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Abst rac t .  The latest ITU-T standard syntax of Message Sequence 
Charts (MSCs) [16] offers several operators to compose MSCs in a hi- 
erarchical, iterating, and nondeterministic way. However, current tools 
operate on MSCs that describe finite, deterministic behavior. In this 
paper, we describe the architecture and the partial implementation of 
MESA, an MSC-based tool that supports early phases of the software 
development cycle. The main functionalities of MESA are: an environ- 
ment for the composition of system models through MSCs, syntactic 
and model-based analysis of an MSC model, and resolution of resource 
related underspecifications in an MSC model. 

1 I n t r o d u c t i o n  

Message Sequence Charts (MSCs) have been extensively used in the development 
of telecommunication and reactive systems. They have already been adopted 
within several software engineering methodologies and tools, e.g., [13], [8], [17], 
[22], [7], [2], and [3]. MSCs are used to document system requirements that  guide 
the system design [22], describe test scenarios (e.g., [17, 7]), express system prop- 
erties that  are verified against SDL specifications [2], visualize sample behavior 
of a simulated system specification [22, 2, 12], capture early life-cycle require- 
ments [3], and to express legacy specifications in an intermediate representation 
that  helps in software maintenance and reengineering [13]. 

In this paper we propose the architecture for an MSC-based tool for the re- 
quirements and design phases of the life-cycle of reactive systems. In addition, 
we illustrate how a portion of this architecture has been implemented in the 
Message Sequence Chart  Editor, Simulator and Analyzer (MESA) tool. The pre- 
sented tool has several motivations. One is to serve as an integration platform 
for various tools, which gives software engineers an access to a wider range of 
design and analysis techniques that  can be more effective due to certain cus- 
tomizations. The integration is facilitated through the standardized syntax of 
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MSCs by the ITU-T in Recommendation Z.120 [16]. In other words, we view 
MESA as a front-end to various methods and tools, and hence code synthesis 
from MSC specifications is an essential objective. We currently envisage syn- 
thesis of SDL [14], ROOM [22] and Promela [11], all of which enjoy support by 
mature, industrial strength CASE tools. 

A second motivation for MESA is to extend the usage of MSCs to the require- 
ments specification and design phases. Current tools that use MSCs operate on 
MSC specifications that describe finite and deterministic system behavior. How- 
ever, in its recent extension, called high-level MSCs [15], the MSC language offers 
modular and hierarchical operators to describe parallel, sequential, iterating, and 
non-deterministic execution of basic MSCs. These operators facilitate the spec- 
ification of large-scale systems. In addition, MSCs offer essential constructs in 
a requirements language for reactive systems, e.g., distinction between the sys- 
tem and its environment, communication exchanges, internal actions, and timers 
along a formal semantics [16, 18]. As a design language, the notion of processes 
in MSCs along the composition operators can be used to reflect a software ar- 
chitecture. However, iteration and nondeterminism in MSCs require additional, 
explicit information, e.g., underlying network architecture and interprocess syn- 
chronization to resolve nondeterminism [5]. For this, an MSC-based tool for the 
design of reactive systems must offer analysis techniques to detect instances 
where such additional information is required and prompts the user for it. 

In addition to the above type of design-related analysis, a third motivation 
for the tool is to provide analysis for high-level MSC models. Currently, tools 
that support analysis of MSCs operate only on basic MSCs. In particular, the 
MESA too1 offers an extension of MSCs with real-time information and supports 
timing analysis for high-level MSCs. The time extension is based on currently 
evolving propositions ([16, 3].) 

Another motivation for our tool is that we believe that assertional reasoning 
is crucial for any realistic analysis of a system model. For this, we benefit from the 
integration features in MESA and use existing model-checkers, more specifically, 
by synthesizing code that serves as an input to a model checker, e.g., Promela 
code for the XSPXN tool [12]. 

Paper organization. Section 2 discusses the suitability of MSCs for requirements 
specification and design, while Section 3 reviews current usages of MSCs in 
software engineering tools. Section 4 illustrates the usage of MSCs based on an 
automatic teller machine (ATM) example. Section 5 presents the architecture of 
MESA as an MSC-based tool for the requirements and design phases. Section 6 
describes the currently implemented version of MESA and its application to the 
ATM example. Section 7 summarizes the paper and outlines future research 
directions. 

2 R o l e  o f  M S C - b a s e d  T o o l s  i n  t h e  S o f t w a r e  L i f e c y c l e  

The standard syntax of MSCs is defined by the ITU-T Recommendation Z.120 
[16]. A basic MSC (bMSC) essentially consists of a set of processes (called in- 
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stances in Z.120) that run in parallel and exchange messages in a one-to-one, 
asynchronous fashion. In addition to exchanging messages, processes can indi- 
vidually execute internal actions, use timers to express timing constraints, create 
and terminate process instances. The standard extension of the MSC language, 
called High-Level MSCs (hMSCs) [16], provides for operators to connect basic 
MSCs to describe parallel, sequential, iterating, and non-deterministic execu- 
tion of basic MSCs. In addition, hMSCs can describe a system in a hierarchical 
fashion by combining hMSCs within an hMSC. 

msc MSCI 
Pl P2 

dam-in'T Dreq _T 

J. 

msc MSC2 i P1 ~j DC 

oA I 

ocMsc3p1 ' ic,oq /.so2 j[ 
J.  Rc 

+ 
MSC3 ] 

I 
Fig. 1. MSC specification example: basic MSCs (left) and high-level MSC (right) 

As an example of an MSC specification, consider Figure 1 which describes a 
simple connection establishment protocol in a telecommunication system. Pro- 
cess Pl is a service provider, P2 is a local and P3 is a remote protocol machine. 
The iterating branch describes a repeated request to establish the connection. 
The non-iterating branch describes a successful connection establishment. The 
semantics of an MSC essentially consists of sequences (or traces) of messages 
that are sent and received among the concurrent processes in the MSC. The or- 
der of communication events (i.e. message sent or received) in a trace is deduced 
from the visual flow of control within each process in the MSC along with a 
causal dependency between the event of sending and receiving a message [18]. 

Message Sequence Charts offer several advantages to the requirements and 
design phases of the development of reactive systems. One is the intuitive, graph- 
ical notation of MSCs which helps a designer to visualize the system's structure 
and interfaces. In addition, as a requirements specification language an advantage 
of MSCs is the level of abstraction they offer by merely describing the message 
flow between processes (which is the core of reactive systems) and abstracting 
out process behavior. This is to be contrasted to other specification techniques, 
e.g., SDL and ROOM, which explicitly specify the process behavior and leave 
the message flow implicit. Another advantage of MSCs as a requirements lan- 
guage is the distinction between the actions of the system and its environment: 
MSCs visually distinguish between the actions the system produces or initiates 
from those produced by the environment, which facilitates the identification of 
the interface between the two system components. For example, in Figure 1 the 
environment sends a message of type data_in to the system through the process 
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P1; the system sends a message of type data_out to the environment through 
the process P1. As a design language, MSCs are suitable through their notions 
of processes and composition operators which facilitate the description of the 
system's software architecture. 

Due to the focussed expressiveness of MSCs, it is unrealistic to build a CASE 
tool exclusively on MSCs. A tool based on MSCs should be a front-end to other 
CASE tools, supporting early life-cycle requirements capture and validation ca- 
pabilities (see also [3]). In addition, an MSC-based tool should support a number 
of functionalities including: 

- Analysis of MSC specifications for "things that can go wron]'.  The graphical 
appeal and perceived clarity of MSC specifications contrasts limits in their 
expressiveness, which in turn may lead to ambiguities due to underspecifica- 
tions. For example, in the presence of non-determinism and iteration in an 
hMSC, explicit information is required about inter-process synchronization 
and the underlying network architecture and queuing strategies [5]. The lack 
of this information may lead to discrepancies between an MSC specification 
and its interpretation and thus any potential implementation [5]. Thus, it is 
essential to support analysis mechanisms that detect such ambiguities and 
suggest to the designer possible extensions to resolve them. Other analyses 
include analysis of the consistency of timing constraints attached to an MSC, 
and semantic analysis that checks safety and liveness properties. 

- Synthesis of code skeletons in full-fledged specification notations such as 
SDL, ROOM or Promela, and testing notations such as TTCN when testing 
support is crucial. Code synthesis allows the MSC tool to be integrated with 
other tools that provide additional functionalities e.g. model-based analysis. 

- Means to simulate the execution of MSC specifications. 
- A GUI-based editor to manipulate MSC specifications. 

Based on the above tool requirements, we have designed and partly implemented 
a tool called MESA (Message Sequence Charts Editor, Simulator and Analyzer) 
to support software design for concurrent systems at early life-cycle stages. 

3 M S C s  i n  S o f t w a r e  E n g i n e e r i n g  T o o l s  

In our review of current tools (c.f. [4]) that use MSCs, we examined the fol- 
lowing set of requirements we find important in the requirements and design 
phases as previously described: 1) The use of MSCs in the description of reac- 
tive systems makes constructs to support branching and iterating indispensable. 
2) Overall compliance with a syntactic convention like Recommendation Z.120 
or the UML [8] notation is desirable. 3) While a translation from MSCs into 
a different formalism, e.g., for analysis purposes may be necessary, we require 
that as little semantic bias as possible be included. In particular, we criticise 
the interpretation of MSCs based on SDL, as sometimes proposed, because of 
SDL's heavily constraining message passing semantics. 4) In a notation that 
benefits from graphical appeal and visual allusion to such an extent as MSCs, it 
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is mandatory to have semantic assumptions explicitly represented in the spec- 
ification. Allowing implicit semantic assumptions would defeat the purpose of 
using MSCs during the requirements and design phases where precise specifi- 
cations are vital. We call this requirement the "what-you-see-is-what-you-ge~' 
(WYSIWYG) requirement w.r.t, the semantics given to MSCs as described by 
their visual representation. 5) A requirements tool needs to provide for means to 
check the consistency of the requirements specified. 6) Executing or simulating 
MSCs can greatly enhance the debugging of a specification, and thus simulation 
should be provided by an MSC-based tool. 

We have analyzed a sizable subset of the tools that support MSC specifica- 
tions (c.f. [4]). The set of analyzed tools includes: 

- The ObjecTime toolset by ObjecTime Limited which supports editing of 
basic MSCs to document requirements on the communication behaviour of 
an ObjecTime model [22] and to visualize execution traces of an ObjecTime 
model. 

- The SDL based tools GEODE [2] by Verilog SA and the SDT [1] by Telelogic 
AB both support editing of basic MSCs as well as a requirements validation 
check that answers whether at least one execution of the SDL system corre- 
sponds to a given bMSC. 

- The MSC Analyzer/POGA tool by Bell Labs [3] is centered around bMSCs 
and provides means to analyze an MSC specification syntactically for timing 
constraints, and analyze it with respect to potential discrepancies between 
the perceived and the implied event ordering in an MSC. This tool supports 
the editing of hMSCs, but analysis is focussed on only basic MSCs. 

- The SDE [13] and MuSiC++ [20] developed by NTT are closely related tools 
centered around SDL and providing for MSC editing, analysis and code syn- 
thesis. Analyses include an inconsistency check that is based on deadlock 
detection in bMSCs, and code synthesis that produces SDL code from bM- 
SCs. 

From our review of the above tools, we found out that none of them satisfac- 
torily meets the requirements we outlined earlier. In particular, Only the MSC 
Analyzer/POGA tool supports Z.120-style MSC composition. Users are allowed 
to identify a simple path in the hMSC graph, which is then composed by con- 
catenation to form a large bMSC that in turn is analyzed. Furthermore, while 
the SDE and MuSiC++ tools provide for a variety of analysis functions, these 
tools suffer from a heavy bias towards an assumed SDL semantics. For instance, 
an MSC could be flagged as deadlocking even though it will not deadlock unless 
one assumes the rather constraining SDL semantics. The SDL-based semantic 
assumption contradicts our WYSIWYG requirement. 

4 M S C  S p e c i f i c a t i o n  E x a m p l e :  a n  A T M  S y s t e m  

In the remainder of this paper, we will use an Automated Teller Machine (ATM) 
example 1 to illustrate the functionalities of MESA. Figures 2, 3 and 4 illustrate 

1 A variant of this example was first presented in [6]. 
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the MSC-based specification of the ATM example. All diagrams were generated 
through the editor component of MESA. 
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Fig. 2. hMSC for ATM System 

Due to space limitations, we briefly review the example; for more detail see 
[6]. The ATM system consists of three concurrent components: the system's user 
interface that communicates with potential customers represented by the User 
process, the ATM controller software which is represented by the ATM process, 
and a host computer in a central bank office that is represented by the Bank 
process. Each one of the bMSCs in Figures 3 and 4 represents a scenario or 'use- 
case' of the system. The hMSC graph in Figure 2 specifies a successor relationship 
between these scenarios. 

5 A r c h i t e c t u r e  o f  a n  M S C  R e q u i r e m e n t s  a n d  D e s i g n  T o o l  

Figure 5 presents a data flow diagram-like view of the architecture of MESA. The 
four main functions of MESA(editing, syntactic analysis, model-based analysis, 
and code synthesis) are accessed through the GUI-based editor for hMSCs and 
bMSCs. Figure 6 shows the hMSC editor displaying the hMSC graph of the ATM 
example. Double clicking with the mouse on one of the boxes that represents a 
bMSC opens an editor window for the bMSC that is linked to this box. Figure 7 
shows the bMSC editor windows for the DispenseCash and Withdraw bMSCs. 



124 

Fig. 3. Part 1 of ATM System (bMSCs) Fig. 4. Part 2 of ATM System (bMSCs) 

5.1 E d i t i n g  

The MESA editor allows the user to textually input, draw and manipulate both 
the hMSC and bMSC components of an MSC specification. In addition, it allows 
the user to load and store MSC specifications. 

Syntactic Checks. There were two design goals for the editing component within 
MESA. First, users should be guided in following the graphical syntax of Z.120 
[16]. Second, we were interested in leaving users the freedom to choose compliance 
with the Z.120 standard to some extent. 

S lope  o f  m e s s a g e  a r rows :  Z.120 requires message arrows to be either down- 
wards sloping or horizontal. In [5] we showed that  this is a sufficient syntactic 
condition to avoid deadlocks in an MSC specification. The MESA editor op- 
tionally enforces this rule when drawing message arrows. 
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Fig.  5. Architecture of MESA 

Fig .  6. Snapshot of the hMSC editor 
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Fig. 7'. hMSC and bMSC editors 

Graphical well-formedness and compliance with Z.120:  MESA checks 
bMSCs for compliance with the following constraints: 1. Each process must 
be given a unique name within the scope of a bMSC; 2. each message type 
must always be sent and consumed by the same pair of processes within an 
MSC specification; 3. a message arrow may not be directed upwards; and 
4. two messages may not originate from the exact spot on a process axes 
to avoid ambiguities in the interpretation of the event ordering. For hMSCs, 
MESA checks the following consistency requirements: 1. All references to bM- 
SCs must be defined; 2. all referenced bMSCs must be legal according to the 
above bMSC rules; 3. there must be exactly one start  node; 4. the hMSC 
graph must be connected; and 5. the list of process names for each bMSC 
that  is referenced in an hMSC must be identical in all bMSCs. In addition, 
MESA verifies whether an MSC specification is normalized, i.e. that  after 
a branching in the hMSC graph no two bMSCs have an identical message 
exchange prefix. Normalization is needed for some analyses [5]. 

Input and Output Formats. MSC specifications can be stored in three different 
data  formats: 

- Strict Z.120 textual format [16]. Compliance with the standard textual syn- 
tax facilitates sharing of MSC specifications amongst different CASE tools. 
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- Extended Z. 120 textual fomat. The strict textual representation of MSCs is 
insufficient to completely reflect the information content of bMSCs as we use 
them. Therefore, the syntactic representation that  we use extends the strict 
Z.120 syntax as follows. 
1. Layout information. This information is essential to reproduce chart lay- 

outs that  the user has previously chosen. MESA extends the Z.120 textual 
syntax with formatting information that  is bracketed by comment sym- 
bols ' / * '  and '*/' .  The layout information consists of the coordinates 
of the various MSC components relative to the upper left corner of the 
MESA editing canvas, which means that  this information may be mean- 
ingless for other tools. Figure 8 shows the automatically generated tex- 
tual Z.120 extended with layout representation for the bMSC Withdraw 
of Figure 4. A similar technique is chosen to represent layout information 
for hMSC graphs. 

2. Timing information. MESA represents two types of timing information in 
bMSCs: the Z.120 timer-based real-time constraints, and our suggested 
delay interval-based real-time constraints [6]. Accordingly, MESA extends 
the textual Z.120 syntax to include the suggested timing constraints as 
follows: 

�9 Delay intervals along process axes: We introduce a clause d e l a y  [1, 
u] 2 in between two consecutive events within a process, c.f. the 
delay [0, 0] clause in Figure 8. 

�9 Delay intervals along message arrows: We extend the Z.120 message 
clauses with a delay interval. For example, consider the sending of a 
message of type A to a process P, which is represented by the clause 
out  A t o  P;.  To add the timing constraint that  this message arrow 
has been labeled by a d e l a y  [1, u] clause, we extend this clause 
to out A to P delay [I, u];. 

- Encapsulated Postscript. To support the use of MSCs in software require- 
ments and design documentation, MESA generates encapsulated postscript 
code of hMSC graphs and bMSCs. 

Graphical Editor. The GUI-based editor (c.f. Figures 6 and 7) provides an icon- 
based drawing palette with the basic components of the bMSC and hMSC lan- 
guages. The GUI-based editor is implemented with an object-oriented interface. 
One mouse click on a drawn object shows a menu of actions associated with the 
object. 

5.2 Syntactic Property Analysis 

It is often less expensive to verify properties of a specification syntactically as 
opposed to analyzing the specification's model. Currently, MESA implements 
three types of properties that  can be efficiently checked syntactically: process 
divergence, non-local branching choice and timing consistency (c.f. [5]). 

2 1 and u denote numeric values representing the lower and the upper bound for the 
message delivery delay, respectively. 
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msc Withdraw; 
i n s t  User ,  ATM, Bank; 

i n s t a n c e  User /*  x=72 length=280*/ ;  
out WITHDRAW to  ATM /* y=76 */; 
in REQ_AMOUNT from ATM /* y=llO */; 
out ENT_AMOUNT to ATM /* y=146 */; 
delay [0, 0]; 

end ins t ance ;  
instance ATM /* x=190 length=280*/; 

in WITHDRAW from User /* y=76 */; 
out REQ_AMOUNT to User /* y=llO */; 
in ENT_AMOUNT from User /*  y=146 */ ;  
set T1 (10) /* y=187./; 
out APPRDVE_AMT to Bank /* y=217 */; 

endinstance; 
instance Bank /* x=304 length=280*/; 

in APPROVE_ANT from ATM /* y=217 */; 
endinstance; 

endms c ; 

F ig .  8. Z.120 compliant textual  syntax of the Withdraw bMSC generated by MESA 

msc MSC 1 
P1 P2 

= ~  reql =Z = Y 

Fig.  9. MSC specification with process di- 
vergence 

F ig .  10. Timing inconsistent bMSC 
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Process divergence. When processes iterate in an MSC specification, the asyn- 
chronous nature of communication can lead to process divergence: a system exe- 
cution where one process sends a message an unbounded number of times ahead 
of the receiving process. Since an MSC specification makes no assumption about  
the speed of its processes, in the absence of a hand-shake mechanism, a sender 
process can run "faster" than a receiver process - possibly flooding the receiver 
with messages. As an example of process divergence, consider the MSC spec- 
ification of Figure 9. One possible execution of this MSC specification is the 
infinite trace ! req l  !req2 ! req l  ! req2.  �9 �9 which is the result of process Pl  sending 
messages without process P2 receiving any one. To handle such a potential exe- 
cution, the implementation must answer several questions: What  is the network 
architecture between the processes Pl  and P2? Is there any queuing mechanism 
and protocol and if so, what is the capacity of the channels? How are multiple 
copies of a not-yet received message handled, are they overwritten or are they 
buffered? Regardless of the answers to the above questions, none of them is based 
on information explicitly described in the given MSC specification. In addition, 
different answers may result in different implementations. We view process di- 
vergence as potentially unintended behavior of the specification that  must be 
detected and brought to the designer's attention. This allows the designer to 
decide either to modify the specification to resolve the problem (e.g., by adding 
explicit hand-shakes), or to postpone the problem to the implementation phase. 
We have syntactically characterized process divergence and developed an algo- 
r i thm (now implemented in MESA) that  runs in a time linear with the number 
of messages in an MSC specification [5]. The algorithm basically examines the 
bMSCs involved in a loop and verifies that  the processes within the bMSCs 
communicate through a hand-shake. 

Non-local branching. Figure 1 illustrates an example which describes a system 
where MSCl is followed by either MSC2 or MSC3. At this level of abstraction, 
all current interpretations assume that  all processes choose the same alternative 
flow of control so that  the overall system behavior is described by one basic MSC 
at a time. As argued in [5], in terms of implementation of individual processes, 
such an assumption can however be non-trivial as it requires additional, dynamic 
information about which alternative other processes in the specification took. For 
example, consider the specification in Figure 1. Assume that,  after executing the 
Dreq event, process P1 is the first process to decide whether to go 'left', i.e., the 
next bMSC to execute is MSC2. In order to implement properly the semantics 
of choice, the processes P2 and P3 must be informed about  Pl ' s  decision so 
that  they branch accordingly. However, neither the MSC semantics as presented 
in Annex B of Z.120 [16] nor hMSC graphs provide an explicit way to handle 
such an information exchange. MESA implements our algorithm to detect non- 
local branching choices and which executes in a time linear with the number of 
messages in an MSC specification [5]. The basic idea behind our algorithm is to 
examine the bMSCs involved in a choice and verify that  they all have the same, 
unique process which sends the first event. In case an MSC specification contains 
a non-local branching choice, our syntactic analysis produces the bMSCs that  
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are involved in the non-local branching. This allows the user to resolve the choice 
by modifying the relevant bMSCs. 

Timing Analysis. The usage of timing constraints may lead to specifications 
that have no timed execution, i.e. the specification is timing inconsistent [6]. 
Consider the bMSC in Figure 10. Obviously, the minimum time that passes 
from sending message reques t  until receiving message r e p l y  when following 
the messages and the processing within process Server  is at least 12 seconds. 
However, within process Cl ien t  it is assumed that timer T1, which is set to 10 
seconds right before sending reques t ,  is not expiring before r e p l y  is received. 
This means that the conjunction of all timing constraints is not satisfiable by any 
system execution. MESA implements our timing analysis algorithm for branching 
and iterating MSC specifications in [6] which extends work in [3, 9]. 

6 U s i n g  MESA in the A n a l y s i s  o f  t h e  A T M  S y s t e m  

The automatic analysis of the ATM example shows that there are no syntactic 
anomalies and inconsistencies with Z.120 syntax in this specification. This anal- 
ysis ensures that the subsequent analysis algorithms deliver meaningful results. 

Fig. 11. MESA reporting Non-local Choice 

Non-local Choice. Figure 11 illustrates how MESA reports the presence of a 
non-local choice situation in the ATM System. The non-local choice lies in the 
hMSC branching point that follows the bMSC ProcessPin: in Re~usePin and 
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Fig. 12. MESA reporting Process Divergence 

G e t 0 p t i o n  it is the Bank process which carries out the first action, i.e. sending of 
INVALID or VALID, respectively; whereas in TryAgain it is the ATM that  sends the 
first message. The analysis reveals the danger that  processes proceed in different 
directions at this branching point. MESA tags the respective parts of the hMSC 
graph which allows the user to localize the potential underspecification. The 
non-local choice situation here could be resolved in case it was not left up to the 
ATM process to send an ABORT message, but if the Bank was enabled to do so. The 
purpose of this analysis is to make the user aware of potential underspecifications, 
and to hint that  synchronization mechanisms must be added, for instance, before 
code synthesis can proceed. 

Process Divergence. The reporting of a Process Divergence situation in the ATM 
system is illustrated in Figure 12. The Process Divergence occurs in a loop in 
the hMSC that  is formed by the bMSCs S t a r t T r a n s ,  GetPin,  P r o c e s s P i n  and 
TryAgain. In this cycle, User and ATM exchange messages in both directions, 
while the Bank only receives messages. Depending on the speed of the processes, 
the ATM may be racing ahead of the Bank and sending a large number of VERIFY 
and ABORT messages to Bank. This indicates that  in an implementation must 
carefully design the communication channel between ATM and Bank. A possible 
remedy of this Process Divergence situation is to increase the level of synchro- 
nization between the three processes. For example, the TryAgain scenario could 
be extended so that  after sending the ABORT message to Bank the ATM process 
would only proceed after it had received a CONFII~ABORT message from Bank. 

Timing Consistency. In the basic version shown in Figures 2, 3 and 4 all the 
timing assignments are consistent. But let us assume that  we are more concerned 
about analyzing the timings in the example. Assume that  we change the original 
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specification of the ATM system as indicated in Figure 13: the transmission of 
APPROVEA, MT takes [4, 7) seconds, the computations of Bank to determine that 
the amount cannot be approved take [3, 5] seconds, and the transmission of the 
NOT_~PPROVED message consumes [4, 7) seconds. The question is now whether 
these new timing constraints are consistent with the remainder of the timing 
constraints in the system. 

Fig. 13. Altered bMSCs in the ATM example 

Timing analysis in MESA shows that these timing constraints are in conflict 
with the 10 second timer setting of T1 in Withdraw and the pre-expiry reset of this 
timer in RefuseW• Figure 14 illustrates how MESA reports the presence of a 
timing inconsistency by displaying a list of simple loop paths through the hMSC 
graph that have a timing inconsistency. MESA allows the user to tag some or all 
of the timing inconsistent loops in order to localize the timing inconsistencies. In 
Figure 14 we have tagged the loop # 4, which directly connects Withdraw and 
RefuseW• For the ATM system, the timing analysis takes about 10 seconds 
of execution time on a Sun Sparc Ultra 1 -200 MHz system. 

7 C o n c l u s i o n  

We have proposed an architecture of a tool for the requirements specification 
and design of reactive systems based on Message Sequence Charts. We have 
described the MESA toolset as a partial implementation of this architecture. 
MESA is designed to be a research testbed for a large variety of algorithms and 
methods developed around the MSC notation. 

Our tool has some similarities with the MSC Analyzer/POGA tool [3]. These 
similarities concern aspects of data formats chosen (Z.120, Postscript), the tim- 
ing analysis algorithm for basic MSCs, and probably aspects of the graphical 
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Fig. 14. MESA reporting timing inconsistency in the ATM System 

user interface 3. With respect to analysis algorithms MESA implements the fol- 
lowing analyses that the MSC Analyzer/POGA tool does not offer: non-local 
choice, process divergence, and timing consistency for branching and iterating 
MSC specifications. In the MSC Analyzer/POGA tool it is necessary to perform 
manual unfoldings of the hMSC graphs in order to analyze cyclic MSC speci- 
fications. MESA performs an exhaustive search for all cyclic paths as well as a 
complete timing consistency analysis based on the theory discussed in [6]. 

Currently, we are preparing the public release of version 1.0 of MESA. It 
consists of those parts marked as "currently implemented" in Figure 5. At the 
time of writing we have spent approximately 6 man-months on code development 
for MESA, excluding basic research effort. The tool consists of approximately 
15,000 lines of C++ and 3,000 lines of Tcl/Tk code. While the system is currently 
based on Unix Solaris operating system, we intend to port it to a number of 

3 The MSC Analyzer/POGA tool is not publicly available, hence we speculate graph- 
ical user interface similarities. 
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different platforms. Par t  of the documentation has been done using OMT [21] 
object modeling diagrams to accommodate the particular needs of the volatile 
University environment in which this system is being developed. As an "off-the- 
shelf" component we used the LEDA C + +  library [10] for data  structures like 
graphs and strings. 

The effectiveness of the practical use of MESA hinges upon the reporting 
mechanism for analysis results. We are currently working on extending the tim- 
ing analysis reporting such that  not only the timing inconsistent loops in the 
hMSC are displayed, but  also events involved in timing inconsistent loops to- 
gether with the amount of timing inconsistency. To accommodate the under- 
specification of networking resources and branching synchronization mechanism 
we will allow the user to specify communication channels including capacities 
and history variables as first suggested in [19]. We are currently developing al- 
gorithms to synthesize SDL and ROOM models and we are implementing the 
synthesis of Promela code as suggested in [19]. Finally, to support model analy- 
sis and simulation capabilities we will pursue two routes: First, the translation 
into Promela together with the XSPIN model checking tool can accommodate 
for both features. Ultimately we would like to implement a generic simulator 
and model checker for MSC specifications based on MESA, which could be more 
efficient when based directly on the MSC objects. 
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