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A b s t r a c t .  In this paper we develop an approach to model-checking for 
timed automata via teachability testing. As our specification formalism, 
we consider a dense-time property language with clocks. This property 
language may be used to express safety and bounded liveness properties 
of real-time systems. We show how to automatically synthesize, for every 
formula ~, a test automaton T~, in such a way that checking whether 
a system S satisfies the property ~o can be reduced to a reachability 
question over the system obtained by making Tv interact with S. 

1 I n t r o d u c t i o n  

Model-checking of real t ime systems has been extensively studied in the last 
few years, leading to both important  theoretical results, setting the limits of 
decidability [3, 10], and to the emergence of practical tools as HyTech [9], Kronos 
[18] and UPPAAL [6], which have been successfully applied to the verification of 
real sized systems [5, 12]. 

The main motivation for the work presented in this paper  stems from our 
experience with the verification tool UPPAAL. In such a tool, real-t ime systems 
are specified as networks of t imed au tomata  [3], which are then the object of 
the verification effort. The core of the computat ional  engine of UPPAAL consists 
of a collection of efficient algorithms that  can be used to perform reachability 
analysis over a model of an actual system. Any other kind of verification problem 
tha t  the user wants to ask UPPAAL to perform must be encoded as a suitable 
reachability question. A typical example of such a problem is tha t  of model 
checking. Experience has shown tha t  it is often convenient to describe desired 
system properties as formulae of some real-t ime variant of s tandard modal  or 
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temporal logics (see, e.g., [4, 11, 15]). The model-checking problem then amounts 
to deciding whether a given system specification has the required property or 
not. 

The way model-checking of properties other than plain reachability ones may 
currently be carried out in UPPAAL is as follows. Given a property ~o to model- 
check, the user must provide a test automaton T~ for that property. This test 
automaton must be such that the original system has the property expressed by 
~o if, and only if, none of the distinguished reject states of T~ can be reached when 
the test automaton is made to interact with the system under investigation. 

As witnessed by existing applications of this approach to verification by 
model-checking (cf., e.g., [13]), the construction of a test automaton from a 
temporal formula or informally specified requirements is a task that, in gen- 
eral, requires a high degree of ingenuity, and is error-prone. It would therefore 
be useful to automate this process by providing a compilation procedure from 
formulae in some sufficiently expressive real-time logic into appropriate test au- 
tomata, and establishing its correctness once and for all. Apart from its practical 
and theoretical interest, the existence of such a connection between specification 
logics and automata would also free the average user of a verification tool like 
UPPAAL from the task of having to generate ad hoc test automata in his/her ver- 
ifications based on the model-checking approach. We envisage that this will help 
make the tool usable by a larger community of designers of real-time systems. 

In this paper we develop an approach to model-checking for timed automata 
via teachability testing. As our specification formalism, we consider a dense- 
time property language with clocks, which is a fragment of the one presented in 
[15]. This property language may be used to express safety and bounded liveness 
properties of real-time systems. We show how to automatically synthesize, for 
every formula ~, a so-called test automaton T~o in such a way that checking 
whether a system S satisfies the property ~o can be reduced to a reachability 
question over the system obtained by making T~ interact with S. More precisely, 
we show that S satisfies property ~ iff none of the distinguished reject nodes of 
the test automaton can be reached in the combined system S H T~ (Thm. 5.2). 
This result is obtained for a model of timed automata with urgent actions and 
the interpretation of parallel composition used in UPPAAL. 

The property language we consider in this paper only allows for a restricted 
use of the boolean 'or' operator, and of the diamond modality of Hennessy-Milner 
logic [8]. We argue that these restrictions are necessary to obtain testability of 
the property language, in the sense outlined above (Propn. 5.4). Indeed, as it will 
be shown in a companion paper [1], the property language presented in this study 
is remarkably close to being completely expressive with respect to reachability 
properties. In fact, a slight extension of the property language considered here 
allows us to reduce any reachability property of a composite system S II T to a 
model-checking problem of S. 

Despite the aforementioned restrictions, the testable property language we 
consider is both of practical and theoretical interest. On the practical side, we 
have used the property language, and the associated approach to model-checking 
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via teachability testing it supports, in the specification and verification in UP- 
PAAL of a collision avoidance protocol. This protocol was originally analyzed 
in [13], where rather complex test automata were derived in an ad hoc fashion 
from informal specifications of the expected behaviour of the protocol. The ver- 
ification we present here is based on our procedure for the automatic generation 
of test automata from specifications. This has allowed us to turn specifications 
of the expected behaviour of the protocol into automata, whose precise fit with 
the original properties is guaranteed by construction. On the theoretical side, 
we have shown that the property language is powerful enough to permit the 
definition of characteristic properties [19], with respect to a timed version of 
the ready simulation preorder [16], for nodes of deterministic, T-free timed au- 
tomata. (This result is omitted from this extended abstract for lack of space, 
but see [2].) 

This study establishes a connection between a property language for the 
specification of safety and bounded liveness properties of real-time systems and 
the formalism of timed automata. Our emphasis is on the reduction of the 
model-checking problem for the property language under consideration to an in- 
trinsically automata-theoretic problem, viz. that of checking for the reachability 
of some distinguished nodes in a timed automaton. The blueprint of this en- 
deavour lies in the automata-theoretic approach to the verification of finite-state 
reactive systems pioneered by Vardi and Wolper [20, 21]. In this approach to 
verification, the intimate relationship between linear time propositional tempo- 
ral logic and w-automata is exploited to yield elegant and efficient algorithms 
for the analysis of specifications, and for model-checking. The work presented 
in this paper is not based on a similarly deep mathematical connection between 
the property language and timed automata (indeed, it is not clear that such a 
connection exists because, as shown in [3], timed Biichi automata are not closed 
under complementation), but draws inspiration from that beautiful theory. In 
particular, the avenue of investigation pursued in this study may be traced back 
to the seminal [20]. 

The paper is organized as follows. We begin by introducing timed automata 
and timed labelled transition systems (Sect. 2). The notion of test automaton 
considered in this paper is introduced in Sect. 3, together with the interaction 
between timed automata and tests. We then proceed to present a real-time 
property language suitable for expressing safety and bounded liveness proper- 
ties of real-time systems (Sect. 4). The step from properties to test automata is 
discussed in Sect. 5, and its implementation in UPPAAL in Sect. 6. Section 7 is 
devoted to a brief description of the specification and verification of a collision 
avoidance protocol using the theory developed in this paper. The paper con- 
cludes with a mention of some further results we have obtained on the topic of 
this paper, and a discussion of interesting subjects for future research (Sect. 8). 
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2 P r e l i m i n a r i e s  

We begin by briefly reviewing the timed automaton model proposed by Alur and 
Dill [3]. 

Timed Labelled Transition Systems Let `4 be a finite set of actions ranged over 
by a. We assume that  .4 comes equipped with a mapping - : A --+ .4 such that  

= a for every a G .4. We let .4~ stand for .4 U {T}, where T is a symbol not 
occurring in .4, and use # to range over it. Following Milner [17], T will stand 
for an internal action of a system. Let N denote the set of natural  numbers and 
R>0 the set of non-negative real numbers. We use :D to denote the set of delay 
actions {e(d) I d �9 R>0}, and s to stand for the union of .4~ and :D. 

Def in i t ion  2.1. A timed labelled transition system (TLTS) is a structure 7" = 
( S , s  ~ >) where S is a set of states, s o �9 S is the initial state, and >C 
S • s • S is a transition relation satisfying the following properties: 

- (TIME DETERMINISM) for every s, s', s" �9 S and d �9 ~>o, if s '(at s' and 

e(d t Sit 8 t 8tt; s then = 
e(dl+~2) 8t I -- (TIME ADDITIVITY) for every s, s" �9 S and ds, d2 �9 If{>0, s iff 

s ~(d,>) s' e(d~ ) s", for some s t �9 S; 
e(0 t St S t. -- (0-DELAY) for every s, s t �9 S, s iff s = 

Following [22], we now proceed to define versions of the transition relations that  
abstract  away from the internal evolution of states as follows: 

s ~ s '  iff 3s". s - -L+*s"  a>s ,  

s ~(~ s t iff there exists a computation 

s = s 0 - 2 ~ S l - - ~ . . .  ~ " > s n = s '  ( n > 0 )  where 

(a) v i  �9 { z ,  . , n }  = r or �9 v 

(b) d = I s ,  = 

By convention, if the set {d, ] a ,  = e(d,)} is empty, then ~ { d ,  [ a ,  = e(d,)} is 

0. With this convention, the relation ~(~ coincides with ~ >*, i.e., the reflexive, 
transitive closure of ~>. Note that  the derived transition relation = ~  only 
abstracts from internal transitions before the actual execution of action a. 

Def in i t ion  2.2. Let Ti = (E~, s  s ~ --+~) (i �9 {1,2}) be two TLTSs. The 
parallel composition of T1 and T2 is the TLTS 

0 0 

where the transition relation ) is defined by the rules in Table 1. In Table 1, 
and in the remainder of the paper, we use the more suggestive notation s [[ s t in 
lieu of (s, s'). 
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## where s~, s~, s i are states of Ti (i E {1, 2}), 
a, ff E .4 and d, t E R>o. 

Table 1: Rules defining the transition relation -~ in TI [[ T2 

3>) 

This definition of parallel composition forces the composed TLTSs to synchronize 
on actions (all but  T-actions) and delays, but  with the particularity that  delaying 
is only possible when no synchronization on actions is. This amounts to requiring 
that  all actions in ,4 be urgent. The reader familiar with TCCS [22] may have 
noticed that  the above definition of parallel composition precisely corresponds to 
a TCCS parallel composition in which all the actions in .4 are restricted upon. 
The use of this kind of parallel composition yields closed systems, of the type 
that  can be analyzed using UPPAAL [6], and is inspired by the pioneering work 
by De Nicola and Hennessy on testing equivalence for processes [7]. 

Timed Automata Let C be a set of clocks. We use B(C) to denote the set of 
boolean expressions over atomic formulae of the form x .-~ p, x - y ,~ p, with 
x, y E C, p E N, and ~E {<, >, =}. A time assignment, or valuation, v for C is 
a function from C to ll~>0. For every time assignment v and d E R>0, we use 
v + d to denote the time assignment which maps each clock x E C to the value 
v(x) + d. For every subset of clocks C', [C' ~ 0Iv denotes the assignment for C 
which maps each clock in C'  to the value 0 and agrees with v over C \ C  I. Given 
a condition g E B(C) and a time assignment v, the boolean value g(v) describes 
whether g is satisfied by v or not. 

D e f i n i t i o n  2.3. A timed automaton is a tuple A = (A~,N,  no, C , E )  where 
N is a finite set of nodes, no is the initial node, C is a finite set of clocks, and 
E C_ N • N • Ar  • 2 c • B(C) is a set of edges. The tuple e -- (n, he, p, r~, g~) E E 
stands for an edge from node n to node n~ (the target of e) with action #, where 
r~ denotes the set of clocks to be reset to 0 and g~ is the enabling condition (or 
guard) over the clocks of A. 

Example 2.4. The timed automaton depicted in Figure i has five nodes labelled 
no to n4, one clock x, and four edges. The edge from node nl  to node n2, for 
example, is guarded by x > 0, implies synchronization on a and resets clock x. 
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A state of a t imed automaton A is a pair (n, v) where n is a node of A and v is 
a time assignment for C. The initial state of A is (no, v0) where no is the initial 
node of A and v0 is the time assignment mapping all clocks in C to 0. 

The operational semantics of a timed automaton A is given by the TLTS 
7-A = (E, s a ~ ~), where Z is the set of states of A, a ~ is the initial state of 
A, and > is the transition relation defined as follows: 

(n, v) "> (n', v') iff 3r, g. (n, n',/~, r, g) �9 E A g(v) A v' = [r -+ O]v 

(n, v) ~(dt (n', v') iff n = n I and v e = v + d 

where # E A~ and e(d) E T~. 

3 T e s t i n g  A u t o m a t a  

In this section we take the first steps towards the definition of model checking via 
testing by defining testing. Informally, testing involves the parallel composition 
of the tested automaton with a test automaton. The testing process then consists 
in performing reachability analysis in the composed system. We say that  the 
tested automaton fails the test if a special reject state of the test automaton is 
reachable in the parallel composition from their initial configurations, and passes 
otherwise. The formal definition of testing then involves the definition of what a 
test automaton is, how the parallel composition is performed and when the test 
has failed or succeeded. We now proceed to make these notions precise. 

D e f i n i t i o n  3.1. A test automaton is a tuple T = (,4, N, NT, no, C, E)  where A, 
N,  no, C, and E are as in Definition 2.3, and NT C N is the set of reject nodes. 

Intuitively, a test automaton T interacts with a tested system, represented by 
a TLTS, by communicating with it. The dynamics of the interaction between 
the tester and the tested system is described by the parallel composition of the 
TLTS that  is being tested and of 7~. We now define failure and success of a test 
as follows. 

D e f i n i t i o n  3.2. Let T be a TLTS and T be a test automaton. 

- We say that  a node n of T is reachable from a state sl [[ s2 of T [[ TT iff 
there is a sequence of transitions leading from sz [[ s2 to a state whose TT 
component is of the form (n, u). 

- We say that  a state s of T fails the T-test  iff a reject node of T is reachable 
in 7" [[ 7"T from the state s [[ (no,uo), where (n0,u0) is the initial state of 
7"T. Otherwise, we say that  s passes the T-test. 

In the remainder of the paper, we shall mostly apply test automata  to the TLTSs 
that  give operational semantics to timed automata.  In tha t  case, we shall use 
the suggestive notation A II T in lieu of TA II TT. 
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Figure 1: Timed automaton A 
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k-- > 0 
b v 

(b) 

Figure 2: The test automata T~ and Tb 

Example 3.3. Consider the timed automaton A of Figure 1 and the test automa- 
ton Tb of Figure 2(b). The reject node mT of the test automaton is reachable 
from the initial state of A II T~, as follows: 

1. first the automaton A can execute the r-transition and go to node nl,  thus 
preempting the possibility of synchronizing on channel b with T, 

2. now both automata can let time pass, thus enabling the T-transition from 
node m0 in Tb and making mT reachable. 

In this case we say that A fails the test. If we test A using the automaton Ta 
of Figure 2(a), then in all cases A and Ta must synchronize on a and no initial 
delay is possible. It follows that the reject node raT of Ta is unreachable, and A 
passes the test. 

4 T h e  P r o p e r t y  L a n g u a g e  

We consider a dense-time property language with clocks, which is a fragment 
of the one presented in [15] and is suitable for the specification of safety and 
bounded liveness properties of TLTSs. 
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D e f i n i t i o n  4.1.  Let K be a set of clocks, disjoint from C. The set SBLL of 
(safety and bounded liveness) formulae over K is generated by the following 

::= I I I (plA 2 I I I 
I I I X I 

c ::= x , ~ p  l x - y , , ~ p  

where a E ,4, x, y E K,  p E N, ,,,E {<,  >, =}, X is a formula variable and 
max(X, ~o) stands for the maximal solution of the recursion equation X = ~. 

A closed recursive formula of SBLL is a formula in which every formula variable 
X appears within the scope of some max(X, ~) construct. In the remainder of 
this paper, every formula will be closed, unless specified otherwise. 

Given a TLTS T -- iS, L:, s ~ ~), we interpret the closed formulae in SBLL 
over extended states. An extended state is a pair (s, u) where s is a state of 7" 
and u is a time assignment for the formula clocks in K.  

D e f i n i t i o n  4.2. Consider a TLTS T = (S, Z:, s ~ ~). The satisfaction relation 
~w is the largest relation satisfying the implications in Table 2. 

We say that  T weakly satisfies ~, written T ~w ~, when (s ~ u0) ~ ~o, where 
u0 is the time assignment mapping every clock in K to 0. In the sequel, for a 
t imed automaton A, we shall write A ~ ~ in lieu of TA ~ ~. 

T 

The weak satisfaction relation is closed with respect to the relation ) , in 
the sense of the following proposition. 

P r o p o s i t i o n  4.3. Let T = (S , • , s  ~ )) be a TLTS. Then, for every s E S, 
E SBLL and valuation u for the clocks in K ,  (s, u) ~ ~v iff, ]or every s I such 

that s ~ )* s', is', u) ~ ~. 

The reader familiar with the literature on variations on Hennessy-Milner logic 
[17] and on its real-time extensions [23] may have noticed that  our definition of 
the satisfaction relation is rather different from the standard one presented in 
the literature. For instance, one might expect the clause of the definition of the 
satisfaction relation for the formula (a)t~. to read 

(s,u) ~ (a)~ implies s = ~ s  r f o r s o m e s  I . (1) 

Recall, however, tha t  our main aim in this paper is to develop a specification 
language for t imed automata  for which the model checking problem can be 
effectively reduced to deciding reachability. More precisely, for every formula 

E SBLL, we aim at constructing a test automaton T~ such that  every extended 
state is, u) of a t imed automaton satisfies ~ iff it passes the test T~, (in a sense to 
be made precise in Defn. 5.1). With this aim in mind, a reasonable proposal for 
a test automaton for the formula (a)tt, interpreted as in (1), is the automaton 

gralTlmar: 
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(s, u) ~ 

(s, u) ~ vv 
(s,~) ~ ~ 

(s, u) ~ max(X, ~o) 

:=~ true 

=~ fa l se  

e(u) 
=~ Vs'. s __L+* s' implies (#, u) ~ ~ol and (s', u) ~ ,  ~2 

=~ Vs'. s _L+* s' implies c(u) or (s', u) ~ 

=~ Vs'. s = ~  s' implies (s', u) ~w 

=~ Vs'. s - ~ *  s ~ implies s' ~ s" for some s" 

=~ VdER>oVs'. s ~(~s '  i m p l i e s ( s ' , u + d ) ~  

=~ Vs'. s ~ ;* s' implies (s', [{x} -~ 0]u) ~w ~o 

=~ Vs'. s ~ )* s' implies (s', u) ~ ~{maz(X, ~a)/X} 

Table 2: Weak satisfaction implications 

depicted in Figure 2(a). However, it is not hard to see that  such an automaton 
could be brought into its reject node m T  by one of its possible interactions with 
the timed automaton associated with the TCCS agent a + r .  This is due to 
the fact that ,  because of the definition of parallel composition we have chosen, 
a test automaton cannot prevent the tested state from performing its internal 
transition leading to a state where an a-action is no longer possible. (In fact, it 
is not too hard to generalize these ideas to show that  no test automaton for the 
formula (a)tt  exists under the interpretation given in (1).) Similar arguments 
may be applied to all the formulae in the property language SBLL that  involve 
occurrences of the modal operator [a] and/or  of the primitive proposition (a)tt. 

The  reader might have also noticed that  the language SBLL only allows for 
a restricted use of the logical connective 'or'. This is due to the fact tha t  it is 
impossible to generate test automata  even for simple formulae like (a)tt v [b]~-- 
cf. Propn.  5.4. 

N o t a t i o n .  Given a state (n, v) of a timed automaton,  and a valuation u for the 
formula clocks in K,  we write (n, v : u) for the resulting extended state. 

5 M o d e l  checking via tes t ing  

In Sect. 3 we have seen how we can perform tests on timed automata.  We 
now aim at using test automata  to determine whether a given timed automaton 
weakly satisfies a formula in L. As already mentioned, this approach to model 
checking for timed automata  is not merely a theoretical curiosity, but  it is the 
way in which model checking of properties other than plain reachability ones is 
routinely carried out in a verification tool like UPPAAL. In order to achieve our 
goal, we shall define a "compilation" procedure to obtain a test automaton from 
the formula we want to test for. By means of this compilation procedure, we 
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automate the process of generating test automata from specifications--a task 
which has so far required a high degree of ingenuity and is error-prone. 

De f in i t i on  5.1. Let ~o be a formula in SBLL and Tv be a test automaton over 
clocks {k} U K ,  k fresh. 

- For every extended state (n, v : u) of a timed automaton A, we say that  
(n, v : u) passes the T~-test iff no reject node of T~ is reachable from the 
state (n, v) I[ (m0, {k} -+ 0 : u), where m0 is the initial node of T~. 

- We say that  the test automaton T~ weakly tests for the formula ~ iff the 
following holds: for every timed automaton A and every extended state 
(n, v : u) of A, (n, v : u) ~ ~ iff (n, v : u) passes the T~-test. 

T h e o r e m  5.2. For every closed formula ~ in SBLL, there exists a test automa- 
ton Tv that weakly tests for it. 

Proof. (SKETCH.) The test automata are constructed by structural induction on 
open formulae. (The UPPAAL implementation of the constructions is depicted in 
Figures 3 and 4.) It can be shown that,  for every closed formula ~, the resulting 
automaton Tv weakly tests for ~. The details of the proof will be presented in 
the full version of the paper. 

C o r o l l a r y  5.3. Let A be a timed automaton. Then, for every ~o E SBLL, there 
exists a test automaton T~ with a reject node mT such that A ~ ~ iff node mT 
is not reachable in AII T~. 

As remarked in Sect. 4, the property language SBLL only allows for a restricted 
use of the 'or' operator. This is justified by the following negative result. 

P r o p o s i t i o n  5.4. The formula (a)~t Y [b]if is not weakly testable. 

6 I m p l e m e n t a t i o n  i n  UPPAAL 

The UPPAAL constr~ct8 The implementation of testing using the parallel com- 
position operator presented in Sect. 3 requires a model of communicating timed 
automata  with urgent actions (cf. rule (4) in Table 1). This feature is available 
in the UPPAAL model. The test automata are inductively obtained from the 
formula in a constructive manner, according to the constructions shown in Fig- 
ures 3 and 4. In these constructions all actions in .A are intended to be urgent. 
As in UPPAAL it is not possible to guard edges labelled with urgent actions, the 
theoretical construction for T[a]~ used in the proof of Thm. 5.2 is implemented 
by means of node invariants. 
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(a) 

k : = O  

(b) T. 

Figure 5: New simplified constructs 

Simplification of the test automaton In certain cases, it is possible to optimize 
the construction of a test automaton from a formula by applying heuristics. Here 
we just remark on two possible simplifications. One is with respect to Tv1^v2 
(Figure 3(d)) and the other one with respect to T= in ~ (Figure 4(d)). Both 
simplifications involve the elimination of the T-transitions emanating from node 
too. This leads to the constructs shown in Figures 5(a) and 5(b). The test au- 
tomaton of Figure 5(a) is obtained by setting the initial nodes of T~I and T~2 
to be the same node m0, and the same for the reject node mT. For T= i_~ v, the 
reset x :-- 0 is added to the incoming edge of T~. Nevertheless, these simplifi- 
cations cannot be applied in general. For example, if the and operator involves 
the conjunction of [a]~ and (a)~, or [a]~ and V~, or (a)~t and ~ ,  then the 
proposed simplification leads to incorrect test automata. This is because there 
is a different interpretation of evolving time in each operand, by, for example, 
leading to a reject state in one operand and to a safe one in the other one, or 
simply not being allowed in one case and being necessary in the other. Similarly, 
the i__p_n operator can be simplified only when it is not an operand in an and 
operation which has already been simplified. 

High level operators The basic constructs of the logic SBLL can be used to define 
high level temporal operators, which may be used to simplify the writing of 
logical specifications (and substantiate our claim that  SBLL can indeed express 
safety and bounded liveness properties). Here we confine ourselves to showing 
how to define the temporal operators u n t i l ,  b e f o r e  and inv: 

def max(X, c V (~ ^ A[a]X ^ VX)) until c = 

def 
~ountil<t c = x i__nn ((~oAx_<t) until c) 

def 
beforet c = tt until<t c 

inv ~ de=f max(X,(p A A[aIX AVX) . 
a 
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7 E x a m p l e  

Consider a number of stations connected on an Ethernet-like medium, following 
a basic CSMA/CD protocol as the one considered in [13]. On top of this basic 
protocol, we want to design a protocol without collisions (applicable for example 
to real t ime plants). In particular, we want to guarantee an upper bound on 
the transmission delay of a buffer, assuming that  the medium does not lose or 
corrupt data, and that  the stations function properly. The simplest solution is 
to introduce a dedicated master station which asks the other stations whether 
they want to transmit data  to another station (see Figure 7). Such a master  
station has to take into account the possible buffer delays within the receiving 
stations to ensure that  the protocol enjoys the following properties: (1) collision 
cannot occur, (2) the transmitted data  eventually reach their destination, (3) 
data  which are received have been transmitted by a sender, and (4) there is a 
known upper bound on the transmission delay, assuming error-free transmission. 

Modelling and verification of such a protocol in UPPAAL has been presented 
in [13], where the details of such a modelling may be found. Here we only focus 
on the external view of the behaviour of the system. The observable actions 
are: user i sending a message, written send_i !, and user j receiving a message, 
written recv_j  !, for i , j  = {1, 2,3}. The verification of the protocol presented 
in op. cit. was based on the ad hoc generation of test automata  from informal 
specifications of system requirements. Indeed, some of the test au tomata  that  
resulted from the informal requirements were rather complex, and it was difficult 
to extract  their semantic interpretation. We now have at our disposal a precise 
property language to formally  describe the expected behaviour of the protocol, 
together with an automatic compilation of such specifications into test automata,  
and we can therefore apply the aforementioned theory to test the behaviour of 
the protocol. 

One of the requirements of the protocol is that  there must be an upper bound 
on the transmission delay. Assuming that  this upper bound is 4, this property 
can be expressed by means of the following formula in SBLL: 

(isoo  < ^ Ireov 'l , < 4))) 

This formula states that  it invariantly holds that  whenever user 1 sends a mes- 
sage, it will be received by users 2 and 3 within 4 units of time. Note that  we 
consider transmission to be error-free, so the message will eventually be received. 
What  we are interested in is the delay expressed by clock s. The test automaton 
corresponding to this formula is shown in Figure 6. (Note that ,  although the 
formula above expresses the required behaviour of the protocol in a very direct 
way, its encoding as a test automaton is already a rather complex object- -which 
we were glad not to have to build by hand!) 

In order to experiment with our current implementation of the test au tomata  
construction in UPPAAL, we have also carried out the verification of several 
other properties of the protocol. For instance, we have verified that ,  under 
the assumption that  the master waits for two time units before sending out its 
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enquiries, the protocol has a round-trip time bound of 18 time units, and that 
no faster round-trip exists. However, we have verified that changing the waiting 
time in the master to zero will allow for faster round-trip times. The details of 
these experiments will be reported in the full version of this study. 

8 Concluding Remarks 

As argued in, e.g., [24], efficient algorithms for deciding reachability questions 
can be used to tackle many common problems related to verification. In this 
study, following the lead of [20], we have shown how to reduce model-checking of 
safety and bounded liveness properties expressible in the real-time property lan- 
guage SBLL to checking for reachability of reject states in suitably constructed 
test automata. This approach allows us to take full advantage of the core of the 
computational engine of the tool UPPAAL [6], which consists of a collection of 
efficient algorithms that can be used to perform reachability analysis over timed 
automata. 

The practical applicability of the approach to model-checking that we have 
developed in this paper has been tested on a basic CSMA/CD protocol. More 
experimental activity will be needed to fully test the feasibility of model-checking 
via reachability testing. So far, all the case studies carried out with the use of 
UPPAAL (see, e.g., [5, 13, 14]) seem to support the conclusion that this approach 
to model-checking can indeed be applied to realistic case studies, but further 
evidence needs to be accumulated to substantiate this claim. In this process of 
experimentation, we also expect to further develop a collection of heuristics that 
can be used to reduce the size of the test automata obtained by means of our 
automatic translation of formulae into automata. 

In this study, we have shown how to translate the formulae in the property 
language SBLL into test automata in such a way that model-checking can be 
reduced to testing for reachability of distinguished reject nodes in the generated 
automata. Indeed the property language presented in this study is remarkably 
close to being completely expressive with respect to reachability properties. In 
fact, as it will be shown in a companion paper [1], a slight extension of the 
property language considered here allows us to reduce any reachability property 
for a composite system S II T to a model-checking problem of S. 

The interpretation of the formulae in our specification formalism presented 
in Table 2 abstracts from the internal evolution of real-time processes in a novel 
way. A natural question to ask is whether the formulae in the property language 
SBLL are testable, in the sense of this paper, when interpreted with respect 
to the transition relation ~. In the full version of this work, we shall show 
that this is indeed possible if the test automata are allowed to have committed 
locations [5], and the definition of the parallel composition operator is modified 
to take the nature of these locations into account. We expect, however, that 
the weak interpretation of the property language will be more useful in practical 
applications of our approach to model-checking. 
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Figure 7: The Ethernet  
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