
Model Checking via Reachability Testing
for Timed Automata

Luca Aceto 1 *, Augusto Burgue5o 2 ** and Kim G. Larsen 1

1 B R I C S * * *, Department of Computer Science, Aalborg University,
Fredrik Bajers Vej 7-E, DK-9220 Aalborg 0, Denmark.
Email: {luca,kgl}@cs.auc.dk, Fax: +45 98 15 98 89

20NERA-CERT, Ddpartement d'Informatique,
2 av. E. Belin, BP4025, 31055 Toulouse Cedex 4, France.

Emaih a.burgueno@acm, org, Fax: +33 5 62 25 25 93

A b s t r a c t . In this paper we develop an approach to model-checking for
timed automata via teachability testing. As our specification formalism,
we consider a dense-time property language with clocks. This property
language may be used to express safety and bounded liveness properties
of real-time systems. We show how to automatically synthesize, for every
formula ~, a test automaton T~, in such a way that checking whether
a system S satisfies the property ~o can be reduced to a reachability
question over the system obtained by making Tv interact with S.

1 I n t r o d u c t i o n

Model-checking of real t ime systems has been extensively studied in the last
few years, leading to both important theoretical results, setting the limits of
decidability [3, 10], and to the emergence of practical tools as HyTech [9], Kronos
[18] and UPPAAL [6], which have been successfully applied to the verification of
real sized systems [5, 12].

The main motivation for the work presented in this paper stems from our
experience with the verification tool UPPAAL. In such a tool, real-t ime systems
are specified as networks of t imed au tomata [3], which are then the object of
the verification effort. The core of the computat ional engine of UPPAAL consists
of a collection of efficient algorithms that can be used to perform reachability
analysis over a model of an actual system. Any other kind of verification problem
tha t the user wants to ask UPPAAL to perform must be encoded as a suitable
reachability question. A typical example of such a problem is tha t of model
checking. Experience has shown tha t it is often convenient to describe desired
system properties as formulae of some real-t ime variant of s tandard modal or

* Partially supported by the Human Capital and Mobility project EXPRESS.
** Partially supported by Research Grant of the Spanish Ministry of Education and

Culture and by BRICS. This work was carried out while the author was visiting
Aalborg University.

* * * Basic Research in Computer Science.

264

temporal logics (see, e.g., [4, 11, 15]). The model-checking problem then amounts
to deciding whether a given system specification has the required property or
not.

The way model-checking of properties other than plain reachability ones may
currently be carried out in UPPAAL is as follows. Given a property ~o to model-
check, the user must provide a test automaton T~ for that property. This test
automaton must be such that the original system has the property expressed by
~o if, and only if, none of the distinguished reject states of T~ can be reached when
the test automaton is made to interact with the system under investigation.

As witnessed by existing applications of this approach to verification by
model-checking (cf., e.g., [13]), the construction of a test automaton from a
temporal formula or informally specified requirements is a task that, in gen-
eral, requires a high degree of ingenuity, and is error-prone. It would therefore
be useful to automate this process by providing a compilation procedure from
formulae in some sufficiently expressive real-time logic into appropriate test au-
tomata, and establishing its correctness once and for all. Apart from its practical
and theoretical interest, the existence of such a connection between specification
logics and automata would also free the average user of a verification tool like
UPPAAL from the task of having to generate ad hoc test automata in his/her ver-
ifications based on the model-checking approach. We envisage that this will help
make the tool usable by a larger community of designers of real-time systems.

In this paper we develop an approach to model-checking for timed automata
via teachability testing. As our specification formalism, we consider a dense-
time property language with clocks, which is a fragment of the one presented in
[15]. This property language may be used to express safety and bounded liveness
properties of real-time systems. We show how to automatically synthesize, for
every formula ~, a so-called test automaton T~o in such a way that checking
whether a system S satisfies the property ~o can be reduced to a reachability
question over the system obtained by making T~ interact with S. More precisely,
we show that S satisfies property ~ iff none of the distinguished reject nodes of
the test automaton can be reached in the combined system S H T~ (Thm. 5.2).
This result is obtained for a model of timed automata with urgent actions and
the interpretation of parallel composition used in UPPAAL.

The property language we consider in this paper only allows for a restricted
use of the boolean 'or' operator, and of the diamond modality of Hennessy-Milner
logic [8]. We argue that these restrictions are necessary to obtain testability of
the property language, in the sense outlined above (Propn. 5.4). Indeed, as it will
be shown in a companion paper [1], the property language presented in this study
is remarkably close to being completely expressive with respect to reachability
properties. In fact, a slight extension of the property language considered here
allows us to reduce any reachability property of a composite system S II T to a
model-checking problem of S.

Despite the aforementioned restrictions, the testable property language we
consider is both of practical and theoretical interest. On the practical side, we
have used the property language, and the associated approach to model-checking

265

via teachability testing it supports, in the specification and verification in UP-
PAAL of a collision avoidance protocol. This protocol was originally analyzed
in [13], where rather complex test automata were derived in an ad hoc fashion
from informal specifications of the expected behaviour of the protocol. The ver-
ification we present here is based on our procedure for the automatic generation
of test automata from specifications. This has allowed us to turn specifications
of the expected behaviour of the protocol into automata, whose precise fit with
the original properties is guaranteed by construction. On the theoretical side,
we have shown that the property language is powerful enough to permit the
definition of characteristic properties [19], with respect to a timed version of
the ready simulation preorder [16], for nodes of deterministic, T-free timed au-
tomata. (This result is omitted from this extended abstract for lack of space,
but see [2].)

This study establishes a connection between a property language for the
specification of safety and bounded liveness properties of real-time systems and
the formalism of timed automata. Our emphasis is on the reduction of the
model-checking problem for the property language under consideration to an in-
trinsically automata-theoretic problem, viz. that of checking for the reachability
of some distinguished nodes in a timed automaton. The blueprint of this en-
deavour lies in the automata-theoretic approach to the verification of finite-state
reactive systems pioneered by Vardi and Wolper [20, 21]. In this approach to
verification, the intimate relationship between linear time propositional tempo-
ral logic and w-automata is exploited to yield elegant and efficient algorithms
for the analysis of specifications, and for model-checking. The work presented
in this paper is not based on a similarly deep mathematical connection between
the property language and timed automata (indeed, it is not clear that such a
connection exists because, as shown in [3], timed Biichi automata are not closed
under complementation), but draws inspiration from that beautiful theory. In
particular, the avenue of investigation pursued in this study may be traced back
to the seminal [20].

The paper is organized as follows. We begin by introducing timed automata
and timed labelled transition systems (Sect. 2). The notion of test automaton
considered in this paper is introduced in Sect. 3, together with the interaction
between timed automata and tests. We then proceed to present a real-time
property language suitable for expressing safety and bounded liveness proper-
ties of real-time systems (Sect. 4). The step from properties to test automata is
discussed in Sect. 5, and its implementation in UPPAAL in Sect. 6. Section 7 is
devoted to a brief description of the specification and verification of a collision
avoidance protocol using the theory developed in this paper. The paper con-
cludes with a mention of some further results we have obtained on the topic of
this paper, and a discussion of interesting subjects for future research (Sect. 8).

266

2 P r e l i m i n a r i e s

We begin by briefly reviewing the timed automaton model proposed by Alur and
Dill [3].

Timed Labelled Transition Systems Let `4 be a finite set of actions ranged over
by a. We assume that .4 comes equipped with a mapping - : A --+ .4 such that

= a for every a G .4. We let .4~ stand for .4 U {T}, where T is a symbol not
occurring in .4, and use # to range over it. Following Milner [17], T will stand
for an internal action of a system. Let N denote the set of natural numbers and
R>0 the set of non-negative real numbers. We use :D to denote the set of delay
actions {e(d) I d �9 R>0}, and s to stand for the union of .4~ and :D.

Def in i t ion 2.1. A timed labelled transition system (TLTS) is a structure 7" =
(S , s ~ >) where S is a set of states, s o �9 S is the initial state, and >C
S • s • S is a transition relation satisfying the following properties:

- (TIME DETERMINISM) for every s, s', s" �9 S and d �9 ~>o, if s '(at s' and

e(d t Sit 8 t 8tt; s then =
e(dl+~2) 8t I -- (TIME ADDITIVITY) for every s, s" �9 S and ds, d2 �9 If{>0, s iff

s ~(d,>) s' e(d~) s", for some s t �9 S;
e(0 t St S t. -- (0-DELAY) for every s, s t �9 S, s iff s =

Following [22], we now proceed to define versions of the transition relations that
abstract away from the internal evolution of states as follows:

s ~ s ' iff 3s". s - -L+*s" a>s ,

s ~(~ s t iff there exists a computation

s = s 0 - 2 ~ S l - - ~ . . . ~ " > s n = s ' (n > 0) where

(a) v i �9 { z , . , n } = r or �9 v

(b) d = I s , =

By convention, if the set {d,] a , = e(d,)} is empty, then ~ { d , [a , = e(d,)} is

0. With this convention, the relation ~(~ coincides with ~ >*, i.e., the reflexive,
transitive closure of ~>. Note that the derived transition relation = ~ only
abstracts from internal transitions before the actual execution of action a.

Def in i t ion 2.2. Let Ti = (E~, s s ~ --+~) (i �9 {1,2}) be two TLTSs. The
parallel composition of T1 and T2 is the TLTS

0 0

where the transition relation) is defined by the rules in Table 1. In Table 1,
and in the remainder of the paper, we use the more suggestive notation s [[s t in
lieu of (s, s').

2 6 7

(1)
T l ~" l

sl ---+s 1 s2 ----~ s~
r , (2) ~- ,

S11182 ""-~ 811182 S11182""~Sl liS2

(3) 81")81 82)812
S r ~81 l i s l

1 S 2 " - - - ' r I I I 2

(4)

~(d / Kd) , , ,,
Sl Sl 82)S 2 Vt E [0, d[,a E .A, sl ,s2.

where s~, s~, s i are states of Ti (i E {1, 2}),
a, ff E .4 and d, t E R>o.

Table 1: Rules defining the transition relation -~ in TI [[T2

3>)

This definition of parallel composition forces the composed TLTSs to synchronize
on actions (all but T-actions) and delays, but with the particularity that delaying
is only possible when no synchronization on actions is. This amounts to requiring
that all actions in ,4 be urgent. The reader familiar with TCCS [22] may have
noticed that the above definition of parallel composition precisely corresponds to
a TCCS parallel composition in which all the actions in .4 are restricted upon.
The use of this kind of parallel composition yields closed systems, of the type
that can be analyzed using UPPAAL [6], and is inspired by the pioneering work
by De Nicola and Hennessy on testing equivalence for processes [7].

Timed Automata Let C be a set of clocks. We use B(C) to denote the set of
boolean expressions over atomic formulae of the form x .-~ p, x - y ,~ p, with
x, y E C, p E N, and ~E {<, >, =}. A time assignment, or valuation, v for C is
a function from C to ll~>0. For every time assignment v and d E R>0, we use
v + d to denote the time assignment which maps each clock x E C to the value
v(x) + d. For every subset of clocks C', [C' ~ 0Iv denotes the assignment for C
which maps each clock in C' to the value 0 and agrees with v over C \ C I. Given
a condition g E B(C) and a time assignment v, the boolean value g(v) describes
whether g is satisfied by v or not.

D e f i n i t i o n 2.3. A timed automaton is a tuple A = (A~,N, no, C , E) where
N is a finite set of nodes, no is the initial node, C is a finite set of clocks, and
E C_ N • N • Ar • 2 c • B(C) is a set of edges. The tuple e -- (n, he, p, r~, g~) E E
stands for an edge from node n to node n~ (the target of e) with action #, where
r~ denotes the set of clocks to be reset to 0 and g~ is the enabling condition (or
guard) over the clocks of A.

Example 2.4. The timed automaton depicted in Figure i has five nodes labelled
no to n4, one clock x, and four edges. The edge from node nl to node n2, for
example, is guarded by x > 0, implies synchronization on a and resets clock x.

268

A state of a t imed automaton A is a pair (n, v) where n is a node of A and v is
a time assignment for C. The initial state of A is (no, v0) where no is the initial
node of A and v0 is the time assignment mapping all clocks in C to 0.

The operational semantics of a timed automaton A is given by the TLTS
7-A = (E, s a ~ ~), where Z is the set of states of A, a ~ is the initial state of
A, and > is the transition relation defined as follows:

(n, v) "> (n', v') iff 3r, g. (n, n',/~, r, g) �9 E A g(v) A v' = [r -+ O]v

(n, v) ~(dt (n', v') iff n = n I and v e = v + d

where # E A~ and e(d) E T~.

3 T e s t i n g A u t o m a t a

In this section we take the first steps towards the definition of model checking via
testing by defining testing. Informally, testing involves the parallel composition
of the tested automaton with a test automaton. The testing process then consists
in performing reachability analysis in the composed system. We say that the
tested automaton fails the test if a special reject state of the test automaton is
reachable in the parallel composition from their initial configurations, and passes
otherwise. The formal definition of testing then involves the definition of what a
test automaton is, how the parallel composition is performed and when the test
has failed or succeeded. We now proceed to make these notions precise.

D e f i n i t i o n 3.1. A test automaton is a tuple T = (,4, N, NT, no, C, E) where A,
N, no, C, and E are as in Definition 2.3, and NT C N is the set of reject nodes.

Intuitively, a test automaton T interacts with a tested system, represented by
a TLTS, by communicating with it. The dynamics of the interaction between
the tester and the tested system is described by the parallel composition of the
TLTS that is being tested and of 7~. We now define failure and success of a test
as follows.

D e f i n i t i o n 3.2. Let T be a TLTS and T be a test automaton.

- We say that a node n of T is reachable from a state sl [[s2 of T [[TT iff
there is a sequence of transitions leading from sz [[s2 to a state whose TT
component is of the form (n, u).

- We say that a state s of T fails the T-test iff a reject node of T is reachable
in 7" [[7"T from the state s [[(no,uo), where (n0,u0) is the initial state of
7"T. Otherwise, we say that s passes the T-test.

In the remainder of the paper, we shall mostly apply test automata to the TLTSs
that give operational semantics to timed automata. In tha t case, we shall use
the suggestive notation A II T in lieu of TA II TT.

269

x_>0 n ~

x

Figure 1: Timed automaton A

ml

~ : ~ k : ~ O

k = r n o ~ x n ~ ~ 0
/ N

(~)

k:----0

k-- > 0
b v

(b)

Figure 2: The test automata T~ and Tb

Example 3.3. Consider the timed automaton A of Figure 1 and the test automa-
ton Tb of Figure 2(b). The reject node mT of the test automaton is reachable
from the initial state of A II T~, as follows:

1. first the automaton A can execute the r-transition and go to node nl, thus
preempting the possibility of synchronizing on channel b with T,

2. now both automata can let time pass, thus enabling the T-transition from
node m0 in Tb and making mT reachable.

In this case we say that A fails the test. If we test A using the automaton Ta
of Figure 2(a), then in all cases A and Ta must synchronize on a and no initial
delay is possible. It follows that the reject node raT of Ta is unreachable, and A
passes the test.

4 T h e P r o p e r t y L a n g u a g e

We consider a dense-time property language with clocks, which is a fragment
of the one presented in [15] and is suitable for the specification of safety and
bounded liveness properties of TLTSs.

270

D e f i n i t i o n 4.1. Let K be a set of clocks, disjoint from C. The set SBLL of
(safety and bounded liveness) formulae over K is generated by the following

::= I I I (plA 2 I I I
I I I X I

c ::= x , ~ p l x - y , , ~ p

where a E ,4, x, y E K, p E N, ,,,E {<, >, =}, X is a formula variable and
max(X, ~o) stands for the maximal solution of the recursion equation X = ~.

A closed recursive formula of SBLL is a formula in which every formula variable
X appears within the scope of some max(X, ~) construct. In the remainder of
this paper, every formula will be closed, unless specified otherwise.

Given a TLTS T -- iS, L:, s ~ ~), we interpret the closed formulae in SBLL
over extended states. An extended state is a pair (s, u) where s is a state of 7"
and u is a time assignment for the formula clocks in K.

D e f i n i t i o n 4.2. Consider a TLTS T = (S, Z:, s ~ ~). The satisfaction relation
~w is the largest relation satisfying the implications in Table 2.

We say that T weakly satisfies ~, written T ~w ~, when (s ~ u0) ~ ~o, where
u0 is the time assignment mapping every clock in K to 0. In the sequel, for a
t imed automaton A, we shall write A ~ ~ in lieu of TA ~ ~.

T

The weak satisfaction relation is closed with respect to the relation) , in
the sense of the following proposition.

P r o p o s i t i o n 4.3. Let T = (S , • , s ~)) be a TLTS. Then, for every s E S,
E SBLL and valuation u for the clocks in K , (s, u) ~ ~v iff,]or every s I such

that s ~)* s', is', u) ~ ~.

The reader familiar with the literature on variations on Hennessy-Milner logic
[17] and on its real-time extensions [23] may have noticed that our definition of
the satisfaction relation is rather different from the standard one presented in
the literature. For instance, one might expect the clause of the definition of the
satisfaction relation for the formula (a)t~. to read

(s,u) ~ (a)~ implies s = ~ s r f o r s o m e s I . (1)

Recall, however, tha t our main aim in this paper is to develop a specification
language for t imed automata for which the model checking problem can be
effectively reduced to deciding reachability. More precisely, for every formula

E SBLL, we aim at constructing a test automaton T~ such that every extended
state is, u) of a t imed automaton satisfies ~ iff it passes the test T~, (in a sense to
be made precise in Defn. 5.1). With this aim in mind, a reasonable proposal for
a test automaton for the formula (a)tt, interpreted as in (1), is the automaton

gralTlmar:

271

(s, u) ~

(s, u) ~ vv
(s,~) ~ ~

(s, u) ~ max(X, ~o)

:=~ true

=~ fa l se

e(u)
=~ Vs'. s __L+* s' implies (#, u) ~ ~ol and (s', u) ~ , ~2

=~ Vs'. s _L+* s' implies c(u) or (s', u) ~

=~ Vs'. s = ~ s' implies (s', u) ~w

=~ Vs'. s - ~ * s ~ implies s' ~ s" for some s"

=~ VdER>oVs'. s ~(~s ' i m p l i e s (s ' , u + d) ~

=~ Vs'. s ~ ;* s' implies (s', [{x} -~ 0]u) ~w ~o

=~ Vs'. s ~)* s' implies (s', u) ~ ~{maz(X, ~a)/X}

Table 2: Weak satisfaction implications

depicted in Figure 2(a). However, it is not hard to see that such an automaton
could be brought into its reject node m T by one of its possible interactions with
the timed automaton associated with the TCCS agent a + r . This is due to
the fact that , because of the definition of parallel composition we have chosen,
a test automaton cannot prevent the tested state from performing its internal
transition leading to a state where an a-action is no longer possible. (In fact, it
is not too hard to generalize these ideas to show that no test automaton for the
formula (a)tt exists under the interpretation given in (1).) Similar arguments
may be applied to all the formulae in the property language SBLL that involve
occurrences of the modal operator [a] and/or of the primitive proposition (a)tt.

The reader might have also noticed that the language SBLL only allows for
a restricted use of the logical connective 'or'. This is due to the fact tha t it is
impossible to generate test automata even for simple formulae like (a)tt v [b]~--
cf. Propn. 5.4.

N o t a t i o n . Given a state (n, v) of a timed automaton, and a valuation u for the
formula clocks in K, we write (n, v : u) for the resulting extended state.

5 M o d e l checking via tes t ing

In Sect. 3 we have seen how we can perform tests on timed automata. We
now aim at using test automata to determine whether a given timed automaton
weakly satisfies a formula in L. As already mentioned, this approach to model
checking for timed automata is not merely a theoretical curiosity, but it is the
way in which model checking of properties other than plain reachability ones is
routinely carried out in a verification tool like UPPAAL. In order to achieve our
goal, we shall define a "compilation" procedure to obtain a test automaton from
the formula we want to test for. By means of this compilation procedure, we

272

automate the process of generating test automata from specifications--a task
which has so far required a high degree of ingenuity and is error-prone.

De f in i t i on 5.1. Let ~o be a formula in SBLL and Tv be a test automaton over
clocks {k} U K , k fresh.

- For every extended state (n, v : u) of a timed automaton A, we say that
(n, v : u) passes the T~-test iff no reject node of T~ is reachable from the
state (n, v) I[(m0, {k} -+ 0 : u), where m0 is the initial node of T~.

- We say that the test automaton T~ weakly tests for the formula ~ iff the
following holds: for every timed automaton A and every extended state
(n, v : u) of A, (n, v : u) ~ ~ iff (n, v : u) passes the T~-test.

T h e o r e m 5.2. For every closed formula ~ in SBLL, there exists a test automa-
ton Tv that weakly tests for it.

Proof. (SKETCH.) The test automata are constructed by structural induction on
open formulae. (The UPPAAL implementation of the constructions is depicted in
Figures 3 and 4.) It can be shown that, for every closed formula ~, the resulting
automaton Tv weakly tests for ~. The details of the proof will be presented in
the full version of the paper.

C o r o l l a r y 5.3. Let A be a timed automaton. Then, for every ~o E SBLL, there
exists a test automaton T~ with a reject node mT such that A ~ ~ iff node mT
is not reachable in AII T~.

As remarked in Sect. 4, the property language SBLL only allows for a restricted
use of the 'or' operator. This is justified by the following negative result.

P r o p o s i t i o n 5.4. The formula (a)~t Y [b]if is not weakly testable.

6 I m p l e m e n t a t i o n i n UPPAAL

The UPPAAL constr~ct8 The implementation of testing using the parallel com-
position operator presented in Sect. 3 requires a model of communicating timed
automata with urgent actions (cf. rule (4) in Table 1). This feature is available
in the UPPAAL model. The test automata are inductively obtained from the
formula in a constructive manner, according to the constructions shown in Fig-
ures 3 and 4. In these constructions all actions in .A are intended to be urgent.
As in UPPAAL it is not possible to guard edges labelled with urgent actions, the
theoretical construction for T[a]~ used in the proof of Thm. 5.2 is implemented
by means of node invariants.

273

Qmo (~ r a o = mT

(a) Tt (b) T~

k : = 0

k----OA-~c

T

(c) To

k : = O

mo

~ m T

(d) T~1^~2

k : = 0

~rr

(e) Tcv~

Figure 3: Test automata for SBLL sub-formulae

C
~

~D

oo

Q

v

v~

C
j~

V

o

275

(a)

k : = O

(b) T.

Figure 5: New simplified constructs

Simplification of the test automaton In certain cases, it is possible to optimize
the construction of a test automaton from a formula by applying heuristics. Here
we just remark on two possible simplifications. One is with respect to Tv1^v2
(Figure 3(d)) and the other one with respect to T= in ~ (Figure 4(d)). Both
simplifications involve the elimination of the T-transitions emanating from node
too. This leads to the constructs shown in Figures 5(a) and 5(b). The test au-
tomaton of Figure 5(a) is obtained by setting the initial nodes of T~I and T~2
to be the same node m0, and the same for the reject node mT. For T= i_~ v, the
reset x :-- 0 is added to the incoming edge of T~. Nevertheless, these simplifi-
cations cannot be applied in general. For example, if the and operator involves
the conjunction of [a]~ and (a)~, or [a]~ and V~, or (a)~t and ~ , then the
proposed simplification leads to incorrect test automata. This is because there
is a different interpretation of evolving time in each operand, by, for example,
leading to a reject state in one operand and to a safe one in the other one, or
simply not being allowed in one case and being necessary in the other. Similarly,
the i__p_n operator can be simplified only when it is not an operand in an and
operation which has already been simplified.

High level operators The basic constructs of the logic SBLL can be used to define
high level temporal operators, which may be used to simplify the writing of
logical specifications (and substantiate our claim that SBLL can indeed express
safety and bounded liveness properties). Here we confine ourselves to showing
how to define the temporal operators u n t i l , b e f o r e and inv:

def max(X, c V (~ ^ A[a]X ^ VX)) until c =

def
~ountil<t c = x i__nn ((~oAx_<t) until c)

def
beforet c = tt until<t c

inv ~ de=f max(X,(p A A[aIX AVX) .
a

276

7 E x a m p l e

Consider a number of stations connected on an Ethernet-like medium, following
a basic CSMA/CD protocol as the one considered in [13]. On top of this basic
protocol, we want to design a protocol without collisions (applicable for example
to real t ime plants). In particular, we want to guarantee an upper bound on
the transmission delay of a buffer, assuming that the medium does not lose or
corrupt data, and that the stations function properly. The simplest solution is
to introduce a dedicated master station which asks the other stations whether
they want to transmit data to another station (see Figure 7). Such a master
station has to take into account the possible buffer delays within the receiving
stations to ensure that the protocol enjoys the following properties: (1) collision
cannot occur, (2) the transmitted data eventually reach their destination, (3)
data which are received have been transmitted by a sender, and (4) there is a
known upper bound on the transmission delay, assuming error-free transmission.

Modelling and verification of such a protocol in UPPAAL has been presented
in [13], where the details of such a modelling may be found. Here we only focus
on the external view of the behaviour of the system. The observable actions
are: user i sending a message, written send_i !, and user j receiving a message,
written recv_j !, for i , j = {1, 2,3}. The verification of the protocol presented
in op. cit. was based on the ad hoc generation of test automata from informal
specifications of system requirements. Indeed, some of the test au tomata that
resulted from the informal requirements were rather complex, and it was difficult
to extract their semantic interpretation. We now have at our disposal a precise
property language to formally describe the expected behaviour of the protocol,
together with an automatic compilation of such specifications into test automata,
and we can therefore apply the aforementioned theory to test the behaviour of
the protocol.

One of the requirements of the protocol is that there must be an upper bound
on the transmission delay. Assuming that this upper bound is 4, this property
can be expressed by means of the following formula in SBLL:

(isoo < ^ Ireov 'l , < 4)))

This formula states that it invariantly holds that whenever user 1 sends a mes-
sage, it will be received by users 2 and 3 within 4 units of time. Note that we
consider transmission to be error-free, so the message will eventually be received.
What we are interested in is the delay expressed by clock s. The test automaton
corresponding to this formula is shown in Figure 6. (Note that , although the
formula above expresses the required behaviour of the protocol in a very direct
way, its encoding as a test automaton is already a rather complex object- -which
we were glad not to have to build by hand!)

In order to experiment with our current implementation of the test au tomata
construction in UPPAAL, we have also carried out the verification of several
other properties of the protocol. For instance, we have verified that , under
the assumption that the master waits for two time units before sending out its

277

enquiries, the protocol has a round-trip time bound of 18 time units, and that
no faster round-trip exists. However, we have verified that changing the waiting
time in the master to zero will allow for faster round-trip times. The details of
these experiments will be reported in the full version of this study.

8 Concluding Remarks

As argued in, e.g., [24], efficient algorithms for deciding reachability questions
can be used to tackle many common problems related to verification. In this
study, following the lead of [20], we have shown how to reduce model-checking of
safety and bounded liveness properties expressible in the real-time property lan-
guage SBLL to checking for reachability of reject states in suitably constructed
test automata. This approach allows us to take full advantage of the core of the
computational engine of the tool UPPAAL [6], which consists of a collection of
efficient algorithms that can be used to perform reachability analysis over timed
automata.

The practical applicability of the approach to model-checking that we have
developed in this paper has been tested on a basic CSMA/CD protocol. More
experimental activity will be needed to fully test the feasibility of model-checking
via reachability testing. So far, all the case studies carried out with the use of
UPPAAL (see, e.g., [5, 13, 14]) seem to support the conclusion that this approach
to model-checking can indeed be applied to realistic case studies, but further
evidence needs to be accumulated to substantiate this claim. In this process of
experimentation, we also expect to further develop a collection of heuristics that
can be used to reduce the size of the test automata obtained by means of our
automatic translation of formulae into automata.

In this study, we have shown how to translate the formulae in the property
language SBLL into test automata in such a way that model-checking can be
reduced to testing for reachability of distinguished reject nodes in the generated
automata. Indeed the property language presented in this study is remarkably
close to being completely expressive with respect to reachability properties. In
fact, as it will be shown in a companion paper [1], a slight extension of the
property language considered here allows us to reduce any reachability property
for a composite system S II T to a model-checking problem of S.

The interpretation of the formulae in our specification formalism presented
in Table 2 abstracts from the internal evolution of real-time processes in a novel
way. A natural question to ask is whether the formulae in the property language
SBLL are testable, in the sense of this paper, when interpreted with respect
to the transition relation ~. In the full version of this work, we shall show
that this is indeed possible if the test automata are allowed to have committed
locations [5], and the definition of the parallel composition operator is modified
to take the nature of these locations into account. We expect, however, that
the weak interpretation of the property language will be more useful in practical
applications of our approach to model-checking.

C
~

oo

0 0 B
~

q~

O

0
0

279

Master Slave 1 Slave 2 Slave 3

I I I I
Ethernet

Figure 7: The Ethernet

A c k n o w l e d g e m e n t s . We thank Patricia Bouyer for her help in the imple-
mentat ion of the tool, Ks Jelling Kristoffersen for his proof-reading, and the
anonymous referees for their comments.

R e f e r e n c e s

1. L. Aceto, P. Bouyer, A. Burguefio, and K. G. Larsen. The limitations of testing
for timed automata, 1997. Forthcoming paper.

2. L. Aceto, A. Burguefio, and K. G. Larsen. Model checking via reachability test-
ing for timed automata. Research Report RS-97-29, BRICS, Aalborg University,
November 1997.

3. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

4. R. Alur and T.A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181-204, 1994. Preliminary version appears in Proc. 30th FOCS, 1989.

5. J. Bengtsson, D. Griffioen, K. Kristoffersen, K. G. Larsen, F. Larsson, P. Petters-
son, and W. Yi. Verification of an audio protocol with bus collision using UPPAAL.
In R. Alur and T. A. Henzinger, editors, Proc. of the 8th. International Confer-
ence on Computer-Aided Verification, CAV'96, volume 1102 of Lecture Notes in
Computer Science, New Brunswick, New Jersey, USA, July 31 - August 3 1996.
Springer-Verlag.

6. J. Bengtsson, K. G. Larsen, F. Larsson, F. Pettersson, and W. Yi. UPPAAL - a tool
suite for automatic verification of real-time systems. In Proc. of the 4th DIMACS
Workshop on Verification and Control of Hybrid Systems, New Brunswick, New
Jersey, 22-24 October 1995.

7. R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83-133, 1984.

8. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the Association for Computer Machinery, 32(1):137-161, January 1985.

9. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: the next generation. In
Proc. of the 16th Real-time Systems Symposium, RTSS'95. IEEE Computer Society
press, 1995.

280

10. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What's decidable about
hybrid automata? In Proc. of the 27th Annual ACM Symposium on Theory of
Computing, STOC'95, pages 373-382, 1995. Also appeared as Cornell University
technical report TR95-1541.

11. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111(2):193-244, 1994.

12. P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control protocol. In
P. Wolper, editor, Proc. of the 7th. International Conference on Computer-Aided
Verification, CAV'95, volume 939 of Lecture Notes in Computer Science, pages
381-394, Lige, Belgium, July 1995. Springer-Verlag.

13. H. E. Jensen, K. G. Larsen, and A. Skou. Modelling and analysis of a collision
avoidance protocol using SPIN and UPPAAL. In DIMACS Workshop SPIN '96,
2nd International SPIN Verification Workshop on Algorithms, Applications, Tool
Use, Theory. Rutgers University, New Jersey, USA, 1996.

14. K.J. Kristoffersen and P. Pettersson. Modelling and analysis of a steam generator
using U P P A A L . In Proc. of the 7th Nordic Workshop on Programming Theory,
GSteborg, Sweden, November 1-3 1995.

15. F. Laroussinie, K. G. Larsen, and C. Weise. From timed automata to logic - and
back. In J. Wiedermann and P. H~jek, editors, Proc. of the 20th. International
Symposium on Mathematical Foundations of Computer Science, MFCS'95, volume
969 of Lecture Notes in Computer Science, pages 529-539, Prague, Czech Republic,
August 28 - September 1 1995. Springer-Verlag.

16. Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Infor-
mation and Computation, 94(1):1-28, September 1991.

17. R. Milner. Communication and Concurrency. Series in Computer Science. Prentice
Hall International, 1989.

18. A. Olivero and S. Yovine. Kronos: a tool for verifying real-time systems. User's
guide and reference manual. VERIMAG, Grenoble, France, 1993.

19. B. Steffen and A. IngSlfsdSttir. Characteristic formulae for processes with diver-
gence. Information and Computation, 110(1):149-163, April 1994.

20. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. of the 1st. Annual Symposium on Logic in Computer Science,
LICS'86, pages 322-331. IEEE Computer Society Press, 1986.

21. M. Y. Vardi and P. Wolper. Reasoning about infinte computations. Information
and Computation, 115:1-37, 1994.

22. Y. Wang. Real-time behaviour of asynchronous agents. In J.C.M. Baeten and J.W.
Klop, editors, Proc. of the Conference on Theories of Concurrency: Unification and
Extension, CONCUR'90, volume 458 of Lecture Notes in Computer Science, pages
502-520, Amsterdam, The Netherlands, August 27-30 1990. Springer-Verlag.

23. Y. Wang. A calculus of real time systems. PhD thesis, Chalmers university of
Technology, GSteborg, Sweden, 1991.

24. P. Wolper. Where could SPIN go next? a unifying approach to
exploring infinite state spaces. Slides for an invited talk at the
1997 SPIN Workshop, Enschede, The Netherlands. Available at the URL
http ://~. montefiore, ulg. ac. be/'pw/papers/ps files/SPIN4-97, ps.

