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Abst rac t .  Relay Ladder Logic (RLL) [4] is a programming language 
widely used for complex embedded control applications such as manu- 
facturing and amusement park rides. The cost of bugs in RLL programs 
is extremely high, often measured in millions of dollars (for shutting 
down a factory) or human safety (for rides). In this paper, we describe 
our experience in applying constraint-based program analysis techniques 
to analyze production RLL programs. Our approach is an interesting 
combination of probabilistic testing and program analysis, and we show 
that our system is able to detect bugs with high probability, up to the 
approximations made by the conservative program analysis. We demon- 
strate that our analysis is useful in detecting some flaws in production 
RLL programs that are difficult to find by other techniques. 

1 Introduction 

Programmable logic controllers (PLC's) are used extensively for complex embed- 
ded control applications such as factory control in manufacturing industries and 
for entertainment equipment in amusement parks. Relay Ladder Logic (RLL) is 
the most widely used PLC programming language; approximately 50% of the 
manufacturing capacity in the United States is programmed in RLL [5]. 

RLL has long been criticized for its low level design, which makes it difficult 
to write correct programs [18]. Moreover, validation of RLL programs is ex- 
tremely expensive, often measured in millions of dollars (for factory down-time) 
or human safety (for rides). One solution is to replace RLL with a higher-level, 
safer programming language. An alternative is to provide better programming 
support directly for RLL. Since there are many existing RLL applications, and 
many more will be written in this language, we consider the latter approach in 
this paper. 

We have designed and implemented a tool for analyzing RLL programs. Our 
analyzer automatically detects some common programming mistakes that  are 
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Fig. 1. An example RLL program. 

extremely difficult to detect through inspection or testing. The information in- 
ferred by the analyzer can be used by RLL programmers to identify and correct 
these errors. Our most interesting result is an analysis to detect certain race 
conditions in RLL programs. Tested on real RLL programs, the analysis found 
several such races, including one known bug that originally costed approximately 
$750,000 in factory down-time [5]. 

Our analysis is constraint-based, meaning that the information we wish to 
know about a program is expressed as constraints [16, 2, 3]. The solutions of these 
constraints yield the desired information. Our analysis is built using a general 
constraint resolution engine, which allows us to implement the analysis directly 
in the same natural form it is specified. Constraint-based program analysis is 
discussed further in Section 2. 

Our system has two components: (a) a conservative data and control flow 
analysis captures information about a program in an initial system of constraints 
and (b) additional constraints binding program inputs to actual values are added 
to the initial constraint system, which is then solved to obtain the desired in- 
formation. Part (a) is done only once, but part (b) is done many times for 
randomly chosen inputs. Our underlying constraint resolution engine solves and 
simplifies the initial constraints generated by (a), thereby greatly improving the 
performance of (b). 

Beyond the particular application to RLL programs, this system architecture 
has properties that may be of independent interest. First, the use of constraints 
greatly simplifies the engineering needed to factor out the information to be 
computed once from that which must be reevaluated repeatedly--we simply add 
new constraints to the initial system. Second, our system is (to the best of our 
knowledge) a unique blend of conservative program analysis (part (a), which 
approximates certain aspects of computation) and software testing (part (b), 
which "executes" the abstraction for concrete inputs). Third, we are able to 
prove that classes of program errors are detected with high probability, up to 
the approximations made by the conservative analysis. 
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We expect that the engineering advantages of using constraints will carry over 
to other static analysis tools. The latter two results apply directly only if the 
programming language has a finite domain of values (RLL has only booleans). 
Thus, our approach is suitable for some other special-purpose languages (e.g., 
other control languages) but not necessarily for general purpose languages. 

1.1 A M o r e  D e t a i l e d  O v e r v i e w  

By any standard RLL is a strange language, combining features of boolean 
logic (combinatorial circuits), imperative programming (assignment, goto, pro- 
cedures, conditionals), and real-time computation (timers, counters) with an 
obscure syntax and complex semantics. Although widely used, RLL is not well- 
known in the research community. We give a brief overview of RLL together 
with a more detailed, but still high level, description of our analysis system. 

RLL programs are represented as ladder diagrams, which are a stylized form 
of a circuit or data flow diagram. A ladder diagram consists of a set of ladder 
rungs with each rung having a set of input instructions and output instructions. 
We explain this terminology in the context of the example RLL program in 
Figure 1. In the example, there are two vertical rails. The one on the left supplies 
power to all crossing rungs of the ladder. The three horizontal lines are the ladder 
rungs of this program. This example has four kinds of RLL instructions: input 
(two kinds), outputs, and timer instructions. The small vertical parallel bars [[ 
and [4 represent input instructions, which have a single bit associated with them. 
The bit is named in the instruction. For example, the [I instruction (an XIC for 
"Normally Closed Contact" instruction) in the upper-left corner of the diagram 
reads from the bit named A, and the [~ instruction (an XIO for "Normally 
Opened Contact" instruction) in the lower-left corner of the diagram reads from 
the bit named C. The small circles represent output instructions that update the 
value of their labeled bits. The bits named in input and output instructions are 
classified into external bits, which are connected to inputs or outputs external to 
the program, and internal bits, which are local to the program for temporarily 
storing program states. External inputs are generally connected to sensors, while 
external outputs are used to control actuators. The rectangular box represents a 
timer instruction (a TON for "Timer On-Delay" instruction), where PR (preset) 
is an integer representing a time interval in seconds, AR (accumulator) keeps the 
accumulated value, and TB (time base) is the step of each increment of the AR. 
The timer instructions are used to turn an output on or off after the timer has 
been on for a preset time interval (the PR value). 

Instructions are connected by wires, the horizontal lines between instructions. 
We say a wire is true if power is supplied to the wire, and the wire is false 
otherwise. 

An RLL program operates by first reading in all the values of the external 
input bits and executing the rungs in sequence from top to bottom and left to 
right. Program control instructions may cause portions of the program to be 
skipped or repeatedly executed. After the last rung is evaluated, all the real 
output devices connected to the external output bits are updated. Such a three 
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step execution (read inputs, evaluate rungs, update outputs) of the program is 
called a scan. Programs are executed scan after scan until interrupted. Between 
scans, the input bit values might be changed, either because the inputs were 
modified by the previous scan (bits can be inputs, outputs, or both) or because 
of state changes in external sensors attached to the inputs. Subsequent scans use 
the new input values. 

RLL has many types of instructions: relay instructions, timer and counter 
instructions, da ta  transfer instructions, arithmetic operations, da ta  comparison 
operations, and program control instructions. Examples of relay instructions are 
XIC, XIO, and OTE. We briefly describe how these three instructions work for 
the explanation of our analysis. Let wl and w2 be the wires before and after an 
instruction respectively. Further, let b be the bit referenced by an instruction. 

X I C :  if wl and b are true, w~ is true; otherwise, w~ is false. 
X IO:  if wl is true, and b is false, w~ is true; otherwise, w2 is false. 
O T E :  the bit b is true if and only if wl is true. 

In this paper, we describe the design and implementation of our RLL program 
analyzer for detecting relay races. In RLL programs, it is desirable that  the values 
of outputs depend solely on the values of inputs and the internal states of timers 
and counters. If under fixed inputs and timer and counter states, an output  x 
changes from scan to scan, then there is a relay race on x .  For example, in the 
program in Figure 1, we will see later that  the bit B changes value each scan 
regardless of its initial value. Relay races are particularly difficult to detect by 
traditional testing techniques, as races can depend on the timing of external 
events and the scan rate. 

Our analysis generalizes traditional data  flow analyses [1]. Instead of data  flow 
equations, set constraints [16, 2, 3] are used. Set constraints are more expressive 
than data  flow equations because the constraints can model not only data  flow 
but also control flow of a program. 

Our analysis consists of two steps. In the first step, we generate constraints 
that  describe the data  and control flow dependencies of an RLL program. The 
constraints are generated in a top-down traversal of the program's abstract syn- 
tax tree (AST). According to a set of constraint generation rules (see Section 3), 
appropriate constraints are generated for each AST node. These data  and con- 
trol flow constraints are solved to yield another system of simplified constraints, 
the base sys tem.  The base system models where and how a value flows in the 
program. The base system is a conservative approximat ion of the program: if 
during program execution, a wire or a bit can be true (false), then true (false) 
is in the set that  denotes the values of the wire or the bit in the base system; 
however, false (true) may be a value in that  set, too. 

The second step of the relay race analysis simulates multiple scans and looks 
for racing outputs. We choose a random assignment of inputs and add the cor- 
responding constraints to the base system. The resulting system is solved; its 
minimum solution describes the values of the outputs at the end of the scan. 
Since some output  bits are also inputs, the input assignment of the next scan 
is updated using the outputs from the previous scan. Again, we add this input 



188 

assignment to the base system and solve to obtain the minimum solution of the 
outputs after the second scan. If an output changes across scans, a relay race 
is detected. For example, consider the example program in Figure 1. Since the 
bot tom two rungs do not interfere with the first rung, consider these two rungs 
only. Assume that  B has initial value true. Then C also is true, and so in the 
last rung, B becomes false. Thus, in the next scan, B is initially false. Thus, C 
becomes false, which makes B true at the end of this scan. Consequently, we 
have detected a relay race on B: after the first scan B is false, and after the 
second scan B is true. 

The race analysis is conservative in the sense that  it cannot detect all of 
the relay races in a program. However, any relay races the analyzer detects are 
indeed relay races, and we can prove that  a large class of relay races is detected 
with high probability. 

We have implemented the race analysis in Standard ML of New Jersey (SML) 
[20]. Our analyzer is accurate and fast enough to be practical--production RLL 
programs can be analyzed. The relay race analysis not only detected a known 
bug in a program that  took an RLL programmer four hours of factory down- 
time to uncover, it also detected many previously unknown relay races in our 
benchmark programs. 

The rest of the paper is structured as follows. First, we describe the constraint 
language used for the analysis (Section 2). The rules for generating the base 
system come next (Section 3), followed by a description of the relay race analysis 
(Section 4). Finally, we present some experimental results (Section 5), followed 
by a discussion of related work (Section 6) and the conclusion (Section 7). 

2 C o n s t r a i n t s  

In this section, we describe the set constraint language we use for expressing 
our analysis. Our expression language consists of set variables, a least value .l_, 
a greatest value T, constants T and F, intersections, unions, and conditional 
expressions. The syntax of the expression language is 

E ::= v I • I T l e [ E1U E2 l E o n E 2 [  E1 ::~ E2, 

where c is a constant (either T or F) and v E V is a set variable. 
The abstract domain consists of four elements: $ (represented by • {T} 

(represented by T), {F} (represented by F), {T ,F}  (represented by T) with 
set inclusion as the partial order on these elements. The domain is a finite lat- 
tice with N and U being the meet and join respectively. The semantics of the 
expression language is given in Figure 2. 

Conditional expressions deserve some discussion. Conditional expressions are 
used for accurately modeling flow-of-control (see e.g., [3]). In the context of RLL, 
they can be used to express boolean relations very directly. For example, we can 
express the boolean expression vl A v~ with the following conditional expression: 

((vl N T) :~ (v2 N T) =~ T) t_J ((vl N F) ::~ F) U ((v2 N F) ::~ F) 
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p(_L ) = 

p(T)  = {T ,  F} 
p(T) = {T}  

p(F) = {F} 

p(E1 NE~) -- p(E,)Np(E2) 

p(E1 U E2) = p(E1) U p(E2) 

p(E2) if p(E1) # 0 
p( E1 ~ ]?,2) = 0 otherwise 

]Fig. 2. Semantics of set expressions. 

To see this expression does model the A operator, notice that  if vl = T and 
v2 -- T,  the above expression simplifies to 

((T n T) ~ (T n T) ~ T) = ((T ~ T) ~ T) = T. 

One can easily check that  the other three cases are also correct. 
We use set constraints to model RLL programs instead of boolean logic for 

two reasons. First, although the core of RLL is boolean logic, other instructions 
(e.g., control flow instructions) are at best difficult to express using boolean logic. 
Second, RLL programs are large and complex, so approximations are needed 
for performance reasons. Set constraints give us the flexibility to model certain 
instructions less accurately and less expensively than others, thus, making the 
analysis of RLL programs more manageable. 

3 C o n s t r a i n t  G e n e r a t i o n  

In this section, we describe how we use inclusion constraints to model RLL 
programs. Because of the scan evaluation model of RLL programs, it is natural 
to express the meaning of a program in terms of the meaning of a single scan. 
The constraint generation rules model the meaning of a single scan of RLL 
programs. In the rules set variables denote the values of bits and wires. Thus, 
a bit or wire may be assigned the abstract values 0 (meaning no value), {T} 
(definitely true), {F} (definitely false) or {T, F} (meaning either true or false, 
i.e., no information). Rules have the form 

E, I ~-~ E ', S, vl, v2 

where: 

- E and E '  are mappings of bits to their corresponding set variables. The oper- 
v, i fb  I = b 

ator + extends the mapping such that  (E + {b, v})(b') = Z(b'),  otherwise 

- I is the current instruction; 
- S is the set of constraints generated for this instruction; 
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- vl and v2 are set variables associated with the wires before and after instruc- 
tion I and are used to link instructions together. 

In this section, Wl and w2 denote the wires preceding and following an in- 
struction respectively. Furthermore, b denotes the bit referenced by an instruc- 
tion unless specified otherwise. Figure 3 gives some example inference rules for 
generating the constraints describing the da ta  and control flow of RLL programs.  
Below, we explain these rules in more detail. 

C o n t a c t s  
The instruction XIC is called "Normally Closed Contact." If  wl is true, then 
b is examined. If  b is true, then w2 is true. Otherwise, w~ is false. In the rule 
[XIC], two fresh set variables vl and v2 represent the two wires wl and w2. 
The set variable vet represents the referenced bit b. The constraints express 
tha t  w2 is true if and only if both  wl and b are true. 
The instruction XIO, called "Normally Opened Contact," is the dual of XIC. 
The wire w~ is true if and only if wl is true and the referenced bit b is false. 
The rule for XIO is similar to the rule [XIC]. 

E n e r g i s e  Coi l  
The instruction OTE is called "Energise Coil." It  is p rogrammed to control 
either an output  connected to the controller or an internal bit. I f  the wire 
wl is true, then the referenced bit b is set to true. Otherwise, b is set to 
false. Rule [OTE] models this instruction. The set variables vz and v2 are 
the same as in the rule [XIC]. The set variable vet is fresh, representing a 
new instance 1 of the referenced bit b. The new instance is recorded in the 
mapping  E ~. Later references to b use this instance. The constraints express 
tha t  b is true if and only if wl is true. 

L a t c h e s  
The instructions OTL and OTU are similar to OTE.  OTL is "Latch Coil," 
and OTU is "Unlatch Coil." These two instructions appear  in pairs. Once 
an OTL instruction activates its bit b, then b remains true until it is cleared 
by an unlatch instruction OTU, independently of the wire wl which acti- 
vated the latch. The unlatch coil (OTU) instruction is symmetric .  In the 

represents the value of the b prior to the rule [OTL], the set variable vet 
instruction, while the variable vet denotes the new instance of b. The con- 
straint expresses that  b is true if and only the wire wl is true or b is true 
before evaluating this instruction. The rule for OTU is similar. 

T i m e r s  
Timers  (TON) are instructions that  activate an output  after an elapsed 
period of time. Three status bits are associated with a timer: the done bit 
(DN), the t iming bit (TT),  and the on bit (EN). The DN bit is true if the 
wire wl has remained true for a preset period of time. The bit remains true 
unless wl becomes false. The T T  bit is true if the wire Wl is true and the 

i Due to the sequential evaluation of rungs, a particular bit can take on distinct values 
in different parts of a program. An instance of a bit captures the state of a bit at a 
particular program point. 
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Vl and v2 are fresh variables 
v~t = E(b) 

S = {((vl 13 T) ~ (v~t nT)  ~ T) U ((Vl n F) ~ F) U ((v~t n F) =~ F) 
E, X I C ( b )  ~-~ E, S, vl, v2 

C_ v2} 
[XIC] 

vl, v2, and vet are fresh variables 
E' = E + {(b, v~t)} 

s = {((Vl 13 T) ~ T) u ((~1 13 F) ~ F) C_ vod 
E, OTE(b) ~ E', S, vl, v2 

[OTE] 

vl, v2, and vet are fresh variables 
v', = E(b) 

E' = ~ + {(b, ~c~)} 
S = {((v't f3 T) ~ T) U ((Vl t'l T) ~ T) U ((vl n F) ~ (v', 13 F) ~ F) C_ vr 

E, OTL(b) ~-+ E', S, vl, v2 
[OTL] 

vl, v2, Vdn, v~n, and vtt are fresh variables 
E' = E + { (DN,  Vdn), (EN,  vr (TT, vtt)} 

{ ((v, O T ) ~ T  U F) C_va,,,} 
s = ( ( ~  13 T) ~ ( ~  n F) ~ T) u ((~, n F) ~ F) u ((v~n n T) ~ F) C_ ~., 

((~ n T) ~ T) u ((v~ n F) ~ F) C_ ~ .  
E, T O N  ~-~ E', S, vl, v2 

[TON] 

B --- the set of bits in the program 
vx, v2, nvb (for all b E B) are fresh variables 

Rfn,,me = the rungs in the file/name 
E, Rln~m~ ~+ E', So 

E" = {(b, nvb) I b ~ B} 
S=((v l I" lT)=~So)U{(vl I3T)=~E' (b)  U(v lnF)=~E(b)  C n v b [ b e B  } 

E, JSRf ,am~ ~'~ E", S, vl, v2 
[JSR] 

v is a fresh variable 
E, RI ~-~ EI, So,vl,v2 

E', R2 ~+ E",  $1, v~, v'~ 
S={(v2nT)~T u(v~nT)~T u(v2nF)~(v'~nF)~F g v} 

[PAR] 
E, RII[R2~-+E",SU So U $1 U { v l = v ~ } , v l , v  

Fig. 3. Some rules for generating constraints. 
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DN bit is false. It is false otherwise, i.e., it is false if the wire wl is false or 
the DN bit is true. The EN bit is true if and only if the wire Wl is true. 
In the rule [TON], Yd,, vtt and ve, are fresh set variables representing new 
instances of the corresponding bits. The constraint for the DN bit is 

((vl  Cl T) =*, T)  U F __ vdn. 

The constraint approximates timer operation while ignoring elapsed time. 
The DN bit can be false (the timer has not reached its preset period), or if the 
wire wl is true, then the DN bit can be true (the timer may have reached its 
preset period). The constraints for the T T  and EN bits are straightforward. 

Remark 1. For the relay race analysis, we assume that  the DN bit does not 
change value across scans. This assumption is reasonable since the scan time, 
compared with the timer increments, is infinitesimal. The DN bit essentially 
becomes an input bit in the race analysis, and the constraint is accordingly 
simplified to E(DN) C Vdn. 

S u b r o u t i n e s  
JSR is the subroutine call instruction. If the wire wl evaluates to true, the 
subroutine (a portion of ladder rungs with label fname as specified in the 
JSR instruction) is evaluated up to a return instruction, after which ex- 
ecution continues with the rung after the JSR instruction. If wl is false, 
execution continues immediately with the rung after the JSR instruction. In 
the rule [JSR], B denotes the set of all bits in a program. IF S is a set of 
constraints and r a set expression, then the notation v =:~ S abbreviates the 
set of constraints 

c_ l(To c 

The fresh variables nVb represent new instances of all bits b E B. Constraints 
So are generated for the ladder rungs of the subroutine together with a 
modified mapping E ' .  The constraints 

{ ( v l g l T ) ~ E ' ( b )  U ( v l C l F ) ~  E(b) C nvblb6. B} 

merge the two instances of every bit b from the two possible control flows. If 
the wire wl (modeled by vl) is true, then E'(b) (the instance after evaluating 
the subroutine) should be the value of the current instance, otherwise, E(b) 
is the value of the current instance. 

P a r a l l e l  W i r e s  
The rule [PAR] describes the generation of constraints for parallel wires. 
Parallel wires behave the same as the disjunction of two boolean variables, 
i.e., the wire after the parallel wires is true if any one of the two input wires 
is true. In the rule vl = v~ is an abbreviation for the two constraints vl ___ v~ 
and v~ C Vl. The fresh variable v is used to model the wire after the parallel 
wires. The constraint 

(v2 n T)  ::~ T U (v~ n T)  =~ T U (v~ n F) => (v~ I'l F) ::~ F C v 
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says tha t  the wire after the parallel wires is true if one of the parallel wires 
is true. There are other rules for linking instructions together. These rules 
are similar to [PAR] and are also straightforward. 

All solutions of the generated constraints conservatively approximate  the 
evaluation of RLL programs. However, the best approximation is the least so- 
lution (in terms of set sizes). We now present a theorem which states that  the 
constraints generated from an RLL program together with constraints for re- 
stricting the inputs have a least solution. 

T h e o r e m  1 ( E x i s t e n c e  o f  L e a s t  S o l u t i o n ) .  For any RLL  program 7), let S 
be the constraint system generated by the rules given in Figure 3. Further let 
c be an input configuration for 7). The constraint system S together with the 
corresponding constraints of c has a least solution, Sol l~ , t .  

Next, we state a soundness theorem of our model of RLL programs,  namely 
that  our model is a safe approximation of RLL. 

T h e o r e m  2 ( S o u n d n e s s ) .  Let 7 ) be an RLL  program and S be the constraint 
system generated by the rules given in Figure 3. Further let c be an input con- 
figuration for 7 ) .  The least solution Solleast to the constraint system S together 
with the constraints restricting the inputs safely approximates  the values of the 
wires and bits in one scan, meaning that i f  an instance of a bit or a wire is true 
(false} in an actual scan, then true (false} is a value in the set representing this 
instance. 

Theorem 1 and Theorem 2 are proven in [21]. 

4 R e l a y  R a c e  A n a l y s i s  

In this section, we describe our analysis for detecting relay races in RLL pro- 
grams. In RLL programs, it is desirable if the values of outputs  depend solely 
on the values of inputs and the internal states of t imers and counters. If  under 
fixed inputs and t imer and counter states, an output  b changes f rom scan to 
scan, then there is a relay race on b. 

Before describing our analysis, we give a more formal definition of the prob- 
lem. Consider an RLL program P.  Let I N  denote the set of inputs, and let O U T  
denote the set of outputs  2. Let C be the set of all possible input configurations. 
Further, let ~i : O U T  --+ {T, F} be the mapping from the set of outputs  to 
their corresponding values at the end of the ith scan. 

Def in i t ion  1. An RLL program P is race free if  for any input configurations 
e E C, by fixing c, it holds that for all i > 1, ~i = ~1. Otherwise, we say the 
program has a race. 

Note that I N  = set of external inputs + internal bits, and O U T  = set of external 
outputs + internal bits. 
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Definition 1 states under what conditions a program exhibits a race. Note 
that  this definition assumes that  outputs should stabilize after a single scan. 

D e f i n i t i o n  2. Let P be an RLL program. An approximation A of P is an ab- 
straction of P such that, for any configuration e and bit b of P, at the end of 
any scan, the following condition holds: Pc(b) (the value of b in the program P)  
is contained in At(b) (the value of b in the abstraction A), i.e., Pc(b) E At(b). 

Let A be an approximation of P.  Let 4~i : O U T  ~ fa({T,F}) be the 
mapping from the set of outputs to their corresponding values at the end of the 
ith scan in A, where ~a({T, F}) denotes the powerset of {T, F}. 

D e f i n i t i o n  3. An approximation A of an RLL program P is race free i f  for 
any fixed initial input configuration c E C, and the resulting infinite sequence 
of abstract scans $1 ,$2 ,$3 , . . . ,  there exists ~* : O U T  ~ { T , F }  such that 
~*(b) E ~i(b), for all b E O U T  and i >_ 1. 

L e m m a  1. Let P be an RLL program and A an approximation of P.  I f  P is 
race free, then so is A. In other words, i f  A exhibits a race, so does P.  

Proof. Since P is race free, by Definition 1, we have !Pi = ~Pl for all i > 1. Since 
A is an approximation of P,  by Definition 2, kP;(b) E ~ ( b )  for all i > 1. Thus, 
~1 (b) E r (b) for all i > 1, and by Definition 3, the approximation A is also race 
free. 

Lemma 1 states that  if our analysis detects a race under some input c, then 
the program will exhibit a race under input c. We now deal with the problem of 
detecting races in our approximation of RLL programs. 

T h e o r e m  3. For any approximation A of an RLL program P and input c E C, 
the approximation A races under c if  and only if  there exists b E O U T  such that 

Proof. Let b E O U T  be an output  such that  Ni>l~i (b)  -- 0. Since A is an 
approximation of the program P,  we have ~i(b) # ~ .  Thus, there exist positive 
integers i # j such that  ~i(b) = (T}  and 4~j(b ) -- {F}. Therefore, there does 
not exist a if'* : O U T  -+ { T , F }  such that  ~P*(b) E ~i(b) for all b E O U T  and 
for all i > 1. Hence, A has a race under c. 

Conversely, suppose for all b E O U T ,  we have Ni>l ~i(b) ~ 0. Then, let 
�9 (b) = Ni>~ ~i(b) for all b E O U T .  Clearly there exists a ~ *  : O U T  -+ {T, F} 
such that  ~* (b) E ~(b) for all b E O U T .  Therefore, A does not race under input 
C. 

In principle, for any given input assignment, it is necessary to simulate scans 
until a repeating sequence of output  configurations is detected, which may re- 
quire a number of scans exponential in the number of inputs. However, the 
following lemma shows that  two scans are sufficient to uncover the common 
c a s e .  
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for every output b 
Ss~,,(b) :-- {T, F}; 

S, nput := random assignment; 
for Scan := 1 to 2 

B . . . . . .  t := Solteast(Sbase U Si.vut); 
S, np,. := Get lnpu t (B  . . . . . .  t); 
Bsum : :  Bsum CI Bcurr~ent; 
if  Bs~m(b) = O for some output b 

then  output b is racing; 

Fig. 4. Algorithm for detecting races. 

L e m m a  2. Let  A be an approximation of  a program P .  I f  A has a race o f  bit b 
under  input configuration c, such that 4i(b)  N4 i+l (b )  = 0 f o r  some scan i, then 
there exists another input configuration c ~ such that 41 (b) N 42 (b) = ~ under  c ~, 
i.e., it is suff icient to use two scans on every input configuration to uncover the 
race on b. 

Proof. Let 47(b) denote the value of b at the end of the ith scan starting with 
input configuration c. Without loss of generality, assume 4[(b) = {T} and 
47+1(b ) = {F}. Consider the values of the inputs ci prior to scan i. Now choose 
any configuration c', s.t. c'(b) C ci(b),for all b. Since our analysis is monotone 
�9 42 (b) = {F}. Hence, the in the input (Theorem 1), we have 4~ (b) = {T} and c' 
race on bit b can be detected within two scans, starting from a configuration c ~. 

We have verified experimentally that performing only two scans works well; 
an experiment in which we performed ten scans per initial input configuration 
detected no additional races�9 Theorem 3 and Lemma 2 thus lead naturally to 
the algorithm in Figure 4 for detecting relay races�9 The general strategy for the 
analysis is: 

1. Generate the base system using the constraint generation rules presented in 
Section 3. 

2. Add constraints that  assign random bits to the inputs. 
3. Check whether the program races under this input assignment. 
4. Repeat 2. 

We make the assumption that  all input assignments are possible�9 In practice, 
there may be dependencies between inputs that  make some input configurations 
unrealizable. Our analysis can be made more accurate if information about these 
dependencies is available�9 

We use the example in Figure 1 to demonstrate how the race detection al- 
gorithm works. Consider the last two rungs in the example RLL program in 
isolation. The base system for these two rungs is given in the top of Figure 5. 
Assume the bit B is initially true. Adding the constraint T C_ bB0 to the base 
system and solving the resulting system, we obtain its least solution at the end 
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W C w 0  

(iT nbBo) =~ T) u (iF nbvo) =~ F) c_ wl 

(( T N w l ) = ~ T ) u ( ( F A w l ) = ~ F ) C _ w 2  

( ( T n  w2) =~ T) U ( (Fnw2)  =~ F) C_ bc 

T_Cw3 

((T n bBo) =~ F) u ((F n bao) =~ T) c w4 

i(T n ~,~) ~ T) u (iF n w~) ~ F) C ~ 

(( T A w s )  =~ T) U (( F nws)  =~ F) C_ bB, 

bit or wire 
wire preceding XIC(B) w0 
wire following XIC(B) wl 
wire preceding OTE(C) w2 
wire preceding XIO(C) ws 
wire following XIO(C) w4 
wire preceding OTEiB ) w5 
first instance of B bBo 
last instance of B bB1 
the bit C bc 

variable value after the first scan value after the 
T T 
T F 
T F 
T T 
F T 
F T 
T F 
F T 
T F 

second scan 

Fig. 5. Base system for the last two rungs of the example program in Figure 1 with 
the least solutions at the end of the first and the second scans given in the table. 

of the first scan (column 3 in Figure 5). We see that  at the end of the first scan, 
the bit B is false. In the second scan, we add the constraint F C bBo to the 
base system. The resulting system is solved, and its least solution is shown in 
column 4 of Figure 5. We intersect the values of the output  bits, i.e., bits B (the 
last instance) and C, in the least solutions from the first two scans. Since the 
intersections are empty,  we have detected a race. 

If  our analysis finds a race, then the program does indeed exhibit a race. 
The absence of races cannot be proven by our analysis due to approximations 
and due to the finite subspace of input assignments we sample. However, we can 
analyze the coverage of our random sampling approach using the well-known 
Coupon Collector's Problem: Consider a hat containing n distinct coupons. In a 
trial a coupon is drawn at random from the hat, examined, and then placed back 
in the hat. We are interested in the expected number of trials needed to select 
all n coupons at least once. One can show that  the expected number  of trials 
is n ln n-{-(_9(n), and that  the actual number of trials is sharply concentrated 
around this expected value (for any constant c > 0, the probabil i ty that  after 

n(ln n + c) trials there are still coupons not selected is approximately 1 - e - e - ~  

Notice tha t  1 - e -~-~ ~ 0.05 when c = 3, and this probabili ty is independent of 
ft. 
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Program Size #Vars. Secs/Scan Ext. Races Int. Races #Samples Time (s) 
Mini Factory 9,267 4,227 0.4 55 186 1000 844 

Big Bak 32,005 21,596 4 4 6 1000 7466 
Wdsdflt(1) 58,561 22,860 3 8 163 1060 7285 
Wdsdflt(2) 58,561 22,860 3 7 156 1000 7075 

Fig. 6. Benchmark programs for evaluating our analysis. 

T h e o r e m  4. Using the Coupon Collector's problem, after approximately 2 k ln(2k+ 
3) random samples, any race depending on a fixed set of k or fewer inputs has 
been detected with high probability (95~}, up to the approximations due to con- 
servative analysis and performing only two scans. 

Note that the expected number of trials depends only on the number of inputs 
participating in the race, not on the total number of inputs. For example, the 
number of trials required to find races involving 5 inputs with 95% probability 
is 200 whether there are 100, 1000, or 10,000 inputs to the program. 

5 E x p e r i m e n t a l  R e s u l t s  

We have implemented our analysis using a general constraint solver [13]. Inputs 
to our analysis are abstract syntax tree (AST) representations of RLL programs. 
The ASTs are parsed into internal representations, and constraints are generated 
using the rules in Figure 3. The resulting constraints are solved and simplified 
to obtain the base system. 

5.1 B e n c h m a r k s  

Four large RLL programs were made available to us in AST form for evaluating 
our analysis. 

- Mini  Fac to ry  
This is an example program written and used by RLL programmers and 
researchers working on tools for RLL programming. 

- Big Bak  
This is a production RLL program. 

- Wdsdf l t  (1) 
Another production application, this program has a known race. 

- Wdsdf l t  (2) 
This program is a modified version of Wdsdflt(1) with the known race elim- 
inated. The program is included for comparing its results with the results 
from the original program. 

Figure 6 gives a table showing the size of each program as number of lines 
in abstract syntax tree form, number of set variables in the base system, and 
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the time to analyze one scan. All measurements reported here were done on a 
Sun Enterprise-5000 with 512MB of main memory (using only one of the eight 
processors). 

Our analysis discovered many relay races in these programs. The results are 
presented in Figure 6. For each program, we show the number of external racing 
bits (bits connected to external outputs), the number of internal racing bits (bits 
internal to the program), the number of samples, and the total analysis time in 
seconds. By Theorem 4, 1000 trials are sufficient to uncover races involving 7 or 
fewer inputs. 

No relay races were known for the Mini Factory program. Our analysis de- 
tected 55 external races, some of which were subsequently verified by running 
a model factory under the corresponding inputs. Fewer races were found in Big 
Bak, even though it is a much larger program. Two likely reasons for this sit- 
uation are that  Big Bak uses arithmetic operations heavily (which our analysis 
approximates rather coarsely) and that  Big Bak is a production program and 
has been more thoroughly debugged than Mini Factory. Our analysis discovered 
the known relay race in Wdsdflt(1) (fixed in Wdsdflt(2)) among 8 external and 
163 internal races. Note that  some of the reported races may be unrealizable if 
they depend on input configurations that  cannot occur in practice. 

6 R e l a t e d  W o r k  

In this section, we discuss the relationship of our work to work in data  flow 
analysis, model checking, and testing. 

D a t a  F low Ana lys i s  Data flow analysis is used primarily in optimizing 
compilers to collect variable usage information for optimizations such as dead 
code elimination and register allocation [1]. It has also been applied for ensuring 
software reliability [14,15]. Our approach differs from classical data  flow analysis 
in two points. First, we use conditional constraints [3], which are essential for 
modeling both the boolean instructions and control flow instructions. Second, 
the use of constraints gives us the flexibility to analyze many input configurations 
by adding constraints to a base system, instead of performing a global dataflow 
analysis repeatedly. Our approach is more efficient because the base system 
can be solved and simplified once and then used repeatedly on different input 
configurations. 

M o d e l  C h e c k i n g  Model checking [9,10] is a branch of formal verification 
that  can be fully automated. Model checking has been used successfully for ver- 
ifying finite state systems such as hardware and communication protocols [6, 7, 
12, 17, 11]. Model checkers exploit the finite nature of these systems by perform- 
ing exhaustive state space searches. Because even these finite state spaces may 
be huge, model checking is usually applied to some abstract models of the actual 
system. These abstract systems are symbolically executed to obtain information 
about the actual systems. Our analysis for RLL programs is similar to model 
checking in that  our abstract models are finite, whereas RLL programs are in 
general infinite state systems. Similar to model checking, we make the tradeoffs 
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between modeling accuracy and efficiency. Our abstraction approximates timers, 
counters, and arithmetic. It is through these approximations that  we obtain a 
simpler analysis that  is practical for production codes. On the other hand, due 
to these approximations our analysis cannot guarantee the absence of errors. 
However, our approach differs from model checking in the way abstract models 
are obtained. In model checking, abstract models are often obtained manually, 
while our analysis automatically generates the model. 

T e s t i n g  Testing is one of the most commonly used methods for assur- 
ing hardware and software quality. The I /O behaviors of the system on input 
instances are used to deduce whether the given system is faulty or not [19]. 
Testing is non-exhaustive in most cases due to a large or infinite number of test 
cases. One distinction of our approach from testing is that  we work with an 
abstract model of the actual system. There are advantages and disadvantages 
to using an abstract model. A disadvantage is that  there is loss of information 
due to abstraction. As a result, the detection of an error may be impossible, 
whereas testing the actual system would show the incorrect I /O  behavior. Ab- 
stract models have the advantage that  a much larger space of possible inputs 
can be covered, which is important  if the set of inputs exhibiting a problem is 
a tiny fraction of all possible inputs. An abstract model is also advantageous 
when it is very difficult or very expensive to test the actual system. Both of 
these advantages of abstract modeling apply in the case of detecting relay races 
in RLL programs. [8] discusses some other tradeoffs of using the actual system 
and abstract models of the system for testing. 

7 Conclusion 

In this paper, we have described a relay race analysis for RLL programs to 
help RLL programmers detect some common programming mistakes. We have 
demonstrated that  the analysis is useful in statically catching such programming 
errors. Our implementation of the analysis is accurate and fast enough to be 
practical - -  production RLL programs can be analyzed. The relay race analysis 
not only detected a known bug in a program that  took an RLL programmer 
four hours of factory down-time to uncover, it also detected many previously 
unknown relay races in our benchmark programs. 
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