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Abs t rac t .  This paper presents a toolset we built for supporting 
verification of STATEMATE 1 designs. STATEMATE is a widely used design 
tool for embedded control applications. Designs are translated into finite 
state machines which are optimized and then verified by symbolic model 
checking. To express requirement specifications the visual formalism of 
symbolic timing diagrams is used. Their semantics is given by translation 
into temporal logic. If the model checker generates a counterexample, it 
is retranslated into either a symbolic timing diagram or a stimulus for 
the  STATEMATE simulator. 

1 I n t r o d u c t i o n  

Growing complexity and wide usage of embedded systems in safety critical 
applications raises the demand for proving their correctness. Because verification 
with theorem provers [16] is a difficult task even for experts, automatic  
verification techniques, in particular model checking [3, 4], are gaining increasing 
influence in the development of industrial applications. 

In this paper we present a toolset we built for the verification of STATEMATE 
designs [11, 12, 14]. STATEMATE is a widely used graphical specification tool for 
embedded control applications. The STATEMATE toolset captures the phases 
of specification, analysis, design and documentation of real-time embedded 
systems. To cope with the complexity of real life applications, a system under 
development (SUD) may be described graphically from three different viewpoints 
within STATEMATE. They cover the structural (Module-Charts), the functional 
(Activity-Charts) and the behavioral (Statecharts [10]) aspects of a SUD. 

For the verification of STATEMATE designs we use the technique of model 
checking. Model checking is an automatic method for proving that  a given 
implementation of a design meets its requirement specification represented by 
a temporal  logic formula. To be able to verify STATEMATE designs, we have 
implemented a set of tools for the translation from STATEMATE into finite 
state machines required by the model checker [9, 19]. The semantical foundation 

* Part of this work has been funded by the Commission of the European Communities 
under the ESPRIT project 20897, SACRES and the German BMBF project 
KORSYS, grant number 01-IS-519-E-O 

1 STATEMATE is a registered trademark of i-Logix Inc. 



218 

of this translation can be found in [6]. In our environment we use symbolic 
timing diagrams [7, 18] for the specification of the intended behavior. Symbolic 
timing diagrams are a graphical specification formalism. The semantics of these 
diagrams can be expressed by CTL formulae [17] that are fed into the model 
checker. 

If a design does not meet the requirement specification the model checker 
generates a counterexample. For debugging purposes this counterexample can be 
retranslated into a timing diagram and also into a stimulus for the STATEMATE 
simulator. This visualization of a counterexample is a convenient way to point 
out the error to the designer. 

A work that is closely related to our work can be found in [15]. There a 
formal semantics for a subset of Statecharts is given which is based on the basic 
step algorithm as defined in [12]. Also an experimental compiler for connecting 
a model checker is presented. Our environment supports the synchronous (step) 
semantics as well as the so called asynchronous (super-step) semantics provided 
by the STATEMATE simulator and therefore both of the semantics given in [12]. 
In addition to almost the complete language of Statecharts, including timing 
aspects, the language of Activity-Charts is covered by our toolset. 

As a sample application for the demonstration of our verification environment 
we have implemented a simplified version of a tamagotchi. With our environment 
we have proved some interesting properties e.g. the possibility of keeping the 
tamagotchi alive. Beside this toy example industrial sized applications have been 
verified with our toolset. Examples for these applications are a central car locking 
mechanism, provided by our project partner BMW [5], and a aircraft storage 
management system, provided by our project partner British Aerospace. 

This paper is organized as follows. In section 2 we shortly describe symbolic 
timing diagrams as a visual specification formalism by giving two examples. 
Section 3 overviews STATEMATE and clarifies its concepts. In section 4 we 
introduce our sample application. The fifth section covers our verification 
environment. In section 6 we give some experimental results. Section 7 concludes 
this paper with an outlook on our future work. 

2 Specification with Symbolic Timing Diagrams 

In our verification environment symbolic timing diagrams (STD) are used to 
specify graphically the requirements of reactive systems. STD have a well- 
defined semantics given by translation into temporal logic. Thus, they are a 
user-friendly notation with a formal semantics to express the properties that 
have to be verified. A more detailed description of STD is given in [7, 17, 18]. 

An advantage of STD is that they are declarative, allowing a designer to 
specify requirements incrementally. The complete specification is then given 
as a conjunction of the different STD. When using STD as described above, 
requirements of reactive systems are described in a compact form. Also, by 
composing several STD, very complex requirements can be specified in a modular 
way. 
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We clarify the concepts by giving two simple but relevant STD specifications 
for our sample application tamagotchi. The first requirement states that our 
tamagotchi will always die in the future. We expect this specification not to be 
valid over the model, inducing the model checker to generate a counterexample. 
This counterexample is a path on which the tamagotchi never dies. The second 
requirement says that our tamagotchi will never die. Again, we expect a 
counterexample for this diagram, giving a path on which the tamagotchi finally 
dies. 

Fig. 1. The STD for property 1 

Figure 1 shows the STD for the first property. Every STD describes allowed 
valuations of visible interface objects of a design over time. The graphical 
description of every property consists of three parts. On the left side in figure 
1 the interface variables which are constrained by an STD are listed together 
with their data-types. In figure 1, we have just one variable DEAD of type 
BOOLEAN. An STD consists of symbolic waveforms representing the valuation 
of interface variables over time. Different phases of the waveforms are annotated 
with predicates over these variables. Waveforms are worked off from the left 
side to the right. The valuation of interface variables and thus of predicates is 
influenced by the dynamic behavior of a design. If a predicate changes from 
TRUE to FALSE, the next predicate on the right side must evaluate to TRUE. 
Otherwise, the STD is violated. The conjunction of the predicates in every first 
phase gives the activation condition of an STD. In figure 1 we have the activation 
condition that DEAD equals FALSE. The activation mode of an STD is either 
"initial", meaning it must hold in the initial state of the design, or "invariant", 
meaning it must hold every time the activation condition becomes TRUE. The 
activation mode for the diagram in figure 1 is "invariant". The arc in the diagram 
denotes that the predicate DEAD equals TRUE must eventually become TRUE, 
thus specifying a liveness property. The informal semantics of this diagram is 
that whenever DEAD equals FALSE a state will be reached where DEAD equals 
TRUE. 
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Figure 2 shows the STD for the second property. This time the only waveform 
is the one for the BOOLEAN variable ALIVE. The waveform of this "invariant" 
STD constraints the valuation of ALIVE over time by three predicates. The 
activation condition is satisfied when ALIVE evaluates to FALSE. When ALIVE 
becomes TRUE, the STD "steps" into the next phase. The last predicate FALSE 
cannot be evaluated to TRUE meaning that the STD can only be fulfilled if 
ALIVE stays TRUE forever, hence this STD specifies a safety property. The 
informal semantics of this diagram is that once the tamagotchi is alive, it will 
stay alive. 

Fig. 2. The STD for property 2 

3 K e y  F e a t u r e s  o f  STATEMATE 

In this section an introduction into key features of STATE;MATE is given. First, the 
different languages of STATE;MATE are described together with an overview on the 
available set of tools. In the following subsection interesting points concerning 
semantical issues are pointed out. 

3.1 STATE;MATE Toolset  

The STATEMATE; toolset [11,12, 14] captures the phases of specification, analysis, 
design and documentation of real-time embedded systems. To cope with the 
complexity of real life applications, a system under development (SUD) may be 
described graphically from three different viewpoints within STATEMATE;. They 
cover the structural, the functional and the behavioral aspects of a SUD. 

A designer can create a model of a SUD describing physical components 
and their interconnections within Module-Charts. Activity-Charts specify a SUD 
as a collection of hierarchically and parallelly composed activities and data- 
and control-flows between activities. This is the method to model a functional 
decomposition of a SUD. Activities that are not further refined may be described 
by Statechavts. Statecharts essentially represent finite state machines enhanced 
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by concepts of hierarchy, orthogonality and a broadcasting mechanism. Inside 
a Statechart  an arbitrary number of state machines can work in parallel. They  
communicate via a broadcasting mechanism. A state machine can only be active 
ff and only if its parent is active. Statecharts describe when and how activities 
in a SUD react to external stimuli. They are intended to implement controller 
behavior. Designers can use two time concepts in Statecharts. Actions may 
be scheduled into the future and the reaction on events may be delayed for 
some amount  of time. Within STATEMATE the real-time behavior of a SUD is 
evaluated relatively to a virtual simulation clock. Several semantics for the above 
mentioned languages are supported by the tool (see subsection 3.2). 

Referenced elements within the three modeling languages have to be defined 
in a data-dictionary. Three classes of elements exist. Events are instantaneous 
elements. They live exactly one step before they are consumed. Conditions and 
data-items retain their values over time. Conditions are the STATEMATE variant 
of boolean variables. Data-Items can have more complex types like bit, integer 
and real. Every data-item may also be structured as an array, record, union or 
as a queue. 

Within STATEMATE an interactive analysis can be done on the design with 
a simulator. A dynamic test tool can be used to check simple properties of 
the model. Code generators for software and hardware modules are available to 
produce prototyped code for the model. The remaining tools are for the purposes 
of documentation,  requirement traceability and revision management.  

3.2 S e m a n t i c s  o f  STATEMATE 

In the past several semantics for Statecharts have been investigated, for instance 
[13]. STATEMATE also incorporates several semantics for its languages. We can 
distinguish between the synchronous simulation semantics or step semantics, the 
asynchronous simulation semantics or super-step semantics and the semantics of 
the generated code for C-, ADA-, VHDL- and Verilog. Informal explanations 
of these semantics can be found in [12]. Our toolset handles the step and the 
super-step semantics. A rigorous and formal definition can be found in [6]. 

In the step semantics the SUD accepts an external stimulus to trigger the 
modeled reactive system. Then all active components of the design perform 
exactly one step synchronously to come to a new state configuration and a new 
valuation of variables. Every step costs a fixed amount of t ime for every parallel 
component.  After termination of a step, the SUD accepts new stimuli. The step 
semantics is mainly used for clocked designs. 

The basic idea of the super-step semantics is, that  after having given an 
external stimulus to a SUD being in a stable state, it starts a chain of steps until 
it reaches a stable state again. Stable means, that  further steps are impossible 
without new external stimuli. A large number of reactions are possible until a 
stable state is reached again. A complete chain is called a super-step, while every 
single computat ion is called a step. In contrast to the step semantics, the steps 
in such a chain do not consume time. All computations between stimulation of 
such a SUD and returning into a state of equilibrium are performed infinitely 
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fast, hence the virtual simulation clock is not incremented before a super-step 
has been finished. After completion of a super-step the clock will be advanced 
to the next relevant point in time. A point in time is relevant, if a scheduled 
action has to be executed, if a timeout event has expired or if a SUD is triggered 
again by a new external stimulus. This semantics constraints the interaction of 
the environment with a SUD to super-step boundaries, but all activities inside 
a SUD work synchronously and communicate after every step. A prerequisite 
is, that all activities have completed their actual step. If one activity diverges, 
e.g. by executing an unbounded loop, then the actual step cannot be terminated 
and the super-step is unbounded. The super-step semantics is mainly used for 
asynchronous designs. 

This overview shows that the step semantics is much simpler than the super- 
step semantics. In the step semantics the SUD is stable after every terminated 
step, time increases uniformly and the environment can influence the valuation 
of variables on every step. In contrast, the super-step semantics needs additional 
bookkeeping to indicate stability. Only in a stable state the system can increase 
timers and can accept new stimuli. 

4 A STATEMATE E x a m p l e  

In this section the concepts of STATEMATE are clarified by introducing a 
tamagotchi as a sample application. The STATEMATE design consists mainly 
of an Activity-Chart and a set of parallel automata that are described by a 
Statechart. The Activity-Chart defines the environment and the interface of 
the application, the Statechart controls the state of the system and reacts on 
environment actions. 

Fig. 3. The Activity-Chart for the tamagotchi 

The state of the tamagotchi consists of a set of counters. These counters 
cover the levels for saturation, liquid, wellbeing, fitness and healthiness. The 
changes of every counter over time are controlled by the above automata. In every 
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step the counters for saturation, liquid, wellbeing and fitness are decremented 
by one. The counter for healthiness is decremented depending on the levels for 
wellbeing and fitness. If the level for wellbeing is zero, the counter for healthiness 
is decremented by 3; if the level for fitness is zero, it is decremented by 4. If a 
counter falls below a certain threshold, the tamagotchi outputs a corresponding 
message. This message is reset when the counter raises again and reaches another 
threshold. As soon as one of the counters for saturation, liquid or healthiness 
becomes zero, the tamagotchi dies. To prevent this, the environment (the owner 
of the tamagotchi) can influence the counters by several actions. In every step 
one and only one of the actions eat, drink, stroke, play and 'giving an injection' 
can be performed. These actions increase the corresponding counters by 2,3,15,12 
and 7 until upper bounds are reached. The tricky task is that  in one step all 
counters can be decremented, but only one of them can be incremented by an 
environment action. By interpreting the outputs of the tamagotchi,  the next 
action can be chosen. 

Fig.  4. The Statechart for the tamagotchi 
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Figure 3 shows the Activity-Chart for our application. It contains the top 
level activity TAMA_ACT of the system. In this activity there is a control 
activity TAMA_CTRL. The figure also shows that  the environment, the dashed 
boxes, can influence the system by the input CMD. CMD is defined as an 
enumeration type describing which of the above actions should be performed 
in the next step. An idle action is possible, too. The outputs of the system 
consist of a set of messages to indicate the state of the system. 

Figure 4 shows the Statechart implementation of the control activity 
TAMA_CTRL. The top level state is the parallel composition of two orthogonal 
automata.  The top-left automata  LIVING monitors if the remaining system 
delivers an event DIE showing that  one of the critical counters has reached its 
zero value. It reacts by emitting a KILL event and the remaining system steps 
into a final state KILLED. 

The right automaton BEHAVIOUR is the one which controls the tamagotchi. 
It consists of two exclusive states, one state for the behavior of the living 
tamagotchi (NORMAL) and the dead state (KILLED). The state for the 
behavior itself is the parallel composition of five sub-automata,  each controlling 
one of the counters. Every automata  is either in an idling (uncritical) state or 
in a state in which its counter is below the threshold. On entering the latter 
one, a corresponding message is generated; on reentering the first one, the 
message is removed. In every automata  there are transitions that  are triggered 
by the input CMD. The effect of executing these transitions is the increment of 
the corresponding counter. The decrease of the counters is realized by a static 
reaction associated with the state NORMAL (not visible in the figure). A static 
reaction of a state is executed as long as the state is active. In our case, the 
counters are decreased as long as the tamagotchi is alive. 

5 The Verification Environment 

Figure 5 gives a brief overview over our verification environment. The tools we 
have built and we concentrate on in this paper are shaded. The unshaded tools 
are either from our project partners or from other members of our group. After 
giving a short introduction here, we will explain the separate tools in more detail 
in the following subsections. 

Mainly there are two paths to feed the model checker. The left path starts 
with the Timing Diagram Editor (TDE) 2, where the user can specify the 
expected behavior of the design. The resulting diagrams (STD) are translated 
into computat ion tree logic (CTL) by the tool s t d 2 c t l  that  was developed by 
other members of our group. For a more detailed explanation see [7, 17, 18]. The 
right path of figure 5 starts with STATEMATE. For the extraction of information 
about a SUD out of STATEMATE, an application procedural interface (API) 
has been developed in close collaboration with i-Logix which is now delivered 
together with STATEMATE. The STATEMATE design (STM) is first translated into 

2 The timing diagram editor is a product of Abstract Hardware Limited (AHL) 
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an intermediate language called SMI. We defined SMI as an universal language 
for the translation of high-level formalisms into finite state machines (FSM) 3 SMI 
is a tiny, but very powerful language, covering parallelism, nondeterminism and 
a set of nontrivial data-types like arrays, records and unions. To cope with the 
problem of complexity, a lot of optimizations can be performed on the SMI code. 
These optimizers are listed in the box in the middle of the figure. The resulting 
SMI code is translated into a FSM for model checking. This translation is done 
using ROBDDs [1,2]. Together with the computed formula, the FSM is fed 
into the model checker. Within our environment, we are using two CTL model 
checkers. The first one is the assumption/commitment  style model checker by 
SIEMENS [9]. Alternatively we use the model checker of the VIS [19] system. 
If a check fails, i.e. the checked formula is not true, the model checker produces 
an error-path. This error-path can be retranslated into either a stimulus for the 
STATEMATE simulator by e r r 2 s t m  or a symbolic timing diagram by the tool 
e r r 2 s t d  which again was developed by other members of our group. 

Fig.  5. The verification environment 

5.1 T r a n s l a t i n g  STATEMATE i n t o  S M I  

The compiler stm2sms translates STATEMATE designs into the intermediate 
format SMI. SMI is a simple programming language containing concepts to 
model hierarchy, parallelism and nondeterminism of STATEMATE designs. The 
data-types and expression language of SMI is powerful enough to cover a 
wide range of STATEMATE types. SMI contains statements for null operations, 
assignments, deterministic branches, nondeterministic branches, while loops, 
breaks and operators for sequential and parallel compositions. Supported data- 
types are enumeration, bit, boolean, event, integer, string, array, record and 

3 In other projects, we translate VHDL into SMI 
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union. The expression language contains common boolean and numeric operators 
and selection on arrays, records and unions. 

In the translation process stm2smi performs several tasks. It maps used data- 
types of a design onto the types of SMI. In addition the state configurations of the 
Statecharts are encoded by SMI variables. Therefore, stm2smi defines variables 
to encode data and boolean variables, events and the control information of a 
design. With every variable in SMI we keep some additional information for 
back-annotation including the original name, its data-type, its mode (in, out, 
local) and its origin in a design (data, condition, event, timer, control). These 
information are mainly used if the model checker produces a counterexample for 
a given property. 

In [6] a compositional semantics for STATEMhTE is given. This means, that 
the semantics of a model contains all possible behaviors of its environment. 
For the generation of compositional models, some additional variables are 
introduced. These variables indicate stability and divergence of the model and 
its environment. 

In STATEMATE, all active activities perform a step synchronously, then new 
stimuli are accepted and the next step is executed. To represent the cyclic 
behavior of a reactive system modeled as a STATEMATE design, we embed the 
generated code for a design in a never terminating while loop. The code inside 
the loop describes one step of the whole system, depending on the valuation of 
the variables and the state configuration. Depending on the chosen semantics 
(step, super-step) timers are incremented always or only after the model has 
reached a stable state again (termination of a super-step). Similar, acceptance 
of new inputs and setting of auxiliary variables for compositionality depends on 
the chosen semantics. In the step semantics, after every execution of the body 
of the loop the model is stable and ready to synchronize. 

While translating a SUD a data-flow analysis is performed to compute an 
interface for a given design. Used objects can be either of mode input, output 
or local. Only inputs and outputs are included in the generated interface. 

The readable format of SMI allows to validate easily the translation process, 
to perform optimizations, to apply abstractions and it simplifies the generation 
of ROBDD based finite state machines compared with a direct encoding of 
STATEMATE designs. 

A wide range of STATEMATE concepts for Activity-Charts and Statecharts 
are supported. Currently, on the graphical level, we disallow the usage of generic 
charts and combinational assignments in general. In Statecharts, deep-history 
connectors are not supported. Not supported data-types are real and queue. On 
the textual level, we do not allow implicit events on structured data. Time units 
in timeouts and scheduled actions must be constant. The usage of pre-defined 
functions is limited to a subset. 

5.2 Translating SMI into FSMs 

The translation of SMI. generates functional BDDs instead of relational ones, 
because they are more efficient during the generation of FSMs and while model 
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checking. For every bit of the state space a characteristic function representing 
this bit has to be computed. The state space consists of the variables defined in 
the SMI program. There are no additional variables needed for representing the 
location within the SMI program because one step of the FSM is one complete 
run thru the nonterminating outermost loop of the SMI program. For every 
SMI variable a set of ROBDD variables is needed for the representation. The 
encoding of the variables is done in the usual way, resulting in a minor overhead 
representing arrays and records (an array with 3 elements of the subrange 0 to 
2 is encoded by 3 * 2 = 6 bits, but the 3 * 3 * 3 = 27 possible values of the array 
can be mapped onto 5 bits). Because we are using functional FSMs we have to 
add additional input variables to cope with the nondeterminism of SMI. These 
'choice' inputs are choosing between the possible runs thru the SMI program 
and resolve the nondeterminism. 

Loops inside the SMI program can be handled in two ways. First, 
the compiler computes a fixed point for a loop. This technique is capable 
to detect nonterminating loops, but in practice it is very slow for most 
applications, because of the necessary usage of the very costly BDD substitution. 
Alternatively, the compiler unrolls a loop until the condition gets false. This 
technique cannot handle endless loops and does not stop in these cases. But  
in practice unrolling is much faster than computing a fixed point, because our 
technique prevents the usage of BDD substitution. 

5.3 O p t i m i z a t i o n s  o n  t h e  SMI  C o d e  

Every compiler produces overhead, resulting in unnecessary instructions and 
variables. But especially model checking or even the FSM generation can get 
impossible due to this overhead. A set of optimizers for SMI code were developed 
to cope with this problem. At present, the following set of optimizations can be 

performed on SMI code: 

smidet (Make SMI more deterministic) 
In some cases unnecessary instructions for nondeterministic executions 
within the SMI code are produced during the translation from STATEMATE 
into SMI. These instructions result in additional 'choice' inputs within 
the FSM. The tool smidet  detects this overhead and deletes/replaces the 
instructions in the SMI code. 

smired  (Reduce SMI) 
With this tool, unused inputs can be determined and eliminated. 

smidec (Decompose ASYNC signal) 
Using the super-step semantics of STATEMATE we get a special signal ASYNC 
that  is represented by a very complex ROBDD. The tool smidec bypasses 
th i s  problem by splitting up this signal into a set of signals that  can be 
represented by smaller ROBDDs. 

smiopt  (Optimize SMI) 
This is the most powerful tool to optimize SMI programs. The tool can be 
run in order to do one or more of the following tasks: 
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1. Perform a data flow analysis and delete unused and constant variables 
2. Delete code parts that are unused because they can never be taken due 

to the values of the variables 
3. Reduce the SMI program to the set of variables that is needed to verify 

a given property. This set is computed by building the transitive closure 
of the data flow graph of the variables used in the property 

4. Freeing variables: allows to turn a variable into an input, thus performing 
a safe abstraction of the original behavior 

staidom (Generate an optimized domain for ROBDD generation) The size of the 
ROBDDs depends very heavily on the ordering of the ROBDD variables. 
Even though reordering techniques are used during the ROBDD generation, 
the initial ordering of the ROBDD variables is important. This tool tries 
to find a good variable ordering for the ROBDDs before any ROBDD is 
computed. It analyses the data flow within the SMI program and determines 
the dependencies between the SMI variables and thus between the ROBDD 
variables. Using special heuristics we developed, the tool produces an initial 
ordering that is taken by the compiler from SMI to FSM. 

mput bits 

tamagotchi 26 
11 + smidet 

+ smiopt 11 
+ smired 8 
+ smidom 8 

state bits timelBDD nodes 

75 0.67s 2677 
75 0.58s 1801 
60 0.35s 1741 
60 0.32s 1735 
60 0.29s 982 

Table  1. Results of the optimizations 

Table 1 shows the effect of using the above optimizers on the size of our 
sample application and the time to generate the FSMs 4. Each line adds one 
optimizer to the FSM generation and gives the corresponding results. We see that 
the number of ROBDD variables and the size of the model decreases dramatically 
using the optimizers. Other tested case studies gave similar results. 

5.4 Retranslatlon of Error-Paths 

The tools err2std and err2stm retranslate a produced error-path into a timing 
diagram or into a stimuli for the STATEMATE simulator. The STD shows the 
evaluation of the interesting variables over time, the simulator shows the dynamic 
behavior of the system until the faulty state is reached. Up to now, only error- 
paths produced by the the SIEMENS model checker can be retranslated. 

6 E x p e r i m e n t a l  R e s u l t s  

In this section we present some results we got applying our tools on some 
STATEMATE designs. We concentrate on the generation of the FSMs and on 

4 All results in this paper have been computed on an Ultra Spare 1 with 143 MHz 
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model checking, but omit the translation from STD into CTL, because it is an 
uncritical task wrt. t ime/space complexity. 

For our tamagotchi, we could generate a FSM out of the STATEMATE design 
within a few seconds. As expected, the model checker checked both of the two 
interesting properties presented in section 2 to be false and produced error-paths. 
The error-path of the first property consists of a 6 step long initial sequence of 
states followed by a loop sequence of 52 states on which the tamagotchi stays 
alive. On this loop we can observe every modeled behavior of the tamagotchi 
(it even gets ill on an intermediate state on the loop) and every input action is 
performed at least once. The error-path for the second property shows a sequence 
where the tamagotchi finally dies. On this sequence of length 21 no input actions 
are performed such that  all counters are always decremented until the tamagotchi 

dies. 
An interesting result while model checking the first property of the 

tamagotchi is the huge amount of time the VIS model checker needed (8627s). 
The reason for this is, that  the tamagotchi contains a lot of counters and just  
a few states and transitions within the automata.  Therefore it is dominated 
by data.  When model checking other designs which are dominated by control, 
meaning that  these designs have just  a few variables but much more states and 
transitions, we got results within a few seconds. Two examples for such designs 
are the well known traffic light controller (TLC) and a controller of the fault 
tolerant production cell 5 (HDT). A non-trivial example we model checked is a 
central car locking mechanism (ZV) 6 with 12 Statecharts running in parallel each 
containing between 3 and 20 states and many transitions [5]. The biggest case 
study we checked is a storage management systems of an aircraft 7. Table 2 gives 
a brief overview over some results we got from our verification environment. 

Model stm2smiloptimizers[smi2fsm [ # of bits 
in s I in s[ in s[input/state 

0.66 
0.35 
0.23 
0.15 
O.26 
0.11 

45.64 
13.14 

829.84 
786.39 

26/75 
s/6o 
18/33 
11/27 
26/50 
10/32 

223/327 1147710 
123/279 28602 
99/720 21358 
44/643 15249 

# of BDD MC 
nodes in s 

2177 - 
982 8627 

2485 5.i 
1278 1.8 
2363 10.2 
521 2.3 

1785 

966 

tama 2.35 
tama (opt) 2.35 0.70 
TLC 1.51 
TLC (opt) 1.51 0.60 
HDT 15.51 
HDT (opt) 15.51 0.60 
ZV 10.49 
ZV (opt) 10.49 10.00 
SMS 20.79 
SMS (opt) 20.79 7.60, 

Table 2. Experimental results 

5 This case study was provided by our project partner FZI Karlsruhe 
6 This case study was provided by our project partner BMW 
7 This case study was provided by our project partner British Aerospace 
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The table shows times for the generation and the resulting sizes for five 
different case studies. Also, the times for model checking of some special verified 
properties are listed. For every study, the FSM has been computed with and 
without applying the set of optimizers. We see that the generation of the FSMs 
could be performed for all studies, but the sizes of the resulting FSMs differ very 
much depending on the optimizations. While model checking is possible on all 
optimized FSMs, model checking cannot be performed on the unoptimized FSMs 
in three cases. The times to generate and optimize SMI are almost linear in the 
size of STATEMATE design and thus not critical. The critical times result from 
the translation from SMI into FSMs and especially from the model checking 
itself. We can observe that the times spent for optimizations are covered by 
the improved times for model checking, e.g. 0.6s for HDT optimizations leads 
to 7.9s speedup in model checking. In addition, the table shows, that the time 
for verifying the tamagotchi is much greater than the times to verify the other 
studies, although it is a small design. 

7 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

In this paper a powerful environment for the verification of STATEMATE designs 
against symbolic timing diagram specifications has been presented and its 
usability on a sample application was demonstrated. Also some results on two 
industrial sized designs were given. Within our environment, almost all features 
of STATEMATE are supported and we are still working on expanding this set. 
Even though a set of optimizations can be performed during the verification task, 
we know that there is still a lot of space for further improvements. We expect 
to be able to verify much bigger designs in the near future. Even though the 
STATEMATE concepts of timeouts and scheduled actions are already supported, 
we still use timing diagrams without time annotations and therefore a normal 
CTL model checker. We are working on a time annotated extension of timing 
diagrams [8] in order to perform real-time model checking. Another direction for 
extending our work is abstraction. 
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