
MESA: Support for Scenario-Based Des ign of
Concurrent Systems *

Han~ne Ben-Abdallah 1 and Stefan Leue 2

1 Facultd des Sciences Economiques et de Gestion, Universitd de Sfax
Sfax, Tunisia, hanene@swen.uwaterloo, ca

2 Electrical and Computer Engineering, University of Waterloo
Waterloo, Ontario N2L 3G1, Canada, sleue@swen.uwaterloo, ca

Abst rac t . The latest ITU-T standard syntax of Message Sequence
Charts (MSCs) [16] offers several operators to compose MSCs in a hi-
erarchical, iterating, and nondeterministic way. However, current tools
operate on MSCs that describe finite, deterministic behavior. In this
paper, we describe the architecture and the partial implementation of
MESA, an MSC-based tool that supports early phases of the software
development cycle. The main functionalities of MESA are: an environ-
ment for the composition of system models through MSCs, syntactic
and model-based analysis of an MSC model, and resolution of resource
related underspecifications in an MSC model.

1 I n t r o d u c t i o n

Message Sequence Charts (MSCs) have been extensively used in the development
of telecommunication and reactive systems. They have already been adopted
within several software engineering methodologies and tools, e.g., [13], [8], [17],
[22], [7], [2], and [3]. MSCs are used to document system requirements that guide
the system design [22], describe test scenarios (e.g., [17, 7]), express system prop-
erties that are verified against SDL specifications [2], visualize sample behavior
of a simulated system specification [22, 2, 12], capture early life-cycle require-
ments [3], and to express legacy specifications in an intermediate representation
that helps in software maintenance and reengineering [13].

In this paper we propose the architecture for an MSC-based tool for the re-
quirements and design phases of the life-cycle of reactive systems. In addition,
we illustrate how a portion of this architecture has been implemented in the
Message Sequence Chart Editor, Simulator and Analyzer (MESA) tool. The pre-
sented tool has several motivations. One is to serve as an integration platform
for various tools, which gives software engineers an access to a wider range of
design and analysis techniques that can be more effective due to certain cus-
tomizations. The integration is facilitated through the standardized syntax of

* This work was partly supported by the Information Technology Research Centre
of the Province of Ontario and by the National Science and Engineering Research
Council of Canada. ObjecTime Limited provided further support.

119

MSCs by the ITU-T in Recommendation Z.120 [16]. In other words, we view
MESA as a front-end to various methods and tools, and hence code synthesis
from MSC specifications is an essential objective. We currently envisage syn-
thesis of SDL [14], ROOM [22] and Promela [11], all of which enjoy support by
mature, industrial strength CASE tools.

A second motivation for MESA is to extend the usage of MSCs to the require-
ments specification and design phases. Current tools that use MSCs operate on
MSC specifications that describe finite and deterministic system behavior. How-
ever, in its recent extension, called high-level MSCs [15], the MSC language offers
modular and hierarchical operators to describe parallel, sequential, iterating, and
non-deterministic execution of basic MSCs. These operators facilitate the spec-
ification of large-scale systems. In addition, MSCs offer essential constructs in
a requirements language for reactive systems, e.g., distinction between the sys-
tem and its environment, communication exchanges, internal actions, and timers
along a formal semantics [16, 18]. As a design language, the notion of processes
in MSCs along the composition operators can be used to reflect a software ar-
chitecture. However, iteration and nondeterminism in MSCs require additional,
explicit information, e.g., underlying network architecture and interprocess syn-
chronization to resolve nondeterminism [5]. For this, an MSC-based tool for the
design of reactive systems must offer analysis techniques to detect instances
where such additional information is required and prompts the user for it.

In addition to the above type of design-related analysis, a third motivation
for the tool is to provide analysis for high-level MSC models. Currently, tools
that support analysis of MSCs operate only on basic MSCs. In particular, the
MESA too1 offers an extension of MSCs with real-time information and supports
timing analysis for high-level MSCs. The time extension is based on currently
evolving propositions ([16, 3].)

Another motivation for our tool is that we believe that assertional reasoning
is crucial for any realistic analysis of a system model. For this, we benefit from the
integration features in MESA and use existing model-checkers, more specifically,
by synthesizing code that serves as an input to a model checker, e.g., Promela
code for the XSPXN tool [12].

Paper organization. Section 2 discusses the suitability of MSCs for requirements
specification and design, while Section 3 reviews current usages of MSCs in
software engineering tools. Section 4 illustrates the usage of MSCs based on an
automatic teller machine (ATM) example. Section 5 presents the architecture of
MESA as an MSC-based tool for the requirements and design phases. Section 6
describes the currently implemented version of MESA and its application to the
ATM example. Section 7 summarizes the paper and outlines future research
directions.

2 R o l e o f M S C - b a s e d T o o l s i n t h e S o f t w a r e L i f e c y c l e

The standard syntax of MSCs is defined by the ITU-T Recommendation Z.120
[16]. A basic MSC (bMSC) essentially consists of a set of processes (called in-

120

stances in Z.120) that run in parallel and exchange messages in a one-to-one,
asynchronous fashion. In addition to exchanging messages, processes can indi-
vidually execute internal actions, use timers to express timing constraints, create
and terminate process instances. The standard extension of the MSC language,
called High-Level MSCs (hMSCs) [16], provides for operators to connect basic
MSCs to describe parallel, sequential, iterating, and non-deterministic execu-
tion of basic MSCs. In addition, hMSCs can describe a system in a hierarchical
fashion by combining hMSCs within an hMSC.

msc MSCI
Pl P2

dam-in'T Dreq _T

J.

msc MSC2 i P1 ~j DC

oA I

ocMsc3p1 ' ic,oq /.so2 j[
J. Rc

+
MSC3]

I
Fig. 1. MSC specification example: basic MSCs (left) and high-level MSC (right)

As an example of an MSC specification, consider Figure 1 which describes a
simple connection establishment protocol in a telecommunication system. Pro-
cess Pl is a service provider, P2 is a local and P3 is a remote protocol machine.
The iterating branch describes a repeated request to establish the connection.
The non-iterating branch describes a successful connection establishment. The
semantics of an MSC essentially consists of sequences (or traces) of messages
that are sent and received among the concurrent processes in the MSC. The or-
der of communication events (i.e. message sent or received) in a trace is deduced
from the visual flow of control within each process in the MSC along with a
causal dependency between the event of sending and receiving a message [18].

Message Sequence Charts offer several advantages to the requirements and
design phases of the development of reactive systems. One is the intuitive, graph-
ical notation of MSCs which helps a designer to visualize the system's structure
and interfaces. In addition, as a requirements specification language an advantage
of MSCs is the level of abstraction they offer by merely describing the message
flow between processes (which is the core of reactive systems) and abstracting
out process behavior. This is to be contrasted to other specification techniques,
e.g., SDL and ROOM, which explicitly specify the process behavior and leave
the message flow implicit. Another advantage of MSCs as a requirements lan-
guage is the distinction between the actions of the system and its environment:
MSCs visually distinguish between the actions the system produces or initiates
from those produced by the environment, which facilitates the identification of
the interface between the two system components. For example, in Figure 1 the
environment sends a message of type data_in to the system through the process

121

P1; the system sends a message of type data_out to the environment through
the process P1. As a design language, MSCs are suitable through their notions
of processes and composition operators which facilitate the description of the
system's software architecture.

Due to the focussed expressiveness of MSCs, it is unrealistic to build a CASE
tool exclusively on MSCs. A tool based on MSCs should be a front-end to other
CASE tools, supporting early life-cycle requirements capture and validation ca-
pabilities (see also [3]). In addition, an MSC-based tool should support a number
of functionalities including:

- Analysis of MSC specifications for "things that can go wron]'. The graphical
appeal and perceived clarity of MSC specifications contrasts limits in their
expressiveness, which in turn may lead to ambiguities due to underspecifica-
tions. For example, in the presence of non-determinism and iteration in an
hMSC, explicit information is required about inter-process synchronization
and the underlying network architecture and queuing strategies [5]. The lack
of this information may lead to discrepancies between an MSC specification
and its interpretation and thus any potential implementation [5]. Thus, it is
essential to support analysis mechanisms that detect such ambiguities and
suggest to the designer possible extensions to resolve them. Other analyses
include analysis of the consistency of timing constraints attached to an MSC,
and semantic analysis that checks safety and liveness properties.

- Synthesis of code skeletons in full-fledged specification notations such as
SDL, ROOM or Promela, and testing notations such as TTCN when testing
support is crucial. Code synthesis allows the MSC tool to be integrated with
other tools that provide additional functionalities e.g. model-based analysis.

- Means to simulate the execution of MSC specifications.
- A GUI-based editor to manipulate MSC specifications.

Based on the above tool requirements, we have designed and partly implemented
a tool called MESA (Message Sequence Charts Editor, Simulator and Analyzer)
to support software design for concurrent systems at early life-cycle stages.

3 M S C s i n S o f t w a r e E n g i n e e r i n g T o o l s

In our review of current tools (c.f. [4]) that use MSCs, we examined the fol-
lowing set of requirements we find important in the requirements and design
phases as previously described: 1) The use of MSCs in the description of reac-
tive systems makes constructs to support branching and iterating indispensable.
2) Overall compliance with a syntactic convention like Recommendation Z.120
or the UML [8] notation is desirable. 3) While a translation from MSCs into
a different formalism, e.g., for analysis purposes may be necessary, we require
that as little semantic bias as possible be included. In particular, we criticise
the interpretation of MSCs based on SDL, as sometimes proposed, because of
SDL's heavily constraining message passing semantics. 4) In a notation that
benefits from graphical appeal and visual allusion to such an extent as MSCs, it

122

is mandatory to have semantic assumptions explicitly represented in the spec-
ification. Allowing implicit semantic assumptions would defeat the purpose of
using MSCs during the requirements and design phases where precise specifi-
cations are vital. We call this requirement the "what-you-see-is-what-you-ge~'
(WYSIWYG) requirement w.r.t, the semantics given to MSCs as described by
their visual representation. 5) A requirements tool needs to provide for means to
check the consistency of the requirements specified. 6) Executing or simulating
MSCs can greatly enhance the debugging of a specification, and thus simulation
should be provided by an MSC-based tool.

We have analyzed a sizable subset of the tools that support MSC specifica-
tions (c.f. [4]). The set of analyzed tools includes:

- The ObjecTime toolset by ObjecTime Limited which supports editing of
basic MSCs to document requirements on the communication behaviour of
an ObjecTime model [22] and to visualize execution traces of an ObjecTime
model.

- The SDL based tools GEODE [2] by Verilog SA and the SDT [1] by Telelogic
AB both support editing of basic MSCs as well as a requirements validation
check that answers whether at least one execution of the SDL system corre-
sponds to a given bMSC.

- The MSC Analyzer/POGA tool by Bell Labs [3] is centered around bMSCs
and provides means to analyze an MSC specification syntactically for timing
constraints, and analyze it with respect to potential discrepancies between
the perceived and the implied event ordering in an MSC. This tool supports
the editing of hMSCs, but analysis is focussed on only basic MSCs.

- The SDE [13] and MuSiC++ [20] developed by NTT are closely related tools
centered around SDL and providing for MSC editing, analysis and code syn-
thesis. Analyses include an inconsistency check that is based on deadlock
detection in bMSCs, and code synthesis that produces SDL code from bM-
SCs.

From our review of the above tools, we found out that none of them satisfac-
torily meets the requirements we outlined earlier. In particular, Only the MSC
Analyzer/POGA tool supports Z.120-style MSC composition. Users are allowed
to identify a simple path in the hMSC graph, which is then composed by con-
catenation to form a large bMSC that in turn is analyzed. Furthermore, while
the SDE and MuSiC++ tools provide for a variety of analysis functions, these
tools suffer from a heavy bias towards an assumed SDL semantics. For instance,
an MSC could be flagged as deadlocking even though it will not deadlock unless
one assumes the rather constraining SDL semantics. The SDL-based semantic
assumption contradicts our WYSIWYG requirement.

4 M S C S p e c i f i c a t i o n E x a m p l e : a n A T M S y s t e m

In the remainder of this paper, we will use an Automated Teller Machine (ATM)
example 1 to illustrate the functionalities of MESA. Figures 2, 3 and 4 illustrate

1 A variant of this example was first presented in [6].

M S C A T M

the MSC-based specification of the ATM example. All diagrams were generated
through the editor component of MESA.

123

Fig. 2. hMSC for ATM System

Due to space limitations, we briefly review the example; for more detail see
[6]. The ATM system consists of three concurrent components: the system's user
interface that communicates with potential customers represented by the User
process, the ATM controller software which is represented by the ATM process,
and a host computer in a central bank office that is represented by the Bank
process. Each one of the bMSCs in Figures 3 and 4 represents a scenario or 'use-
case' of the system. The hMSC graph in Figure 2 specifies a successor relationship
between these scenarios.

5 A r c h i t e c t u r e o f a n M S C R e q u i r e m e n t s a n d D e s i g n T o o l

Figure 5 presents a data flow diagram-like view of the architecture of MESA. The
four main functions of MESA(editing, syntactic analysis, model-based analysis,
and code synthesis) are accessed through the GUI-based editor for hMSCs and
bMSCs. Figure 6 shows the hMSC editor displaying the hMSC graph of the ATM
example. Double clicking with the mouse on one of the boxes that represents a
bMSC opens an editor window for the bMSC that is linked to this box. Figure 7
shows the bMSC editor windows for the DispenseCash and Withdraw bMSCs.

124

Fig. 3. Part 1 of ATM System (bMSCs) Fig. 4. Part 2 of ATM System (bMSCs)

5.1 E d i t i n g

The MESA editor allows the user to textually input, draw and manipulate both
the hMSC and bMSC components of an MSC specification. In addition, it allows
the user to load and store MSC specifications.

Syntactic Checks. There were two design goals for the editing component within
MESA. First, users should be guided in following the graphical syntax of Z.120
[16]. Second, we were interested in leaving users the freedom to choose compliance
with the Z.120 standard to some extent.

S lope o f m e s s a g e a r rows : Z.120 requires message arrows to be either down-
wards sloping or horizontal. In [5] we showed that this is a sufficient syntactic
condition to avoid deadlocks in an MSC specification. The MESA editor op-
tionally enforces this rule when drawing message arrows.

125

7.120 layout i

A,~,,.
M$C,8 : Z,120 5ynlmc .:

e a ~ b ~
SDL, RO , Pmrnel~ ~ channels

1 N e n ~ r e ~ r e ~
r~orde : ~ oonsisten~ mqmrements
traces

.

Fig. 5. Architecture of MESA

Fig . 6. Snapshot of the hMSC editor

126

Fig. 7'. hMSC and bMSC editors

Graphical well-formedness and compliance with Z.120: MESA checks
bMSCs for compliance with the following constraints: 1. Each process must
be given a unique name within the scope of a bMSC; 2. each message type
must always be sent and consumed by the same pair of processes within an
MSC specification; 3. a message arrow may not be directed upwards; and
4. two messages may not originate from the exact spot on a process axes
to avoid ambiguities in the interpretation of the event ordering. For hMSCs,
MESA checks the following consistency requirements: 1. All references to bM-
SCs must be defined; 2. all referenced bMSCs must be legal according to the
above bMSC rules; 3. there must be exactly one start node; 4. the hMSC
graph must be connected; and 5. the list of process names for each bMSC
that is referenced in an hMSC must be identical in all bMSCs. In addition,
MESA verifies whether an MSC specification is normalized, i.e. that after
a branching in the hMSC graph no two bMSCs have an identical message
exchange prefix. Normalization is needed for some analyses [5].

Input and Output Formats. MSC specifications can be stored in three different
data formats:

- Strict Z.120 textual format [16]. Compliance with the standard textual syn-
tax facilitates sharing of MSC specifications amongst different CASE tools.

127

- Extended Z. 120 textual fomat. The strict textual representation of MSCs is
insufficient to completely reflect the information content of bMSCs as we use
them. Therefore, the syntactic representation that we use extends the strict
Z.120 syntax as follows.
1. Layout information. This information is essential to reproduce chart lay-

outs that the user has previously chosen. MESA extends the Z.120 textual
syntax with formatting information that is bracketed by comment sym-
bols ' / * ' and '*/' . The layout information consists of the coordinates
of the various MSC components relative to the upper left corner of the
MESA editing canvas, which means that this information may be mean-
ingless for other tools. Figure 8 shows the automatically generated tex-
tual Z.120 extended with layout representation for the bMSC Withdraw
of Figure 4. A similar technique is chosen to represent layout information
for hMSC graphs.

2. Timing information. MESA represents two types of timing information in
bMSCs: the Z.120 timer-based real-time constraints, and our suggested
delay interval-based real-time constraints [6]. Accordingly, MESA extends
the textual Z.120 syntax to include the suggested timing constraints as
follows:

�9 Delay intervals along process axes: We introduce a clause d e l a y [1,
u] 2 in between two consecutive events within a process, c.f. the
delay [0, 0] clause in Figure 8.

�9 Delay intervals along message arrows: We extend the Z.120 message
clauses with a delay interval. For example, consider the sending of a
message of type A to a process P, which is represented by the clause
out A t o P;. To add the timing constraint that this message arrow
has been labeled by a d e l a y [1, u] clause, we extend this clause
to out A to P delay [I, u];.

- Encapsulated Postscript. To support the use of MSCs in software require-
ments and design documentation, MESA generates encapsulated postscript
code of hMSC graphs and bMSCs.

Graphical Editor. The GUI-based editor (c.f. Figures 6 and 7) provides an icon-
based drawing palette with the basic components of the bMSC and hMSC lan-
guages. The GUI-based editor is implemented with an object-oriented interface.
One mouse click on a drawn object shows a menu of actions associated with the
object.

5.2 Syntactic Property Analysis

It is often less expensive to verify properties of a specification syntactically as
opposed to analyzing the specification's model. Currently, MESA implements
three types of properties that can be efficiently checked syntactically: process
divergence, non-local branching choice and timing consistency (c.f. [5]).

2 1 and u denote numeric values representing the lower and the upper bound for the
message delivery delay, respectively.

128

msc Withdraw;
i n s t User , ATM, Bank;

i n s t a n c e User /* x=72 length=280*/ ;
out WITHDRAW to ATM /* y=76 */;
in REQ_AMOUNT from ATM /* y=llO */;
out ENT_AMOUNT to ATM /* y=146 */;
delay [0, 0];

end ins t ance ;
instance ATM /* x=190 length=280*/;

in WITHDRAW from User /* y=76 */;
out REQ_AMOUNT to User /* y=llO */;
in ENT_AMOUNT from User /* y=146 */ ;
set T1 (10) /* y=187./;
out APPRDVE_AMT to Bank /* y=217 */;

endinstance;
instance Bank /* x=304 length=280*/;

in APPROVE_ANT from ATM /* y=217 */;
endinstance;

endms c ;

F ig . 8. Z.120 compliant textual syntax of the Withdraw bMSC generated by MESA

msc MSC 1
P1 P2

= ~ reql =Z = Y

Fig. 9. MSC specification with process di-
vergence

F ig . 10. Timing inconsistent bMSC

129

Process divergence. When processes iterate in an MSC specification, the asyn-
chronous nature of communication can lead to process divergence: a system exe-
cution where one process sends a message an unbounded number of times ahead
of the receiving process. Since an MSC specification makes no assumption about
the speed of its processes, in the absence of a hand-shake mechanism, a sender
process can run "faster" than a receiver process - possibly flooding the receiver
with messages. As an example of process divergence, consider the MSC spec-
ification of Figure 9. One possible execution of this MSC specification is the
infinite trace ! req l !req2 ! req l ! req2. �9 �9 which is the result of process Pl sending
messages without process P2 receiving any one. To handle such a potential exe-
cution, the implementation must answer several questions: What is the network
architecture between the processes Pl and P2? Is there any queuing mechanism
and protocol and if so, what is the capacity of the channels? How are multiple
copies of a not-yet received message handled, are they overwritten or are they
buffered? Regardless of the answers to the above questions, none of them is based
on information explicitly described in the given MSC specification. In addition,
different answers may result in different implementations. We view process di-
vergence as potentially unintended behavior of the specification that must be
detected and brought to the designer's attention. This allows the designer to
decide either to modify the specification to resolve the problem (e.g., by adding
explicit hand-shakes), or to postpone the problem to the implementation phase.
We have syntactically characterized process divergence and developed an algo-
r i thm (now implemented in MESA) that runs in a time linear with the number
of messages in an MSC specification [5]. The algorithm basically examines the
bMSCs involved in a loop and verifies that the processes within the bMSCs
communicate through a hand-shake.

Non-local branching. Figure 1 illustrates an example which describes a system
where MSCl is followed by either MSC2 or MSC3. At this level of abstraction,
all current interpretations assume that all processes choose the same alternative
flow of control so that the overall system behavior is described by one basic MSC
at a time. As argued in [5], in terms of implementation of individual processes,
such an assumption can however be non-trivial as it requires additional, dynamic
information about which alternative other processes in the specification took. For
example, consider the specification in Figure 1. Assume that, after executing the
Dreq event, process P1 is the first process to decide whether to go 'left', i.e., the
next bMSC to execute is MSC2. In order to implement properly the semantics
of choice, the processes P2 and P3 must be informed about Pl ' s decision so
that they branch accordingly. However, neither the MSC semantics as presented
in Annex B of Z.120 [16] nor hMSC graphs provide an explicit way to handle
such an information exchange. MESA implements our algorithm to detect non-
local branching choices and which executes in a time linear with the number of
messages in an MSC specification [5]. The basic idea behind our algorithm is to
examine the bMSCs involved in a choice and verify that they all have the same,
unique process which sends the first event. In case an MSC specification contains
a non-local branching choice, our syntactic analysis produces the bMSCs that

130

are involved in the non-local branching. This allows the user to resolve the choice
by modifying the relevant bMSCs.

Timing Analysis. The usage of timing constraints may lead to specifications
that have no timed execution, i.e. the specification is timing inconsistent [6].
Consider the bMSC in Figure 10. Obviously, the minimum time that passes
from sending message reques t until receiving message r e p l y when following
the messages and the processing within process Server is at least 12 seconds.
However, within process Cl ien t it is assumed that timer T1, which is set to 10
seconds right before sending reques t , is not expiring before r e p l y is received.
This means that the conjunction of all timing constraints is not satisfiable by any
system execution. MESA implements our timing analysis algorithm for branching
and iterating MSC specifications in [6] which extends work in [3, 9].

6 U s i n g MESA in the A n a l y s i s o f t h e A T M S y s t e m

The automatic analysis of the ATM example shows that there are no syntactic
anomalies and inconsistencies with Z.120 syntax in this specification. This anal-
ysis ensures that the subsequent analysis algorithms deliver meaningful results.

Fig. 11. MESA reporting Non-local Choice

Non-local Choice. Figure 11 illustrates how MESA reports the presence of a
non-local choice situation in the ATM System. The non-local choice lies in the
hMSC branching point that follows the bMSC ProcessPin: in Re~usePin and

131

Fig. 12. MESA reporting Process Divergence

G e t 0 p t i o n it is the Bank process which carries out the first action, i.e. sending of
INVALID or VALID, respectively; whereas in TryAgain it is the ATM that sends the
first message. The analysis reveals the danger that processes proceed in different
directions at this branching point. MESA tags the respective parts of the hMSC
graph which allows the user to localize the potential underspecification. The
non-local choice situation here could be resolved in case it was not left up to the
ATM process to send an ABORT message, but if the Bank was enabled to do so. The
purpose of this analysis is to make the user aware of potential underspecifications,
and to hint that synchronization mechanisms must be added, for instance, before
code synthesis can proceed.

Process Divergence. The reporting of a Process Divergence situation in the ATM
system is illustrated in Figure 12. The Process Divergence occurs in a loop in
the hMSC that is formed by the bMSCs S t a r t T r a n s , GetPin, P r o c e s s P i n and
TryAgain. In this cycle, User and ATM exchange messages in both directions,
while the Bank only receives messages. Depending on the speed of the processes,
the ATM may be racing ahead of the Bank and sending a large number of VERIFY
and ABORT messages to Bank. This indicates that in an implementation must
carefully design the communication channel between ATM and Bank. A possible
remedy of this Process Divergence situation is to increase the level of synchro-
nization between the three processes. For example, the TryAgain scenario could
be extended so that after sending the ABORT message to Bank the ATM process
would only proceed after it had received a CONFII~ABORT message from Bank.

Timing Consistency. In the basic version shown in Figures 2, 3 and 4 all the
timing assignments are consistent. But let us assume that we are more concerned
about analyzing the timings in the example. Assume that we change the original

132

specification of the ATM system as indicated in Figure 13: the transmission of
APPROVEA, MT takes [4, 7) seconds, the computations of Bank to determine that
the amount cannot be approved take [3, 5] seconds, and the transmission of the
NOT_~PPROVED message consumes [4, 7) seconds. The question is now whether
these new timing constraints are consistent with the remainder of the timing
constraints in the system.

Fig. 13. Altered bMSCs in the ATM example

Timing analysis in MESA shows that these timing constraints are in conflict
with the 10 second timer setting of T1 in Withdraw and the pre-expiry reset of this
timer in RefuseW• Figure 14 illustrates how MESA reports the presence of a
timing inconsistency by displaying a list of simple loop paths through the hMSC
graph that have a timing inconsistency. MESA allows the user to tag some or all
of the timing inconsistent loops in order to localize the timing inconsistencies. In
Figure 14 we have tagged the loop # 4, which directly connects Withdraw and
RefuseW• For the ATM system, the timing analysis takes about 10 seconds
of execution time on a Sun Sparc Ultra 1 -200 MHz system.

7 C o n c l u s i o n

We have proposed an architecture of a tool for the requirements specification
and design of reactive systems based on Message Sequence Charts. We have
described the MESA toolset as a partial implementation of this architecture.
MESA is designed to be a research testbed for a large variety of algorithms and
methods developed around the MSC notation.

Our tool has some similarities with the MSC Analyzer/POGA tool [3]. These
similarities concern aspects of data formats chosen (Z.120, Postscript), the tim-
ing analysis algorithm for basic MSCs, and probably aspects of the graphical

133

Fig. 14. MESA reporting timing inconsistency in the ATM System

user interface 3. With respect to analysis algorithms MESA implements the fol-
lowing analyses that the MSC Analyzer/POGA tool does not offer: non-local
choice, process divergence, and timing consistency for branching and iterating
MSC specifications. In the MSC Analyzer/POGA tool it is necessary to perform
manual unfoldings of the hMSC graphs in order to analyze cyclic MSC speci-
fications. MESA performs an exhaustive search for all cyclic paths as well as a
complete timing consistency analysis based on the theory discussed in [6].

Currently, we are preparing the public release of version 1.0 of MESA. It
consists of those parts marked as "currently implemented" in Figure 5. At the
time of writing we have spent approximately 6 man-months on code development
for MESA, excluding basic research effort. The tool consists of approximately
15,000 lines of C++ and 3,000 lines of Tcl/Tk code. While the system is currently
based on Unix Solaris operating system, we intend to port it to a number of

3 The MSC Analyzer/POGA tool is not publicly available, hence we speculate graph-
ical user interface similarities.

134

different platforms. Par t of the documentation has been done using OMT [21]
object modeling diagrams to accommodate the particular needs of the volatile
University environment in which this system is being developed. As an "off-the-
shelf" component we used the LEDA C + + library [10] for data structures like
graphs and strings.

The effectiveness of the practical use of MESA hinges upon the reporting
mechanism for analysis results. We are currently working on extending the tim-
ing analysis reporting such that not only the timing inconsistent loops in the
hMSC are displayed, but also events involved in timing inconsistent loops to-
gether with the amount of timing inconsistency. To accommodate the under-
specification of networking resources and branching synchronization mechanism
we will allow the user to specify communication channels including capacities
and history variables as first suggested in [19]. We are currently developing al-
gorithms to synthesize SDL and ROOM models and we are implementing the
synthesis of Promela code as suggested in [19]. Finally, to support model analy-
sis and simulation capabilities we will pursue two routes: First, the translation
into Promela together with the XSPIN model checking tool can accommodate
for both features. Ultimately we would like to implement a generic simulator
and model checker for MSC specifications based on MESA, which could be more
efficient when based directly on the MSC objects.

Acknowledgements

The design of the user interface was based on preliminary work done by Tuan
Ngo. Jennifer Hunt was instrumental in the design and implementation of the
current version of MESA. She also suggested the extensions to the textual Z.120
syntax.

R e f e r e n c e s

1. Telelogic AB. SDT. In G. von Bochmann, R. Dssouli, and O. Rafiq, editors, Par-
ticipant's Proceedings of the 8th International Conference on Formal Description
Techniques FORTE'95, List of tools for demonstrations, page 455, 1995.

2. B. Algayres, Y. Lejeune, F. Hugonment, and F. Hantz. The AVALON project: a val-
idation environment for SDL/MSC descriptions. In O. Faergemand and A. Sarma,
editors, Proceedings of the 6th SDL Forum, SDL '93: Using Objects, October 1993.

3. R. Alur, G. 3. Holzmann, and D. Peled. An analyzer for Message Sequence Charts.
In T. Margaria and B. Steffen, editors, Tools and Algorithms for the Construction
and Analysis of Systems, Lecture Notes in Computer Science, VoL 1055, pages
35-48. Springer Verlag, 1996.

4. H. Ben-Abdallah and S. Leue. Architecture of a requirements and design tool based
on message sequence charts. Technical Report 96-13, Department of Electrical &
Computer Engineering, University of Waterloo, October 1996.

5. H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-
local choice in message sequence charts. In E. Brinksma, editor, Tools and Algo-
rithms for the Construction and Analysis of Systems, Lecture Notes in Computer
Science, Vol. 1217, pages 259-274. Springer Verlag, 1997.

135

6. H. Ben-Abdallah and S. Leue. Timing constraints in message sequence chart spec-
ifications. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi, editors, For-
mal Description Techniques and Protocol Specification, Testing and Verification,
FORTE X / P S T V XVII '97, pages 91 - 106. Chapman & Hall, November 1997.

7. R.J.A. Buhr and C.S. Casselman. Use Case Maps for Object-Oriented Systems.
Prentice Hall, 1996.

8. Rational Software Corporation. UML notation guide. Research report~ 1997. See
also http://www, rational, com/uml.

9. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intel-
ligence, 49:61-95, 1991.

10. Max Planck Institute for Computer Science. LEDA home-page, 1997. URL
http://www, mpi-sb, mpg. de/LEDA/leda, html.

11. G. J. Holzman. Design and Validation of Computer Protocols. Prentice-Hall In-
ternational, 1991.

12. G. 3. Holzmann. What ' s new in SPIN version 2.0.
http://netlib.att .com/netlib/spin/index.html, 1996. Version April 17.

13. H. Ichikawa, M. Itoh, 3. Kato, A. Takura, and M. Shibasaki. SDE: Incremental
specification and development of communications software. IEEE Transactions on
Computers, 40(4):553-561, Apr. 1991.

14. ITU-T. Recommendation Z.100: Specification and Description Language (SDL).
Geneva, Switzerland, 1993.

15. ITU-T. Recommendation Z.120, Annex B: Algebraic Semantics of Message Se-
quence Charts. ITU - Telecommunication Standardization Sector, Geneva, Switzer-
land, 1995. To appear.

16. ITU-T. Recommendation Z.120. ITU - Telecommunication Standardization Sector,
Geneva, Switzerland, May 1996. Review Draft Version.

17. I. 3acobson and et al. Object-Oriented Software Engineering - A Use-case Driven
Approach. Addison-Wesley, 1992.

18. P. B. Ladkin and S. Leue. Interpreting Message Flow Graphs. Formal Aspects of
Computing, 7(5):473-509, 1995.

19. S. Leue and P. B. Ladkin. Implementing and verifying scenario-based specifications
using Promela/XSpin. In 3.-C. Grfigoire, G. J. Holzmann, and D. A. Peled, edi-
tors, Proceedings of the 2nd Workshop on the SPIN Verification System, Rutgers
University, August 5, 1996. American Mathematical Society, DIMACS/32, 1997.

20. NTT Software Corporation, 223-I Yamashita-Cho Naka-Ku, Nakahama-Shi Kana-
gawa 23I Japan. MuSiC++ Message Sequence Charts: How To Connect with SDL,
1995.

21. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. L orensen. Object-
Oriented Modeling and Design. Prentice Hall International, 1991.

22. B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Modelling. John
Wiley & Sons, Inc., 1994.

