : {0, 1} b • {0, l} b ~-~ {0, 1} b and Ck : {0, 1} b • {0, 1} b ~-+ {0, l} b with the
following two properties.

1. For all V E {0, 1} b and h �9 {0, 1} b, the functions satisfy Ck(Ck(V, h), h) = V
and Ck(Ck(V, h), h) = Y. (Note that this property allows us to use C to
"store" V, provided h is retrievable.)

2. Let .4 be a probabilistic, polynomial-time adversary that is allowed to query
Ck and Ck adaptively. We say that "(V, h) appears in a (polynomial-length)
sequence of queries" if .4 asks for Ck(V, h) directly or if V is the reply to
some direct query Ck(U, h). If the key k is chosen at random, then .4 has
only a negligible probability of finding two pairs (V, h) # (V', h') such that
(a) Ck(V, h) = C k (V ' , h'), and (b) at least one of (V, h) and (V', h') did not
appear in the sequence of queries.

In Scheme P, the permutations Pl and p~ are determined by (Ck, Ck). For
example, Pl : (X 1 , X 2 , . . . , X n) ~ (W = C k , (X I , H (X 2 , . . . , X n)) , X 2 , . . - , X n) ,
and p2 is defined similarly. The "storage" capability of non-colliding encryp-
tion ensures that Pl is indeed a permutation, because pi -1 : (W, X 2 , . . . , X~)
(X1 = Ckl (W, H (X2, . . . , Xn)), X2, . . . , X ,). The permutation A depends on the
two key components ka and k4. A : (W, X 2 , . . . , X ,) ~-~ (Z, Y2, . . . , Y~), where
Z = Eka(W), (]/2, . . . , Yn) = GF~, (w) (X2 , . . . , X n) , and Gs : {0, 1} (n-1)b

{0, 1} (n-x)b. The overall permutation computed by the encryption protocol is
l I = p~ l o A o pl .

Our main result is as follows.

T h e o r e m 3. Scheme P is a secure, length-preserving RKES.

Proof. To prove this result, we must define an arbiter B, construct a non-colliding
encryption scheme, and apply the Naor-Reingold framework [14]. Applying the
framework entails identifying A-good sequences and proving that the overall
construction gives a strong pseudorandom permutation. The identification of A-
good sequences has to take into account the "two-phase" aspect of the definition
of security of RKESs; this is a complication that is not present in the original
Naor-Reingold paper. We address each of these issues in turn.

Arbiter:
B records all the pairs (h~, X1) and (hy,]/1) that appear in the host phase.

The list of pairs is easy to deduce from the transcript. During the distinguishing
phase, B does the following for each encryption query (+, (Xx , . . . , Xn)). First,
it computes h~ = H (X 2 , . . . , X n) . If the pair (h~ ,X~) appeared in the host

260

phase, then B answers the query using the encryption protocol; otherwise, it
uses either the encryption protocol or the random permutation, depending on
whether the decision between phases was to continue or to switch. Similarly,
when it receives a decryption query (- , (Y~,. . . , Yn)) during the distinguishing
phase, B first computes hu - H(Y2, . . . , Yn); then, if the pair (hy,]1"1) appeared
in the host phase, B uses the decryption protocol to answer the query, and
otherwise it uses either the decryption protocol or the random function inverse,
depending on whether the decision between phases was to continue or to switch.

Non-co l l id ing e n c r y p t i o n :
We provide one construction here and an additional one in the full paper.

Assume without loss of generality that the key k required by the non-colliding
encryption scheme is the same length (b bits) as the key for the block cipher E. If
the block-cipher keys are too short, they can be stretched using a pseudorandom
generator, and if they are too long, they can be truncated. Recall that F is a
pseudorandom function.

L e m m a 4. Let Ca(V, h) = EFk(h)(V) and Ck(V, h) = DFk(h)(V). Then (Ck, Ck)
is a non-colliding encryption scheme.

Proof. This construction obviously satisfies Property 1 of Definition 2.
To prove that is also satisfies Property 2, consider an adaptive adversary .4

that makes a sequence of m queries to Ck and Ck- Let g~ (resp. e~m) be an
upper bound on the probability that, with m queries, ,4 can distinguish F from
a truly random function (resp. an upper bound on the probability that, with m
queries, .4 can distinguish a collection of m + 2 pseudorandom permutations from
a collection of m + 2 truly random permutations). Then ,4's chance of finding
two pairs (V, h) :~ (W, h ~) such that (a) Ck(V, h) = Ck(W, h~), and (b) at least
one of (V, h) and (V', h') did not appear in the sequence of queries is at most

m s 1
1 2 - - + e m + e m. (1) 2 b + 2 b -- m

In see this, compare (Ck, Ck) to the following process (C', C'), which is de-
fined in terms of random functions and permutations rather than pseudorandom
functions and permutations. Let El, E~ , . . . , Era+2 be random permutations, and
let D1, D2, . . . , D,~+~ be the corresponding inverse permutations. The process
(C', C') acts as follows on .A's i th query (~ , hi), given that (V1, hi), (V2, h2), . . . ,
(~ -1 , h i - l) were ~4's i - 1 previous queries. Suppose that hi is the jth distinct
element in the set {hi, h2, . . . , hi}. If (~ , hi) is a query is to C', then respond
with Ej(P~), and if it is a query to C", then respond with Dj(Vi).

We would like to bound the probability that , after m queries, ,4 can find
(V, h) r (V', h') such that C'(V, h) = C'(W, h') but at least one of (V, h) or
(Y', h') did not appear in the sequence (V1, hi), (V2, h2), . . . , (V,~, hm). Sup-
pose that h is the jIh distinct element and h ~ is the j~h distinct element among
hi, h~ , . . . , hm, h, h'. If j l = j2, we are done, because Ej, (V) • Ej~ (V'). Other-
wise, assume without loss of generality that it is the query (V, h) that did not

261

appear in the sequence. Then the probability that Ej, (V) = Ej2(V') is at most
1/(2 5 - m), because the value of Ej, has been specified on at most m points,
and Ej~ (V) is uniformly distributed among the remaining 2 5 - m points in the
range.

We now bound the probability that a polynomial-time adversary can dis-
tinguish between (truly random) (C', G") and (pseudorandom) (Ck, Ck). Essen-
tially, we use a hybrid argument. If instead of the pseudorandom Fk, a truly
random function f were used, the probability that the adversary could find two
different h and h' such that f (h) = f(h') would be at most m2/2 5. If this does
not happen, then the randomness of f implies that the keys of the pseudo-
random permutations are random; if the adversary could distinguish between
such a process and (C t, C'), then it could distinguish between a collection of m
pseudorandom permutations and a collection of m truly random permutations
- this happens with probably at most r Distinguishing between the case in
which a random f is used and the one in which a pseudorandom Fk is used adds
probability at most r yielding (1).

A - g o o d sequences :
Recall that we would like these to be the sequences in which different X i's

correspond to different W i's and different y i , s correspond to different Z i's. Fur-
thermore, the W's and Z's of the distinguishing phase should be different from
those obtained during the host phase, except in those inputs filtered by the ar-
biter. Intuitively, these sequences are "good" for the pseudorandom permutation
construction, because distinct W's produce distinct S's with overwhelming prob-
ability. The properties of the building blocks E, F, and G then ensure that there
is a process .4, indistinguishable from A, such that, for all A-good input-output
sequences ((X' , y 1) , . . . , (X m ' yr ,))

P r[p2(Y i) = A(pl (Xi)) , 1 < i < m] ~ 2 - rm.
A

More precisely, let r be a probabilistic, polynomial-time adversary that has
ml interactions with the card during the host phase and makes m2 oracle queries
during the distinguishing phase. The sequences we are interested in consist of

from the host phase and

(x.,,+i,

from the distinguishing phase. For any such sequence, the permutations Pl and
p~ determine W 1, . . . , W ml , W m'+l, . . . , Wm,+m2 and Z 1, . . . , Z m' , Z '~'+1
.. . , Z m'+m2. An encryption query (+ , X 'n'+~) or decryption query (- , yml+~)
is filtered during the distinguishing phase by B if there is a 1 < j < m x for which

, �9 . . " t X J h j , x y , + ')) = , 1,

262

(or analogously (Y~n~+i,H(Y~+i, . . . , Y~a+')) = (Ya j, hJu)). Note that the ad-
versary should not be able to find more than ml inputs and ml outputs that are
filtered - otherwise, the pigeonhole principle implies that the adversary would
have found in the distinguishing phase two encryption queries (+, X m~+~) :~
(+ ,X ml+j~) such ~h., tYm,+J, j,,n~+j,~ _ trm,+J~ i,m~+j~ = (Xi,h i) for

some 1 < i < rnt and 1 _< j l , J2 _< m2 (or two analogous decryption queries).
However, that would mean that it had broken the collision-intractable hash func-
tion H.

We say that a sequence is A-good for Pl and P2 if

1. For all 1 < i < j < m2, if X ml+i r X m`+j and X m~+i and X m~+j are not
filtered by B, then W "~+i r W "~+j, and, if yrn~+i • yrnt+j and ym~+i
and ym~+j are not filtered by B, then Z ml+i r Z rnl+j.

2. For all 1 < i < m2, if X m~+i is not filtered by B, then W m~+i r W j for
all 1 _< j < mr, and, i f Y rn~+i is not filtered by B, then Z 'm+i r ZJ for all
l <_j <_ml.

In other words, the W's and Z's of the distinguishing phase are different from
one another and from those of the host phase. We must show that the adversary
is not able to find bad sequences, except with negligible probability.

L e m m a 5. For any permutation A, for any probabilistic, polynomial-time ad-
versary .4 that has mt interactions with the card during the host phase and
makes m2 oracle queries during the distinguishing phase, the probability that .4
finds a sequence that is not A-good for Pl and p2 is negligible. The probability
is computed over the choice of Pl and P2 and the random coin-flips of ,4. Note
that A is not necessarily secret.

Proof. Let cl be an upper bound on the probability that an adversary with
`4's resources breaks the collision-intractable hash function H, and let e2 be an
upper bound on the probability that an adversary with `4's resources breaks the
non-colliding encryption scheme. Then `4's probability of finding a sequence that
is not A-good for Pl and P2 is upper-bounded by el + e2.

Suppose that the first query that witnesses the fact that this sequence is not
A-good occurs at the jth step of the distinguishing phase, and assume without
loss of generality that it is an encryption query. We divide this event into two
cases. In case 1, Property 1 is violated, ~.e., there are i and j , 1 <_ i < j < m2,
such that X m~+i 7~ X m~+j but X ~ '+i = X ~ ~+j and H (X ~ ' + i , . . . , X , m'+i) =
H (X ~ ' + J , . . . , X~+J) . This means that .4 has broken the collision-intractable
function H, which happens with probability at most r The other possibility is
that Z '~'+j Z i but (X'~+J,h~ ~+j) r i i = (Xl ,h~) where i (1 < i < rnl + j - 1)
is either from the host phase or from the distinguishing phase. However, note
that (X~ '+j , h~ ~+j) did not appear explicitly before in the sequence (if it had,
it would have been filtered, or j would not be the first "bad location" in the

C txrn'+J h ma+j) i i sequence), but k~t x , = Ck~(X 1, h~). Thus A could break the non-
colliding encryption scheme (Ck, Ck), which happens with probability at most

C2.

263

Indistinguishability:
As in the original Naor-Reingold paper, we consider what happens when A

is replaced with a "more random" process. Let -41 be the obtained from A by
replacing Eka with a random permutation and replacing Gs with a process G
that, on input S, produces a random string of length (n - 1) �9 b (i.e., a random
function {0, 1} b ~4 {0, 1} (n-1)b) and Xors the string with X2, . . . , Xn. Let A2
be a random permutation. Note that, if A is replaced with -A2, the composition
p~ 1 o A2 o Pl is a random permutation for any Pl and P2.

We complete the proof of Theorem 3 by showing (i) when A is replaced with
-41, the result is indistinguishable by probabilistic, polynomial-time adversaries,
and (ii) when A1 is replaced by .4~ the result is indistinguishable to adversaries
restricted to good sequences.

L e m m a 6. Suppose that, following the host phase of an attack on Scheme P,
a nondeterministic choice is made between replacing the function A by A1 or
continuing to use A. Then any probabilistic, polynomial-time adversary ,4 has
only a negligible probability of determining whether a switch was made, where
the probability is over the choice of A, Pl, P2, Ax and ,4's coin-flips.

Proof. Observe first that A can be partly transformed without detection: Sup-
pose that Ek3 is replaced with a random permutation and Fk4 is replaced with
a random function prior to the beginning of the host phase. This should be in-
distinguishable to ,4, because the only information ,4 has about Ek3, Dk3, and
Fk4 is their values (or some function of them) at some specific points. Therefore
the important part of a potential switch is the replacement of G by G.

By Lemma 5, except with negligible probability, all the W's of the distin-
guishing phase are different from those of the host phase and different from
each other, except those that were filtered. These Wi's are assigned a random
value S ~. Recall that G has the property that, if S is chosen at random, then
Gs(X2, . . . ,Xn) is indistinguishable from a truly random string of the same
length for any X 2 , . . . , X , , and similarly for G. In case a switch is not made
between phases, then G (or G) produces an input that is indistinguishable from
a truly random one. If a switch is made, then G is used, and the result is a
random and independent string (except when Si is a collision, which happens
with probability at most m2/2b). Therefore, the overall probability with which
a switch is detected is negligible.

Lernma 7. Suppose that, following the host phase of an attack on Scheme P, a
nondeterministic choice is made between replacing A by A1 or replacing A by A2.
Then any probabilistic, polynomial-time adversary ,4 has a negligible probability
of distinguishing between the two cases, where the probability is computed over
the choice of A,pl, P2, A1, A2, and ,4's coin-flips.

Proof. Fix the adversary ,4 to be the best deterministic machine, and fix Px, P2,
and A. This determines the queries made during the host phase. Now consider
any sequence

SEQ = ((Xm'+X,Y'~+I),. . . , (Xm'+m~,Yr"'+m~))

264

such that SEQ (together with the host phase queries) is A-good for Pl and p2.
If SEQ is a possible outcome for ,4, given the fixed A,pl, and p2, then

1 1 1
A1Pr[SEQ is produced] = 2 -~ . (25 - 1) �9 25("-1) . . . (25 - rn2 + 1) - 25(n-l)

and
1 1 1

P r[SEQ is produced] - 2b" 25 n 1 25" m2 + 1"
A2 - - - -

Therefore, Prci 1 [SEQ is produced] is at least

Pr[SEQ is produced] > (1 - rn2v~2. Pr[SEQ is produced].
A2 - - 2 b / A1

Now consider any collection C of sequences that are A-good for Pt and P2.
The probabilities that a member of this collection is produced by A1 and _~ are
close, because the ratio of Pr4,[C] and Pr~[C] is between 1 and i - (m~/2b).

Suppose without loss of generality that, just before .4 has to guess whether
it is querying process A1 or process A2, the permutations Pl and P2 are revealed.
This can only help .4. If we consider all possible executions of .4, then with all
but negligible probability (over pl ,p2), the sequence generated is A-good for Pl
and P2. Parti t ion the executions that end with an A-good sequence into C1 (those
for which .4 announces 1), and C2 (those where it announces 2). Summing over
PI,P2, and A, the probabilities Pr~il[Cx] and Pr~[C1] are close (and similarly

for Prci,[C2] and Prci~[C2]). Therefore, we can conclude that -~1 and -~2 are
indistinguishable for .4.

To complete the proof of Theorem 3, note that p~ 1 o-42 opl is a random per-
mutation. Thus, .4 has at most a negligible probability of determining whether
A was switched with a random permutat ion between phases.

5 O p e n Q u e s t i o n s

Two remaining questions include: (1) The protocols in Section 4 require two
rounds of interaction between the host and the card. Is there a secure RKES
that requires only one round of interaction? (2) Is the existence of a one-way
function sufficient for the construction of a provably secure RKES? Note that a
collision-intractable hash function is used in our construction and that it is not
known how to build such a hash function based only on the assumption that a
one-way function exists. See [4] for a recent discussion of the desirability of using
UOWHF instead of collision-intractable hash functions.

Acknowledgments

We thank Omer Reingold for useful discussions and the Eurocrypt '98 PC mem-
bers for their comments.

265

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, "A Concrete Security Treatment
of Symmetric Encryption," in Proceedings of the 38th Symposium on Foundation
of Computer Science, IEEE Computer Society Press, Los Alamitos, pp. 394-403,
1997.

2. M. Bellare, J. Kilian, and P. Rogaway, "The Security of Cipher Block Chaining," in
Advances in Cryptology - Crypto '9~, Lecture Notes in Computer Science, vol. 839,
Springer, Berlin, pp. 341-358, 1994.

3. M. Bellare and P. Rogaway, "Provably Secure Session Key Distribution - The Three
Party Case," in Proceedings of the 27th Sympossum on Theory of Computing, ACM,
New York, pp. 57-66, 1995.

4. M. Bellare and P. Rogaway, "Collision Resistant Hashing, Towards Making
UOWHFs practical," in Advances in Cryptology - Crypto '97, Lecture Notes in
Computer Science, vol. 1294, Springer, Berlin, pp. 470-484, 1997.

5. E. Biham and A. Shamir, "Differential Fault Analysis of Secret Key Cryptosys-
tems," in Advances in Cryptology - Crypto '97, Lecture Notes in Computer Sci-
ence, vol. 1294, Springer, Berlin, pp. 513-525, 1997.

6. M. Blaze, "High-Bandwidth Encryption with Low-Bandwidth Smartcards," in Pro-
ceedings of the Fast Software Encryption Workshop, Lecture Notes in Computer
Science, vol. 1039, Springer, Berlin, pp. 33-40, 1996.

7. D. Boneh, R. A. Demillo, and R. J. Lipton, "On the Importance of Checking
Protocols for Faults," in Advances m Cryptology - Eurocrypt '97, Lecture Notes in
Computer Science vol. 1233, Springer, Berlin, pp. 37-51, 1997.

8. J. Feigenbaum, "Locally Random Reductions in Interactive Complexity Theory,"
in Advances in Computational Complexity Theory, DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, vol. 13, American Mathematical
Society, Providence, 1993, pp. 73-98.

9. O. Goldreich, Foundat ions of C r y p t o g r a p h y (Fragments of a Book), 1995.
http://www, eccc .un i - t r ier . de/eccc/inIo/ECCC-Books/eccc-books .html

10. O. Goldreich S. Goldwasser, and S. Micali, "How to Construct Random Functions,"
J. of the ACM, 33 (1986), pp. 792-807.

11. M. Luby, Pseudorandomness and Cryp tog raph ie Applicat ions, Princeton
University Press, Princeton, 1996.

12. S. Lucks, "On the Security of Remotely Keyed Encryption," in Proceedings of the
Fast Software Encryptton Workshop, Lecture Notes in Computer Science, vol. 1267,
Springer, Berlin, pp. 219-229, 1997.

13. T. Matsumoto, K. Kato, and H. Imai, "Speeding Up Secret Computations with
Insecure Auxiliary Devices," in Advances in Cryptology - Crypto '88, Lecture
Notes in Computer Science, vol. 403, Springer, Berlin, pp. 497-506, 1990.

14. M. Naor and O. Reingold, "On the Construction of Pseudo-Random Permutations:
Luby-Rackoff Revisited," to appear in J. Cryptology. Extended abstract appears
in Proceedings of the 29th Symposium on Theory of Computing, ACM, New York,
pp. 189-199, 1997.

15. V. Shoup and A. Rubin, "Session Key Distribution Using Smart Cards," in Ad-
vances in Cryptology - Eurocrypt '96, Lecture Notes in Computer Science vol. 1070,
Springer, Berlin, pp. 321-331, 1996.

