
Tamagotchis N e e d N o t Die - Verification of
STATEMATE Des igns

Udo Brockmeyer and Gunnar Wittich *

OFFIS, Escherweg 2, 26121 Oldenburg, Germany
emaih {Brockmeyer,Wittich}@OFFIS.Uni-Oldenburg.de

Abs t rac t . This paper presents a toolset we built for supporting
verification of STATEMATE 1 designs. STATEMATE is a widely used design
tool for embedded control applications. Designs are translated into finite
state machines which are optimized and then verified by symbolic model
checking. To express requirement specifications the visual formalism of
symbolic timing diagrams is used. Their semantics is given by translation
into temporal logic. If the model checker generates a counterexample, it
is retranslated into either a symbolic timing diagram or a stimulus for
the STATEMATE simulator.

1 I n t r o d u c t i o n

Growing complexity and wide usage of embedded systems in safety critical
applications raises the demand for proving their correctness. Because verification
with theorem provers [16] is a difficult task even for experts, automatic
verification techniques, in particular model checking [3, 4], are gaining increasing
influence in the development of industrial applications.

In this paper we present a toolset we built for the verification of STATEMATE
designs [11, 12, 14]. STATEMATE is a widely used graphical specification tool for
embedded control applications. The STATEMATE toolset captures the phases
of specification, analysis, design and documentation of real-time embedded
systems. To cope with the complexity of real life applications, a system under
development (SUD) may be described graphically from three different viewpoints
within STATEMATE. They cover the structural (Module-Charts), the functional
(Activity-Charts) and the behavioral (Statecharts [10]) aspects of a SUD.

For the verification of STATEMATE designs we use the technique of model
checking. Model checking is an automatic method for proving that a given
implementation of a design meets its requirement specification represented by
a temporal logic formula. To be able to verify STATEMATE designs, we have
implemented a set of tools for the translation from STATEMATE into finite
state machines required by the model checker [9, 19]. The semantical foundation

* Part of this work has been funded by the Commission of the European Communities
under the ESPRIT project 20897, SACRES and the German BMBF project
KORSYS, grant number 01-IS-519-E-O

1 STATEMATE is a registered trademark of i-Logix Inc.

218

of this translation can be found in [6]. In our environment we use symbolic
timing diagrams [7, 18] for the specification of the intended behavior. Symbolic
timing diagrams are a graphical specification formalism. The semantics of these
diagrams can be expressed by CTL formulae [17] that are fed into the model
checker.

If a design does not meet the requirement specification the model checker
generates a counterexample. For debugging purposes this counterexample can be
retranslated into a timing diagram and also into a stimulus for the STATEMATE
simulator. This visualization of a counterexample is a convenient way to point
out the error to the designer.

A work that is closely related to our work can be found in [15]. There a
formal semantics for a subset of Statecharts is given which is based on the basic
step algorithm as defined in [12]. Also an experimental compiler for connecting
a model checker is presented. Our environment supports the synchronous (step)
semantics as well as the so called asynchronous (super-step) semantics provided
by the STATEMATE simulator and therefore both of the semantics given in [12].
In addition to almost the complete language of Statecharts, including timing
aspects, the language of Activity-Charts is covered by our toolset.

As a sample application for the demonstration of our verification environment
we have implemented a simplified version of a tamagotchi. With our environment
we have proved some interesting properties e.g. the possibility of keeping the
tamagotchi alive. Beside this toy example industrial sized applications have been
verified with our toolset. Examples for these applications are a central car locking
mechanism, provided by our project partner BMW [5], and a aircraft storage
management system, provided by our project partner British Aerospace.

This paper is organized as follows. In section 2 we shortly describe symbolic
timing diagrams as a visual specification formalism by giving two examples.
Section 3 overviews STATEMATE and clarifies its concepts. In section 4 we
introduce our sample application. The fifth section covers our verification
environment. In section 6 we give some experimental results. Section 7 concludes
this paper with an outlook on our future work.

2 Specification with Symbolic Timing Diagrams

In our verification environment symbolic timing diagrams (STD) are used to
specify graphically the requirements of reactive systems. STD have a well-
defined semantics given by translation into temporal logic. Thus, they are a
user-friendly notation with a formal semantics to express the properties that
have to be verified. A more detailed description of STD is given in [7, 17, 18].

An advantage of STD is that they are declarative, allowing a designer to
specify requirements incrementally. The complete specification is then given
as a conjunction of the different STD. When using STD as described above,
requirements of reactive systems are described in a compact form. Also, by
composing several STD, very complex requirements can be specified in a modular
way.

219

We clarify the concepts by giving two simple but relevant STD specifications
for our sample application tamagotchi. The first requirement states that our
tamagotchi will always die in the future. We expect this specification not to be
valid over the model, inducing the model checker to generate a counterexample.
This counterexample is a path on which the tamagotchi never dies. The second
requirement says that our tamagotchi will never die. Again, we expect a
counterexample for this diagram, giving a path on which the tamagotchi finally
dies.

Fig. 1. The STD for property 1

Figure 1 shows the STD for the first property. Every STD describes allowed
valuations of visible interface objects of a design over time. The graphical
description of every property consists of three parts. On the left side in figure
1 the interface variables which are constrained by an STD are listed together
with their data-types. In figure 1, we have just one variable DEAD of type
BOOLEAN. An STD consists of symbolic waveforms representing the valuation
of interface variables over time. Different phases of the waveforms are annotated
with predicates over these variables. Waveforms are worked off from the left
side to the right. The valuation of interface variables and thus of predicates is
influenced by the dynamic behavior of a design. If a predicate changes from
TRUE to FALSE, the next predicate on the right side must evaluate to TRUE.
Otherwise, the STD is violated. The conjunction of the predicates in every first
phase gives the activation condition of an STD. In figure 1 we have the activation
condition that DEAD equals FALSE. The activation mode of an STD is either
"initial", meaning it must hold in the initial state of the design, or "invariant",
meaning it must hold every time the activation condition becomes TRUE. The
activation mode for the diagram in figure 1 is "invariant". The arc in the diagram
denotes that the predicate DEAD equals TRUE must eventually become TRUE,
thus specifying a liveness property. The informal semantics of this diagram is
that whenever DEAD equals FALSE a state will be reached where DEAD equals
TRUE.

220

Figure 2 shows the STD for the second property. This time the only waveform
is the one for the BOOLEAN variable ALIVE. The waveform of this "invariant"
STD constraints the valuation of ALIVE over time by three predicates. The
activation condition is satisfied when ALIVE evaluates to FALSE. When ALIVE
becomes TRUE, the STD "steps" into the next phase. The last predicate FALSE
cannot be evaluated to TRUE meaning that the STD can only be fulfilled if
ALIVE stays TRUE forever, hence this STD specifies a safety property. The
informal semantics of this diagram is that once the tamagotchi is alive, it will
stay alive.

Fig. 2. The STD for property 2

3 K e y F e a t u r e s o f STATEMATE

In this section an introduction into key features of STATE;MATE is given. First, the
different languages of STATE;MATE are described together with an overview on the
available set of tools. In the following subsection interesting points concerning
semantical issues are pointed out.

3.1 STATE;MATE Toolset

The STATEMATE; toolset [11,12, 14] captures the phases of specification, analysis,
design and documentation of real-time embedded systems. To cope with the
complexity of real life applications, a system under development (SUD) may be
described graphically from three different viewpoints within STATEMATE;. They
cover the structural, the functional and the behavioral aspects of a SUD.

A designer can create a model of a SUD describing physical components
and their interconnections within Module-Charts. Activity-Charts specify a SUD
as a collection of hierarchically and parallelly composed activities and data-
and control-flows between activities. This is the method to model a functional
decomposition of a SUD. Activities that are not further refined may be described
by Statechavts. Statecharts essentially represent finite state machines enhanced

221

by concepts of hierarchy, orthogonality and a broadcasting mechanism. Inside
a Statechart an arbitrary number of state machines can work in parallel. They
communicate via a broadcasting mechanism. A state machine can only be active
ff and only if its parent is active. Statecharts describe when and how activities
in a SUD react to external stimuli. They are intended to implement controller
behavior. Designers can use two time concepts in Statecharts. Actions may
be scheduled into the future and the reaction on events may be delayed for
some amount of time. Within STATEMATE the real-time behavior of a SUD is
evaluated relatively to a virtual simulation clock. Several semantics for the above
mentioned languages are supported by the tool (see subsection 3.2).

Referenced elements within the three modeling languages have to be defined
in a data-dictionary. Three classes of elements exist. Events are instantaneous
elements. They live exactly one step before they are consumed. Conditions and
data-items retain their values over time. Conditions are the STATEMATE variant
of boolean variables. Data-Items can have more complex types like bit, integer
and real. Every data-item may also be structured as an array, record, union or
as a queue.

Within STATEMATE an interactive analysis can be done on the design with
a simulator. A dynamic test tool can be used to check simple properties of
the model. Code generators for software and hardware modules are available to
produce prototyped code for the model. The remaining tools are for the purposes
of documentation, requirement traceability and revision management.

3.2 S e m a n t i c s o f STATEMATE

In the past several semantics for Statecharts have been investigated, for instance
[13]. STATEMATE also incorporates several semantics for its languages. We can
distinguish between the synchronous simulation semantics or step semantics, the
asynchronous simulation semantics or super-step semantics and the semantics of
the generated code for C-, ADA-, VHDL- and Verilog. Informal explanations
of these semantics can be found in [12]. Our toolset handles the step and the
super-step semantics. A rigorous and formal definition can be found in [6].

In the step semantics the SUD accepts an external stimulus to trigger the
modeled reactive system. Then all active components of the design perform
exactly one step synchronously to come to a new state configuration and a new
valuation of variables. Every step costs a fixed amount of t ime for every parallel
component. After termination of a step, the SUD accepts new stimuli. The step
semantics is mainly used for clocked designs.

The basic idea of the super-step semantics is, that after having given an
external stimulus to a SUD being in a stable state, it starts a chain of steps until
it reaches a stable state again. Stable means, that further steps are impossible
without new external stimuli. A large number of reactions are possible until a
stable state is reached again. A complete chain is called a super-step, while every
single computat ion is called a step. In contrast to the step semantics, the steps
in such a chain do not consume time. All computations between stimulation of
such a SUD and returning into a state of equilibrium are performed infinitely

222

fast, hence the virtual simulation clock is not incremented before a super-step
has been finished. After completion of a super-step the clock will be advanced
to the next relevant point in time. A point in time is relevant, if a scheduled
action has to be executed, if a timeout event has expired or if a SUD is triggered
again by a new external stimulus. This semantics constraints the interaction of
the environment with a SUD to super-step boundaries, but all activities inside
a SUD work synchronously and communicate after every step. A prerequisite
is, that all activities have completed their actual step. If one activity diverges,
e.g. by executing an unbounded loop, then the actual step cannot be terminated
and the super-step is unbounded. The super-step semantics is mainly used for
asynchronous designs.

This overview shows that the step semantics is much simpler than the super-
step semantics. In the step semantics the SUD is stable after every terminated
step, time increases uniformly and the environment can influence the valuation
of variables on every step. In contrast, the super-step semantics needs additional
bookkeeping to indicate stability. Only in a stable state the system can increase
timers and can accept new stimuli.

4 A STATEMATE E x a m p l e

In this section the concepts of STATEMATE are clarified by introducing a
tamagotchi as a sample application. The STATEMATE design consists mainly
of an Activity-Chart and a set of parallel automata that are described by a
Statechart. The Activity-Chart defines the environment and the interface of
the application, the Statechart controls the state of the system and reacts on
environment actions.

Fig. 3. The Activity-Chart for the tamagotchi

The state of the tamagotchi consists of a set of counters. These counters
cover the levels for saturation, liquid, wellbeing, fitness and healthiness. The
changes of every counter over time are controlled by the above automata. In every

223

step the counters for saturation, liquid, wellbeing and fitness are decremented
by one. The counter for healthiness is decremented depending on the levels for
wellbeing and fitness. If the level for wellbeing is zero, the counter for healthiness
is decremented by 3; if the level for fitness is zero, it is decremented by 4. If a
counter falls below a certain threshold, the tamagotchi outputs a corresponding
message. This message is reset when the counter raises again and reaches another
threshold. As soon as one of the counters for saturation, liquid or healthiness
becomes zero, the tamagotchi dies. To prevent this, the environment (the owner
of the tamagotchi) can influence the counters by several actions. In every step
one and only one of the actions eat, drink, stroke, play and 'giving an injection'
can be performed. These actions increase the corresponding counters by 2,3,15,12
and 7 until upper bounds are reached. The tricky task is that in one step all
counters can be decremented, but only one of them can be incremented by an
environment action. By interpreting the outputs of the tamagotchi, the next
action can be chosen.

Fig. 4. The Statechart for the tamagotchi

224

Figure 3 shows the Activity-Chart for our application. It contains the top
level activity TAMA_ACT of the system. In this activity there is a control
activity TAMA_CTRL. The figure also shows that the environment, the dashed
boxes, can influence the system by the input CMD. CMD is defined as an
enumeration type describing which of the above actions should be performed
in the next step. An idle action is possible, too. The outputs of the system
consist of a set of messages to indicate the state of the system.

Figure 4 shows the Statechart implementation of the control activity
TAMA_CTRL. The top level state is the parallel composition of two orthogonal
automata. The top-left automata LIVING monitors if the remaining system
delivers an event DIE showing that one of the critical counters has reached its
zero value. It reacts by emitting a KILL event and the remaining system steps
into a final state KILLED.

The right automaton BEHAVIOUR is the one which controls the tamagotchi.
It consists of two exclusive states, one state for the behavior of the living
tamagotchi (NORMAL) and the dead state (KILLED). The state for the
behavior itself is the parallel composition of five sub-automata, each controlling
one of the counters. Every automata is either in an idling (uncritical) state or
in a state in which its counter is below the threshold. On entering the latter
one, a corresponding message is generated; on reentering the first one, the
message is removed. In every automata there are transitions that are triggered
by the input CMD. The effect of executing these transitions is the increment of
the corresponding counter. The decrease of the counters is realized by a static
reaction associated with the state NORMAL (not visible in the figure). A static
reaction of a state is executed as long as the state is active. In our case, the
counters are decreased as long as the tamagotchi is alive.

5 The Verification Environment

Figure 5 gives a brief overview over our verification environment. The tools we
have built and we concentrate on in this paper are shaded. The unshaded tools
are either from our project partners or from other members of our group. After
giving a short introduction here, we will explain the separate tools in more detail
in the following subsections.

Mainly there are two paths to feed the model checker. The left path starts
with the Timing Diagram Editor (TDE) 2, where the user can specify the
expected behavior of the design. The resulting diagrams (STD) are translated
into computat ion tree logic (CTL) by the tool s t d 2 c t l that was developed by
other members of our group. For a more detailed explanation see [7, 17, 18]. The
right path of figure 5 starts with STATEMATE. For the extraction of information
about a SUD out of STATEMATE, an application procedural interface (API)
has been developed in close collaboration with i-Logix which is now delivered
together with STATEMATE. The STATEMATE design (STM) is first translated into

2 The timing diagram editor is a product of Abstract Hardware Limited (AHL)

225

an intermediate language called SMI. We defined SMI as an universal language
for the translation of high-level formalisms into finite state machines (FSM) 3 SMI
is a tiny, but very powerful language, covering parallelism, nondeterminism and
a set of nontrivial data-types like arrays, records and unions. To cope with the
problem of complexity, a lot of optimizations can be performed on the SMI code.
These optimizers are listed in the box in the middle of the figure. The resulting
SMI code is translated into a FSM for model checking. This translation is done
using ROBDDs [1,2]. Together with the computed formula, the FSM is fed
into the model checker. Within our environment, we are using two CTL model
checkers. The first one is the assumption/commitment style model checker by
SIEMENS [9]. Alternatively we use the model checker of the VIS [19] system.
If a check fails, i.e. the checked formula is not true, the model checker produces
an error-path. This error-path can be retranslated into either a stimulus for the
STATEMATE simulator by e r r 2 s t m or a symbolic timing diagram by the tool
e r r 2 s t d which again was developed by other members of our group.

Fig. 5. The verification environment

5.1 T r a n s l a t i n g STATEMATE i n t o S M I

The compiler stm2sms translates STATEMATE designs into the intermediate
format SMI. SMI is a simple programming language containing concepts to
model hierarchy, parallelism and nondeterminism of STATEMATE designs. The
data-types and expression language of SMI is powerful enough to cover a
wide range of STATEMATE types. SMI contains statements for null operations,
assignments, deterministic branches, nondeterministic branches, while loops,
breaks and operators for sequential and parallel compositions. Supported data-
types are enumeration, bit, boolean, event, integer, string, array, record and

3 In other projects, we translate VHDL into SMI

226

union. The expression language contains common boolean and numeric operators
and selection on arrays, records and unions.

In the translation process stm2smi performs several tasks. It maps used data-
types of a design onto the types of SMI. In addition the state configurations of the
Statecharts are encoded by SMI variables. Therefore, stm2smi defines variables
to encode data and boolean variables, events and the control information of a
design. With every variable in SMI we keep some additional information for
back-annotation including the original name, its data-type, its mode (in, out,
local) and its origin in a design (data, condition, event, timer, control). These
information are mainly used if the model checker produces a counterexample for
a given property.

In [6] a compositional semantics for STATEMhTE is given. This means, that
the semantics of a model contains all possible behaviors of its environment.
For the generation of compositional models, some additional variables are
introduced. These variables indicate stability and divergence of the model and
its environment.

In STATEMATE, all active activities perform a step synchronously, then new
stimuli are accepted and the next step is executed. To represent the cyclic
behavior of a reactive system modeled as a STATEMATE design, we embed the
generated code for a design in a never terminating while loop. The code inside
the loop describes one step of the whole system, depending on the valuation of
the variables and the state configuration. Depending on the chosen semantics
(step, super-step) timers are incremented always or only after the model has
reached a stable state again (termination of a super-step). Similar, acceptance
of new inputs and setting of auxiliary variables for compositionality depends on
the chosen semantics. In the step semantics, after every execution of the body
of the loop the model is stable and ready to synchronize.

While translating a SUD a data-flow analysis is performed to compute an
interface for a given design. Used objects can be either of mode input, output
or local. Only inputs and outputs are included in the generated interface.

The readable format of SMI allows to validate easily the translation process,
to perform optimizations, to apply abstractions and it simplifies the generation
of ROBDD based finite state machines compared with a direct encoding of
STATEMATE designs.

A wide range of STATEMATE concepts for Activity-Charts and Statecharts
are supported. Currently, on the graphical level, we disallow the usage of generic
charts and combinational assignments in general. In Statecharts, deep-history
connectors are not supported. Not supported data-types are real and queue. On
the textual level, we do not allow implicit events on structured data. Time units
in timeouts and scheduled actions must be constant. The usage of pre-defined
functions is limited to a subset.

5.2 Translating SMI into FSMs

The translation of SMI. generates functional BDDs instead of relational ones,
because they are more efficient during the generation of FSMs and while model

227

checking. For every bit of the state space a characteristic function representing
this bit has to be computed. The state space consists of the variables defined in
the SMI program. There are no additional variables needed for representing the
location within the SMI program because one step of the FSM is one complete
run thru the nonterminating outermost loop of the SMI program. For every
SMI variable a set of ROBDD variables is needed for the representation. The
encoding of the variables is done in the usual way, resulting in a minor overhead
representing arrays and records (an array with 3 elements of the subrange 0 to
2 is encoded by 3 * 2 = 6 bits, but the 3 * 3 * 3 = 27 possible values of the array
can be mapped onto 5 bits). Because we are using functional FSMs we have to
add additional input variables to cope with the nondeterminism of SMI. These
'choice' inputs are choosing between the possible runs thru the SMI program
and resolve the nondeterminism.

Loops inside the SMI program can be handled in two ways. First,
the compiler computes a fixed point for a loop. This technique is capable
to detect nonterminating loops, but in practice it is very slow for most
applications, because of the necessary usage of the very costly BDD substitution.
Alternatively, the compiler unrolls a loop until the condition gets false. This
technique cannot handle endless loops and does not stop in these cases. But
in practice unrolling is much faster than computing a fixed point, because our
technique prevents the usage of BDD substitution.

5.3 O p t i m i z a t i o n s o n t h e SMI C o d e

Every compiler produces overhead, resulting in unnecessary instructions and
variables. But especially model checking or even the FSM generation can get
impossible due to this overhead. A set of optimizers for SMI code were developed
to cope with this problem. At present, the following set of optimizations can be

performed on SMI code:

smidet (Make SMI more deterministic)
In some cases unnecessary instructions for nondeterministic executions
within the SMI code are produced during the translation from STATEMATE
into SMI. These instructions result in additional 'choice' inputs within
the FSM. The tool smidet detects this overhead and deletes/replaces the
instructions in the SMI code.

smired (Reduce SMI)
With this tool, unused inputs can be determined and eliminated.

smidec (Decompose ASYNC signal)
Using the super-step semantics of STATEMATE we get a special signal ASYNC
that is represented by a very complex ROBDD. The tool smidec bypasses
th i s problem by splitting up this signal into a set of signals that can be
represented by smaller ROBDDs.

smiopt (Optimize SMI)
This is the most powerful tool to optimize SMI programs. The tool can be
run in order to do one or more of the following tasks:

228

1. Perform a data flow analysis and delete unused and constant variables
2. Delete code parts that are unused because they can never be taken due

to the values of the variables
3. Reduce the SMI program to the set of variables that is needed to verify

a given property. This set is computed by building the transitive closure
of the data flow graph of the variables used in the property

4. Freeing variables: allows to turn a variable into an input, thus performing
a safe abstraction of the original behavior

staidom (Generate an optimized domain for ROBDD generation) The size of the
ROBDDs depends very heavily on the ordering of the ROBDD variables.
Even though reordering techniques are used during the ROBDD generation,
the initial ordering of the ROBDD variables is important. This tool tries
to find a good variable ordering for the ROBDDs before any ROBDD is
computed. It analyses the data flow within the SMI program and determines
the dependencies between the SMI variables and thus between the ROBDD
variables. Using special heuristics we developed, the tool produces an initial
ordering that is taken by the compiler from SMI to FSM.

mput bits

tamagotchi 26
11 + smidet

+ smiopt 11
+ smired 8
+ smidom 8

state bits timelBDD nodes

75 0.67s 2677
75 0.58s 1801
60 0.35s 1741
60 0.32s 1735
60 0.29s 982

Table 1. Results of the optimizations

Table 1 shows the effect of using the above optimizers on the size of our
sample application and the time to generate the FSMs 4. Each line adds one
optimizer to the FSM generation and gives the corresponding results. We see that
the number of ROBDD variables and the size of the model decreases dramatically
using the optimizers. Other tested case studies gave similar results.

5.4 Retranslatlon of Error-Paths

The tools err2std and err2stm retranslate a produced error-path into a timing
diagram or into a stimuli for the STATEMATE simulator. The STD shows the
evaluation of the interesting variables over time, the simulator shows the dynamic
behavior of the system until the faulty state is reached. Up to now, only error-
paths produced by the the SIEMENS model checker can be retranslated.

6 E x p e r i m e n t a l R e s u l t s

In this section we present some results we got applying our tools on some
STATEMATE designs. We concentrate on the generation of the FSMs and on

4 All results in this paper have been computed on an Ultra Spare 1 with 143 MHz

229

model checking, but omit the translation from STD into CTL, because it is an
uncritical task wrt. t ime/space complexity.

For our tamagotchi, we could generate a FSM out of the STATEMATE design
within a few seconds. As expected, the model checker checked both of the two
interesting properties presented in section 2 to be false and produced error-paths.
The error-path of the first property consists of a 6 step long initial sequence of
states followed by a loop sequence of 52 states on which the tamagotchi stays
alive. On this loop we can observe every modeled behavior of the tamagotchi
(it even gets ill on an intermediate state on the loop) and every input action is
performed at least once. The error-path for the second property shows a sequence
where the tamagotchi finally dies. On this sequence of length 21 no input actions
are performed such that all counters are always decremented until the tamagotchi

dies.
An interesting result while model checking the first property of the

tamagotchi is the huge amount of time the VIS model checker needed (8627s).
The reason for this is, that the tamagotchi contains a lot of counters and just
a few states and transitions within the automata. Therefore it is dominated
by data. When model checking other designs which are dominated by control,
meaning that these designs have just a few variables but much more states and
transitions, we got results within a few seconds. Two examples for such designs
are the well known traffic light controller (TLC) and a controller of the fault
tolerant production cell 5 (HDT). A non-trivial example we model checked is a
central car locking mechanism (ZV) 6 with 12 Statecharts running in parallel each
containing between 3 and 20 states and many transitions [5]. The biggest case
study we checked is a storage management systems of an aircraft 7. Table 2 gives
a brief overview over some results we got from our verification environment.

Model stm2smiloptimizers[smi2fsm [# of bits
in s I in s[in s[input/state

0.66
0.35
0.23
0.15
O.26
0.11

45.64
13.14

829.84
786.39

26/75
s/6o
18/33
11/27
26/50
10/32

223/327 1147710
123/279 28602
99/720 21358
44/643 15249

of BDD MC
nodes in s

2177 -
982 8627

2485 5.i
1278 1.8
2363 10.2
521 2.3

1785

966

tama 2.35
tama (opt) 2.35 0.70
TLC 1.51
TLC (opt) 1.51 0.60
HDT 15.51
HDT (opt) 15.51 0.60
ZV 10.49
ZV (opt) 10.49 10.00
SMS 20.79
SMS (opt) 20.79 7.60,

Table 2. Experimental results

5 This case study was provided by our project partner FZI Karlsruhe
6 This case study was provided by our project partner BMW
7 This case study was provided by our project partner British Aerospace

230

The table shows times for the generation and the resulting sizes for five
different case studies. Also, the times for model checking of some special verified
properties are listed. For every study, the FSM has been computed with and
without applying the set of optimizers. We see that the generation of the FSMs
could be performed for all studies, but the sizes of the resulting FSMs differ very
much depending on the optimizations. While model checking is possible on all
optimized FSMs, model checking cannot be performed on the unoptimized FSMs
in three cases. The times to generate and optimize SMI are almost linear in the
size of STATEMATE design and thus not critical. The critical times result from
the translation from SMI into FSMs and especially from the model checking
itself. We can observe that the times spent for optimizations are covered by
the improved times for model checking, e.g. 0.6s for HDT optimizations leads
to 7.9s speedup in model checking. In addition, the table shows, that the time
for verifying the tamagotchi is much greater than the times to verify the other
studies, although it is a small design.

7 C o n c l u s i o n s a n d F u t u r e W o r k

In this paper a powerful environment for the verification of STATEMATE designs
against symbolic timing diagram specifications has been presented and its
usability on a sample application was demonstrated. Also some results on two
industrial sized designs were given. Within our environment, almost all features
of STATEMATE are supported and we are still working on expanding this set.
Even though a set of optimizations can be performed during the verification task,
we know that there is still a lot of space for further improvements. We expect
to be able to verify much bigger designs in the near future. Even though the
STATEMATE concepts of timeouts and scheduled actions are already supported,
we still use timing diagrams without time annotations and therefore a normal
CTL model checker. We are working on a time annotated extension of timing
diagrams [8] in order to perform real-time model checking. Another direction for
extending our work is abstraction.

Acknowledgmen t . We thank our project partners AHL, i-Logix and SIEMENS
for providing the tools and for discussions. Furthermore we thank our project
partners BMW, British Aerospace and FZI for the case studies. Special thanks
to Hans Jiirgen Holberg for heavy testing of our toolset and to Werner Damm
for constructive critics on this paper. Last but not least we thank the members
of our group for helpful discussions and tools.

References
1. S.B. Akers: Binary decision diagrams. In: Transactions on Computers, No. 6 in

Vol. C-27, IEEE (1978) 509-516
2. K. S. Brace, Richard L. Rudell and Randal E. Bryant: Efficient implementation of

a BDD package. In: Proceedings 27th Design Automation Conference, Orlando,
Florida, ACM/IEEE (1990) 40-45

231

3. J.R. Burch, E.M. Clarke, K.L. McMillan and D.L. Dill: Sequential circuit
verification using symbolic model checking. In: Design Automation Conference
ACM/IEEE (1990)

4. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and Jim Hwang: Symbolic
model checking: 1020 states and beyond. In: Proceedings of the Fifth Annual
IEEE Symposium on Logic in Computer science (1990)

5. W. Damm, U. Brockmeyer, H.J. Holberg, G. Wittich and M. Eckrich: Einsatz
formaler Methoden zur ErhShung der Sicherheit eingebetteter Systeme im KFZ.
VDI/VW Gemeinschaftstagung (1997)

6. W. Damm, H. Hungar, B. Josko and A. Pnueli: A Compositional Real-Time
Semantics of STATEMATE Designs. In: Proceedings of COMPOS 97, edt. H.
Langmaack and W.P. de Roever, Springer Verlag, to appear 1998

7. W. Damm, B. Josko, R. SchlSr: Specification and verification of VHDL-based
system-level hardware designs. In: E. BSrger, editor, Specification and Validation
Methods. Oxford University Press, (1995) 331-410

8. K. Feyerabend and B. Josko: A Visual Formalism for Real Time Requirement
Specifications, Transformation-Based Reactive Systems Development. In:
Proceedings of 4th International AMAST Workshop on Real-Time Systems and
Concurrent and Distributed Software, ARTS'97, edt. M. Bertran and T. Rus.
Lecture Notes in Computer Science Vol. 1231. Springer Verlag (1997) 156-168

9. T. Filkorn, SIEMENS AG: Applications of Formal Verification in Industrial
Automation and Telecommunication. In: Proceedings of Workshop on Formal
Design of Safety Critical Embedded Systems, (1997)

10. D. Harel: Statecharts: A Visual Formalism for Complex Systems. In: Science of
Computer Programming 8, (1987)

11. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring and M. Trakhtenbrot: STATEMATE: A working environment for the
development of complex reactive systems. In: IEEE Transactions on Software
Engineering, (1990) 403-414

12. D. Harel and A. Naamad: The STATEMATE Semantics of Statecharts. In: ACM
transactions on software engineering and methodology, Vol 5 No 4 (1996)

13. D. Hazel, A. Pnueli, J.P. Schmidt and R.Sherman: On the Formal Semantics of
StateCharts. In: Proceedings of First IEEE, Symposium on Logic in Computer
Science, (1987)

14. D. Harel and M. Politi: Modeling Reactive Systems with Statecharts: The
STATEMATE Approach. i-LOGIX INC., Three Riverside Drive, Andover, MA
01810, Part No, D-1100-43 (1996)

15. E. Mikk, Y. Lakhnech, C. Petersolm and M. Siegel: On Formal Semantics of
Statecharts as Supported by STATEMATE. In: Proceedings of BCS-FACS Northern
Formal Methods Workshop, (1997)

16. S. Owre, N. Shankar and J.M. Rushby: A Tutorial on Specification and
Verification Using PVS. In: Computer Science Laboratory, SRI Int., (1993)

17. R. SchlSr: Symbolic Timing Diagrams: A visual formalism for specification
and verification of system-level hardware designs. In: Dissertation (to appear),
Universit/it Oldenburg, (1998)

18. R. SchlSr and W. Damm: Specification and Verification of System-Level Hardware
Designs using Timing Diagrams. In: EDAC-EUROASIC, (1993)

19. VIS: A system for Verification and Synthesis. The VIS Group. In Proceedings
of the 8th International Conference on Computer Aided Verification, Springer
Lecture Notes in Computer Science, Vol. 1102, Edited by R. Alur and T.
Hen~inger, New Brunswick, NJ (1996) 428-432

