
Verifying Networks of Timed Processes
(Extended Abstract)

Paxosh Aziz Abdulla and Bengt Jonsson

Dept. of Computer Systems
Uppsala University

P.O. Box 325, S-751 05 Uppsala, Sweden
{parosh,bengt}@docs.uu.se,

WWW: http://.w., docs .uu. se/- {parosh, bengt }

Abs t r ac t . Over the last years there has been an increasing research
effort directed towards the automatic verification of infinite state sys-
tems, such as timed automata, hybrid automata, data-independent sys-
tems, relational automata, Petri nets, and lossy channel systems. We
present a method for deciding reachability properties of networks of
timed processes. Such a network consists of an arbitrary set of identical
timed automata, each with a single real-valued clock. Using a standard
reduction from safety properties to reachability properties, we can use
our algorithm to decide general safety properties of timed networks. To
our knowledge, this is the first decidability result concerning verification
of systems that are infmite-state in "two dimensions": they contain an ar-
bitrary set of (identical) processes, and they use infinite data-structures,
viz. real-valued clocks. We illustrate our method by showing how it can
be used to automatically verify Fischer's protocol, a timer-based protocol
for enforcing mutual exclusion among an arbitrary number of processes.

1 I n t r o d u c t i o n

The last decade has seen much progress with regard to au tomated verification of
reactive programs. The most dramat ic advances have been obtained for finite-
s tate programs. However, methods and algorithms axe now emerging for the
au tomat ic verification of infinite state programs. There are at least two ways in
which a program can be infinite-state. A program can be infinite-state because
it operates on da ta structures from a potentially infinite domain, e.g., integers,
stacks, queues, etc. Nontrivial verification algorithms have been developed for
several classes of such systems, notably t imed au toma ta [ACD90], hybrid au-
t o m a t a [Hen95], data-independent systems [JP93,Wo186], relational au toma ta
([Cer94]), Petri nets ([JM95]), pushdown processes ([BS95]) and lossy channel
systems [AJ96,AK95]. A program can also be infinite-state because it is intended
to run on a network with an arbi trary number of nodes, i.e., the the program is
parameterized with respect to the topology of the network of nodes. In this case,
one would like to verify correctness for any number of components and any in-
t e r c o n n e c t i o n topology. Verification algorithms have been developed for systems

299

consisting of an unbounded number of similar or identical finite-state processes
([GS92]), and (using a manually supplied induction hypothesis) for more general
classes of parameterized systems [CGJ95,KM89].

In this paper, we will present an algorithm for verifying safety properties of
a class of programs, which we call timed networks. A timed network is a system
consisting of an arbitrary set of processes, each of which is a finite-state system
operating on a real-valued clock. Each process could roughly be considered as a
t imed automaton [ACD90] with a single clock. In addition, our model also allows
a central finite-state process, called a controller. Timed networks embody both
of the two reasons for being infinite-state: they use an infinite data structure
(namely clocks which can assume values from the set of real numbers), and they
are parameterized in allowing an arbitrary set of processes. To our knowledge,
this is the first decidability result concerning verification of networks of infinite-
state processes.

We present an algorithm for deciding teachability properties of t imed net-
works. Using a standard reduction (described e.g., in [VW86]) from safety prop-
erties to teachability properties, we can use this algorithm to decide general
safety properties of t imed networks. To decide reachability, we adapt a stan-
dard symbolic verification algorithm which has been used e.g., in model-checking
[CES86]. A rough description of this method is that in order to check whether a
state in some set F is reachable, we compute the set of all states from which a
state in F is reachable. This computation is performed using a standard fixed-
point iteration, where for successively larger j we compute the set of states from
which a state in F can be reached by a sequence of transitions of length less
than or equal to j . More precisely, we obtain the (j + 1)st approximation from
the j t h approximation by adding the pre-image of the j t h approximation, i.e.,
the set of states from which a state in the j t h approximation can be reached
by some transition. If this procedure converges, one checks whether the result
intersects the set of initial states of the model. The heart of our result is solving
the following three problems:

- finding a suitable representation of infinite sets of states,
- finding a method for computing pre-images, and
- proving that the iteration always converges.

To represent sets of states, we use constraints which generalize the notion
of regions used to verify properties of (non-parameterized) t imed automata
[ACD90]. A constraint represents conditions on a potentially unbounded number
of processes and their clocks. In contrast to the situation for timed automata
[ACD90], where for each program there are finitely many regions, there is in
general an infinite number of constraints that can appear in the analysis of a
given timed network. To handle this, we introduce an entailment ordering on
contraints. The key step in our proof of decidability consists in proving that
this relation is a well quasi-ordering, implying that the the above mentioned
fixedpoint iteration converges.

Our results also demonstrate the strength and applicability of the general
framework described in [ACJYK96,Fin90]. Using that framework, we can con-

300

clude the decidability of eventuality properties (of the form AFp in CTL). for
t imed networks, and the question of whether or not a t imed network simulates or
is simulated by a finite-state system. We will not further consider these questions
in this paper.

Our model of t imed networks is related to other formalisms for t imed systems,
notably t ime or t imed Petri nets [GMMP91,BDgl] and Timed CCS [Yi91]. Our
decidability result can be translated to decidability results for variants of these
formalisms. It is known that reachability is undecidable for time Petri nets.
This is due to the inclusion of urgency in the Petri net model. Urgency means
that a transition is forced to execute within a specified t imeout period. In our
model transitions can not be forced to occur; a t imeout can only specify that a
transition is executed within a specified t ime period if it is executed. Urgency
allows the model to test for emptiness of a place, thus leading to undecidability.
A similar difference holds in comparison with Timed CCS.

As an illustration of our method, we model Fischer's protocol and show
how an automatic verification algorithm would go about verifying mutual ex-
clusion. Several tools for verifying automata with a fixed number of clocks have
been used to verify the protocol for an increasing number of processes (e.g.,
[ACHH92]). Kristoffersen et al. [KLL+97] describes an experiment where the
number of processes is 50. In [LSW95], a constraint-based proof methodology is
used to perform a manual verification of the protocol.

Outline The rest of the paper is structured as follows. In the next section, we
present our model of timed networks. An overview of the reachability algorithm
is presented in Section 3. In Section 4, we present our constraint system. In
Section 5, we present a procedure for calculating the pre-image of a set of states
which are represented by a constraint. In Section 6 we prove that the entailment
ordering on the constraint system is a well quasi-ordering, which implies that
our algorithm always terminates. An application of the reachability algorithm
to the verification of Fischer's protocol is given in Section 7.

2 T i m e d N e t w o r k s

In this section, we will define networks of timed processes. Intuitively, a network
of t imed processes consists of a controller and an arbitrarily large set of iden-
tical (timed) processes. The controller is a finite-state transition system. Each
process has a finite-state control part, and an unbounded data structure, namely
a real-valued clock 1. The values of the clocks of the processes are incremented
continuously at the same rate. In addition to letting time pass by incrementing
the clocks, the network can change its configuration according to a finite number
of rules. Each rule describes a set of transitions in which the controller and an
arbitrary but fixed-size set of processes synchronize and simultaneously change
their states. A rule may be conditioned on the control states of the participating

1 The controller could also be equipped with a timer, but this aspect is not central to
our result, so we will omit it.

301

controller and processes, and on conditions on the clock values of the participat-
ing processes. If the conditions for a rule are satisfied, the controller and each
participating process may change its state and (optionally) reset its clock to 0.

We are interested in verifying correctness of a network regardless of its size.
The actual object of study will therefore be a family of networks, where the
number of processes is not given. A family merely defines the controller and
process states together with a set of rules. The parameter (i.e., size) of the
network will be introduced later, when we define configurations.

We use A/" and 7~ >~ to denote the sets of natural numbers and nonnegative
reals respectively. For n E A f, we use ~ to denote the set { 1 , . . . , n}. A guarded
command is of the form p(z) --+ op, where p(z) is a boolean combination
of predicates of the form k < z, k < z, k > z, or k _> z for k E Af, and
o19 E {reset, skip).

D e f i n i t i o n 1. A family of t imed networks (timed network for short) is a triple
(C, Q, R), where:

C is a finite set of controller states.
Q is a finite set of process states.
R is a finite set of rules. A rule r is of the form

((e , e ') , (q l , s t m t l , . . . , (qn , s t r u t , , q"))

where c, c' E C, qi, q~ E Q, and stmti is a guarded command.

Intuitively, the set C represents the set of states of the controller. The set Q
represents the set of states of each of the identical processes. A rule r describes a
set of transitions of the network. The rule is enabled if the state of the controller
is c, and if there are n processes with states q l , . . . , q~, respectively, whose clock
values satisfy the corresponding guards. The rule is executed by simultaneously
changing the state of the controller to c ~, changing the states of the n processes
to q~ , . . . , q~ respectively, and modifying values of the clocks according to the
relevant guarded commands.

Defini t ion 2. A configuration 7 of a timed network (C, Q, R) is a quadruple of
form (I, c, q, x), where I is a finite index set, c E C, q: I -+ Q, and x: I --~ T~ >~

Intuitively, I is the set of indices of processes in the network. The index set does
not change when performing transitions. Each element in I will be used as an
index to represent one particular process in the network. Thus, we can say that
a t imed network defines a family of networks parametrized by 12. The state of
the controller is given by c, the states of the processes are given by the mapping
q from indices to process states, and the clock values are given by the mapping
x from indices to nonnegative real numbers.

2 We can extend our model to include dynamic creation and destruction of processes,
by allowing the set of indices in a configuration to change dynamically. Our decid-
ability result holds also for such an extension. However, we will not consider that in
the present paper.

302

A timed network changes its configuration by performing transitions. We will
define a transition relation > as the union of a discrete transition relation >D,
representing transitions caused by the rules, and a timed transition relation > T
which represents the passage of time. T h e discrete relation)D will furthermore
be the union of transition relations)D corresponding to each rule r, i.e.,

)D = U r>D.
rER

Def in i t i on 3. Let r = ((c, c'), (ql, s tmtl , q~), . . . , (qn, s tmt , , q~)) be a rule where
stmti is of form pi(z) ~ opi for i = 1 , . . . , n . Consider two configurations
7 = U, c, q, x) and 7' = (L c', a', x'), with the same indez sets, and where the
controller states of 7 and 7' are the same as the controller states in the rule r.
We use 7 ~ D 7' to denote that there is an injection h: ~ --~ I from indices of
the rule r to indices of the network such that

1. q(h(i)) = qi, and pi(x(h(i))) holds for each i ~ 5,
e. q~(h(i)) = q~ for i E 5,
3. q ' (j) = q(j) for j E (I \ range(h)),
4- x ' (h(i)) .= 0 for i E ~ with opl = reset,
5. x '(h(i)) = x(h(i)) for i E ~ with opi = skip, and
6. x ' (j) = x(j) for j E (I \ range(h)).

The first condition asserts that r is enabled, i.e., that the process states q l , . . . , qn
are matched by the corresponding process states in the configuration 7 and that
the corresponding guarded commands are enabled. The second condition means
that in the transition from 7 to 7', the states of processes that are matched (by
h) with indices of r are changed according to r. The third condition asserts that
the states of the other processes are unchanged. The fourth condition asserts that
in the transition from 7 to 7 ~, the clock vMues of processes that are matched (by
h) with indices of r are set to 0 if the corresponding guarded command contains
reset, the fifth asserts that clocks are unchanged if the guarded command con-
tains skip. The last condition asserts that clock values of unmatched processes
are unchanged.

Let 3' = (I, c ,q ,x) be configuration. For ~ E 7~ >-~ we use 7 +~ to denote the
configuration (I, c, q, x'), where z ' (j) = z (j) + ~ for each j E / .We say that 7
performs a timed transition to a configuration 7', denoted 7 >T 7', if there is
a J E 7~ >~ such that 7' = 7 +~. We use 7) 7' to denote that either 7)D "/'
or "/)T 7 ~. We use _.2.+ to denote the reflexive transitive closure of -----+.

3 Overview of the Reachability Algorithm

In this section we define the reachability problem, and give an overview of our
method for solving it. Given a t imed network (C, Q, R) together with states
ci,~it E C and qi,~it E Q which we call the initial controller state and the ini-
tial process state respectively, we define an initial configuration ~[init of the
timed network (C, Q, R) as a configuration of the form (I, cinit, r Xlnit~ where

303

chnlt(j) = qinit and xinit(j) = 0 for each j E I. Thus, there is one initial config-
uration for each possible index set I. We say that a configuration 7 is reachable
if 7init * ~ 7, for some initial configuration 7init. We say that a set F of config-
urations is reachable if there is a reachable 7 E F.

We will present an algorithm for deciding whether a se t / " of configurations of
a t imed network is reachable. Note that in general , /" will contain configurations
of networks with infinitely many different sizes, where the size of a configuration
is given by its index set. This means that we ask whether there is some size of
the network such that a configuration with this size (as given by its index set)
is reachable. In a typical situation, we are interested in verifying that /~ is an
unreachable set of "bad" configurations, irrespective of the size of the network.
If we include in F the bad configurations of all possible network sizes, and if
our analysis finds F to be unreachable, this means that we have verified that
the configurations in/~ are unreachable for all possible sizes of the network. For
instance, we can verify correctness of an n-process mutual exclusion algorithm
for all values of n simultaneously.

In Section 4, we will define a class of constraints for representing sets of con-
figurations. A constraint r denotes a (possibly infinite) set [r of configurations.
A finite set �9 = { r Ca} of constraints denotes the union of the denotations

of its elements, i.e., [~] = ~ 1 [r Formally, the reachability problem is defined

as follows.

I n s t a n c e : A timed network (C, Q, R), an initial controller state cinit, an initial
process state qinit and a finite set �9 of constraints.

Q u e s t i o n : Does [4~] contain a reachable configuration?

To check the reachability of �9 we perform a reachability analysis backwards.
Let pre(r denote the set {7 : 37' E ~[r : 7 ~ 7'}, and pre(q~) denote the set
{7 : 37' E [O] : 7 ~ 7'}- Note that pre(~) is equivalent to UCe~pre(r Start-
ing from �9 we define the sequence ~0, ~1, ~2, �9 �9 �9 of finite sets of constraints by
~0 = ~ and ~ j+ l = ~j Opre(~j) . Intuitively, ~ j denotes the set of configurations
from which 45 is reachable by a sequence of at most j transitions. Note that the
sequence is increasing i.e., that [~0] C [~1] C [~2] C_ ..-. In the next paragraph,
we will prove that the iteration converges (using Theorem 4), i.e., that there is
a k such that [~k] = [~k+l], implying that [~k] = [~j] for all j > k. It follows
that #i is reachable if and only if there is an initial configuration 7init such that
7init E [~l,], which is easily checked since ~k is a finite set of constraints.

To prove convergence, we introduce, in Definition 6, a quasi-order ___ on con-
straints by defining r _ r to denote that [r C [r In Theorem 4, we will
show that _ is a well quasi-ordering on the set of constraints, i.e., that in any
infinite sequence r r r "'" of constraints, there are indices i < j such that
r "~ Cj. This implies that any increasing sequence [~0] C_ [~1] C [~2] C_ . . . of
finite sets of constraints will converge, since otherwise we could extract an infi-
nite sequence r r r "'" of constraints (where r is chosen such that r E ~i
but [r ~ [45i_1]) for which there are no indices i < j such that r ~ Cj.

Summarizing, we have established the following theorem

304

T h e o r e m 1. The teachability problem for families of timed networks is decid-
able

Proof. Follows from the preceding discussion, using Theorem 2 (decidability of
_) , Theorem 3 (computability of pre) and Theorem 4 (well quasi-orderedness of
~).

The following sections contain the above mentioned definitions and lemmas.
In Section 4, we define the constraint system. In Section 5, we show that pre(r
can be computed and represented by a finite set of constraints whenever r is
a contraint. Finally, in Section 6, we show that the relation -~ is a well quasi-
ordering on the set of constraints.

4 A Constraint System for Timed Networks
f

In this section we introduce a constraint system for t imed networks. Our con-
straint system generalizes the notion of regions, employed for the analysis of
t imed automata [ACD90]. We use a representation of constraints, which is sim-
ilar to a representation of regions used by Godskesen [God94].

For a quasi-order E 3 on some set, we use al ---- a 2 to denote that al E a2 and
a2 E al , and use al r a2 to denote that al E a2 and a2 (~ al. For a real number
x E T~ >~ let [xJ denote its integer part, and let fract(x) denote its fractional
part.

D e f i n i t i o n 4. Let (C, Q, R) be a family of timed networks. Let max be the max-
imum constant occurring in the guarded commands in R. A constraint r of
iV, Q, R) is a tuple (e, rn, q, k, E) where

- c E C is a controller state,
- m is a natural number, where ~ intuitively denotes a set of indices of

processes constrained by r
- q : ~n ~-~ Q is a mapping from indices to process states,
- k : ~t ~-~ { 0 , . . . , max} maps each index to a natural number not greater than

m a x ~

- E is a quasi-order on the set ~t U {2-, T} which satisfies
�9 the elements 2- and 3- are minimal and maximal elements of E, respec-

tively, with J_ r- 3- 4,
�9 j =_ 2_ or j - T whenever k(j) = max, f o r j E Cn, and
�9 k(j) = max whenever j =_ T, for j e Cn.

Intuitively, a constraint denotes a set of configurations of networks in the family.
The constraint (c, m, q, k, E) represents the set of configurations with controller
state c in which each index j E ~t represents a process which has control state
q(j) , for which k(j) is either max or the integer part of its clock, whichever

3 A quasi-order is a reflexive and transitive relation.
4 Note that .L, T ~ ~.

305

is least, for which j -- _L iff the integer part of the clock is at most max and
the fractional part of the clock is 0, and for which j = T i f f the clock value is
more than max. Furthermore, the fractional parts of the clocks corresponding
to indices j with j E T are ordered exactly according to E. This implies, among
other things, that for clock values that are larger than max, a constraint gives
no information about the difference between the actual clock value and max.
The meaning of constraints is made formal in the following definition.

D e f i n i t i o n 5. Let r = (c, m, q, k , E) be a constraint and let 7 = (I , c, q, x) be a
configuration 5. We define 7 E [r to mean that there is an injection h : ~n ~ I
f rom the indices of r to the indices of 7 such that for all j , j l , j2 E ~n

- q(h(j)) -- q(j) ,
- min(max , [x(h(j))]) -- k(j) ,
- j -- • i f and only i fx (h(j)) <_ max a n d f r a e t (x (h (j))) = O,
- j - T i f and only i f x (h (j)) > max, and
- i f j l , j 2 ~ T then f rac t (x (h (j l))) <_ fract(x(h(j2))) i f and only i f j l E j2.

Note that a constraint r defines conditions on states and clock values which
should be satisfied by some set of processes (those represented by indices in
range(h)) in the configuration 7 in order for 7 to be included in [r The con-
straint puts no requirements on processes whose indices are outside range(h) .

D e f i n i t i o n 6. Define the ordering -4 on constraints by r -4 r d=ef[r C_ [[r

Intuitively, r _ r means that r is "stronger" than r or that r "entails" r
The following theorem shows how to compute _ .

T h e o r e m 2. Let r = (c, m, q, k, E) and r = (c', m I, q', k',r-..~ I) be constraints.

We have r "4 r i f and only i f there is an injection g : ~n ~-~ m I such that

- - e ~ e I ,

- for all j E Cn we have
* q '(g(j)) = q(j) ,
. k l (g(j)) = k(j) ,
. g (j) = 1 _L i f f j = _L,

, g (j) =_1 T i f f j - - T,
- i f j~ , j2 e ~ then g(j~) E' g(J~) i f and only i f j~ E J~..

5 C o m p u t i n g p r e

In this section we show, for a given constraint r how to compute pre(r defined
as {7 : 37' E [r : 7) 7'}- Since the transition relation is the union of a
discrete and a t imed transition relation, we will compute pre(r as preD(r) U
preT(r , where prep(C) is the set {7 : 37' E [r : 7 >o 7'}, and where
preT(r is the set {7 : 37' e [r : 7)T 7'}"

s Observe that the controller states are the same in r and 3'.

306

5.1 Comput ing p r e D

We will compute preD(r ~) as Ur~Rpre(r,r where p re (r , r I) denotes the set
{')' : 3") / E [r : ~, r)D ,~1} o f configurations from which r is reachable
through a single application of r 6 .

Let r = ((e ,e ') , (ql ,pl(x) ~ op l ,q~) , . . . , (qn ,pn(x) ~ opn,q~)) and let
r = (e', m', q', k', E'). We will compute a representation of pre(r, r as a fi-
nite set of constraints. Each constraint r with [r C_ pre(r, r will be obtained
from a particular way of matching indices of r with indices of r. Each such
matching gives rise to a set of constraints r with [r C pre(r, r namely those
constraints that are consistent both with the conditions imposed by r according
to Definition 5, and with the conditions imposed by r according to Definition 3.

Let p(x) be a guard and let r = (c, m, q, k, E) be a constraint. For j E ~ ,
we use (r j) ~ p(x) to mean that p is satisfied at index j in r For instance, if
p(x) is of form k _~ x for some k E {0 , . . . , max}, then (r j) ~ p(x) iff k(j) >_ k.
We can derive analogous expressions for other forms of p(x).

A matching will be represented by a partial injection gl from m I to ~: each
index j E domaiAn(g') of r is matched with a unique index g'(j) of r (note that
domain(g I) C m'). Indices in (~ ' \ domain(g')) represent processes which are
constrained by r but are not matched with any index of r. In the indices of r
we must also include the n -]range(g1)] indices of r which are not matched with
any index of r Thus, let m = m ' + (n -]range(g')]) be the number of indices
of r Define an extension g of gl to be a surjeActive partial injection g : ~ ~-+ ~,
with domain domain(g) = domain(g I) O (r t \ m'), such that g(j) = gl(j) for each

j e domain(g'). 7 It follows from the definition of extension that m. ~ \ domain(g')
is not in domain(g) and that g in addition maps each j E (~ \ m I) to a unique
g(j) E (~ \ range(g')).

Lamina 1. If r __ (c I, m I, ql, kl, E I) is a constraint and r is a rule, as above,
then pre(r, r is the denotation of the set of constraints of form r =A(e, m, q, k, E),
for which there is an extension g of a partial injection gl from m I to ~, where
m = m ' + (n -]range(gl)]), which satisfies the following conditions s.

1. q(j) = qg(j) and (r ~ pg(j)(x) for each j E domain(g),
t 2. q ' (j) ---- qg,(j) for j E domain(g'),

3. q ' (j) = q(j) for j E m' \ domain(g1),
4- k ' (j) = 0 and j - ' _l_ i f j E domain(g') and Opg,(j) = reset,
5. For all j such that either j E domain(g I) and opg,(j) = skip, or such that

j E m' \ domain(g'),
we have k ' (j) = k(j) , and j - ' .s iff j - _1_, and j =.' T iff j - -I-.

6 In order to be consistent with the notation in Section 2, we use the primed version of
the constraint to refer to the constraint after a transition, and an unprimed version
of the constraint to refer to the constraint before a transition.

r note that ~ \ m' = {m' + 1, m' + 2 , . . . , m }
s Note that we implicitly require the controller states c and c' of r to coincide with

the controller states c and c' of ~b and r respectively.

307

6. For each Jl and j2 such that for i = 1, 2 either ji E domain(g') and opg,(j,) =

skip, or ji E m ' \ domain(g') ,
we have j l E' j2 if and only if Jl E j2.

The above list of conditions captures the semantics of r~D, given the correspon-
dences between the indices of r, ~ and r which are given by g and g~. Note the
close correspondence between the conditions of the lemma and the conditions
of transitions in Definition 3. The conditions on controller states are implicitly
included by our notation, which requires that the controller states of r and Ct be
the controller states of r. Condition 1 state that r must be enabled in a config-
uration satisfying r Conditions 2 and 3 capture the conditions on states of the
processes: after a transition, states of processes with indices in domain(g') are

constrained by 2; and processes with indices in m' \dornain(g') are unaffected by
the rule (condition 3). Condition 4 describes the effect of a reset statement: the
clock value becomes 0 in r Finally, conditions 5 and 6 assert that for indices
that correspond to a skip statement, or for indices not matched by r (and hence
unaffected by the transition), the clock values are unchanged by a transition.

5.2 C o m p u t i n g pre T

First, we define a relation pre t which we later use (Lemma 3) to compute PreT"

D e f i n i t i o n 7. For a constarint r =- (e', m', q', k', C_') we define pret(r) to be
the denotation of the set of constraints of form r = (d, m ~, q~, k, ~) satisfying
either of the following two conditions.

1. for some j E ~ we have j - i j_, there is no j E ~t such that j - i i and
k~(j) = O, and the following three conditions hold.

- k(j) = k ' (j) - 1 i f j - ' L,
- k(j) = k ' (j) i f j 5 ' 3-,
- jx E j2 if and only if either

(a) j2 - ' T, or
(b) j2 --' 3- and j l 5 ' T, or
(c) Jl E_' j2 and 3. f-~ j l , J2 f-~ T.

2. There is no j E Cn such that j =' 3. and the following four conditions hold:
- k = V ,

- whenever 3. r -I Jl, J2 f-i T we have jl E_ j2 if and only i f J1 E' J~,
- whenever j -~ T we have j =_ 3. or j =_ T,
- E ' # E .

Intuitively, the first case captures the situation where there are indices with
fractional parts of some clocks being O. The second case captures the situation
when no clocks have fractional parts equal to O.

L e m m a 2. There is no infinite sequence ~o, ~1, ~2 , . . . of constraints, such that
~i+1 E pret(dpi).

308

Definition 8. For a set of constraints ~' and a natural number i, we define
preti (~ I, i) inductively as follows.

_ pretO(~l) = r and
- preti+l(~ ') -- {r : 3r E preti(q ~') : r E pret(r

We define pret*(~') = Ui>opreti(~').

Sometimes we write Pret* (r instead of pret* ({r

L e m m a 3. If r is a constraint, then preT(r) is the denotation of the set of
constraints in the set pret*({r). In other words

preT(r) = [pret*(r

The computability of pre T follows from Lemma 3 and Lemma 2.

5.3 C o m p u t i n g pre

By combining the rules for computing pre D (r in Lemma 1 and the rules for
computing PreT (r in Lemma 3, we obtain the following theorem.

T h e o r e m 3. If r is a constraint, then we can compute a finite set 4~ of con-
straints such that ~ = pre(r

6 T h e e n t a i l m e n t o r d e r i n g is a w e l l q u a s i - o r d e r i n g

In this section, we shall prove that the preorder ~ on constraints is a well quasi-
ordering. We will first review some standard results from the literature con-
cerning well quasi-orderings ([Hig52]), and then apply them to our constraint
system.

Definition 9. Let A be a set. A quasi-order -'< on A is a binary relation over A
which is reflexive and transitive. A quasi-order -~ is a well quasi-ordering (wqo)
if in each infinite sequence ao al a~ a3 . . . of elements in A, there are indices
i < j such that ai "< aj.

We shall now restate two standard lemmas, which allow us to lift well quasi-
orderings from elements to bags and to sequences. Let A* denote the set of finite
strings over A, and let Let A B denote the set of finite bags over A. An element

of A* and of A B can be represented as a mapping w: Iwl ~+ A where Iwl is the
size of the bag or the length of the sequence. Given a quasi-order -< on a set
A, define the quasi-orderA~* on A* by letting w ___* w' if and only if there is a

monotone 9 injection h: Iwl ~ Iw'l such that w(j) ~_ w'(h(j)) for 1 < j < Iwl.
Define the quasi-order ~B on bags of A by w ~* w' if and only if there is a

(not necessarily monotonic) injection h: Iwl ~ Iw'l such that w(j) ~ w'(h(j))
for 1 _< j _< Iwl-

9 meaning that h(jl) < h(j2) if and only if jl < j2

309

{}

= 0 : = i

{} :=0

t t

t t

= i

Fig. 1. Fischer's Protocol for Mutual Exclusion.

Lemma 4. I f -K is a wqo on A, then -~* is a wqo on A* and .~s is a wqo on
A B .

Proof. The proof can be found in [High2].

Let r be a constraint (c, m, q, k, E). For each j E ~ U {1, T}, define the rank
of j in r to be the number of equivalence classes of E which are less than or
equal (wrp. to _) to the equivalence class containing j . In other words, the rank
of j is the maximum k such that there is a sequence _L [-- j l F" -.- f- jk = j . Note
that the rank of T is equal to the number of equivalence classes of - . Define the
rank of r as the rank of T in r

Let r be the rank of the constraint r = (c, m, q, k, E). For i e ~, define r
to be the bag of pairs of the form (q, k) such that u(j) = q and k(j) = k for
some j with rank i in r Define the ordering -~ on these pairs to be the identity
relation on pairs of the form (q, k). Since there are finitely many such pairs, _
is trivially a well quasi-ordering.

L e m m a 5. Let r = (c, m, q, k , E) and r = (c', m' , q', k ' , E ') be constraints
with ranks r and r'. We have r ~ r i f and only i f e ~ _ e', r r

r __s r and there is a monotonic injection h : (r - 1) ~> (r ' - 1) such

that r _~B r for all i e (r -~-1).

T h e o r e m 4. The relation -~ on the set o f constraints is a well quasi-ordering.

Proof. The proof follows from Lemma 5 and repeated application of Lemma 4.

7 E x a m p l e : F i s c h e r ' s P r o t o c o l

As an illustration of our method, we model Fischer's protocol [SBK92], and
show how an automatic verification algorithm would go about verifying mutual
exclusion. The purpose of the protocol is to guarantee mutual exclusion in a
concurrent system consisting of an arbitrary number of processes, using clocks
and a shared variable. Each process has a local clock, and runs a protocol before
entering the critical section. Each process has a local control state, which in our

310

model assumes values in the set {A, B, C, C S } where A is the initial state and
C S represents the critical section. The processes also read from and write to a
shared variable whose value is either • or the index of one of the processes. A
description in a graphical pseudo-code (taken from [KLL+97]) of the behavior
of a process with index i is given in Figure 1.

Intuitively, the protocol behaves as follows: A process wishing to enter the
critical section starts in state A. If the value of the shared variable is .1_, the
process can proceed to state B and reset its local clock. From state B, the
process can proceed to state C if the clock value is still less than 1. In other
words, the clock implements a t imeout which guarantees that the process either
stays in state B at most one time unit, or gets stuck in B forever. When moving
from B to C, the process sets the value of the shared variable to its own index i
and again resets its clock. From state C, the process can proceed to the critical
section if the clock is strictly more than 1 and if the value of the shared variable
is still i, the index of the process. Thus, in state C the clock enforces a delay
which is longer than the length of the timeout in state B. Finally, when exiting
the critical section, the process resets the shared variable to 1 . Processes that
get stuck in state C can reenter the protocol by returning to state A. Since we
do not intend to model liveness properties, such as e.g., absence of starvation,
we do not impose requirements that force processes to change their state 1~

i n i t i a t e : ((udf, udf), (A, x > 0 ---+ reset, B))

choose, : ((,,af, @ , (B, = < 1 ~ ,~set, c '))
choose2: ((dr, dr), (B, z < 1 ----+ reset, Or), (qt, skip, q))
choose3 : ((dr, @, (S t , z < 1 ~ reset, Ct))

e n t e r : ((df, d~, (C t, x > 1 - -+ skip, cs t))

fail1 : ((udf, udl~, (C, skip, A))
faith: ((dr, @,(c, skip, A))

exit1 :
exit2 :
exit3 :

((dr, u@, (CSt, skip, A))
((dr, udl~, (CS, skip, A), (qt, skip, q))
((~al, =@ , (CS, skip, A))

Fig. 2. Rules for Modeling Fischer's protocol

We can model the protocol in our timed networks formalism. The controller
state is either udf, indicating that the value of the shared variable is undefined,
or dr, indicating that the value of the shared variable is defined. The set of

10 In fact, our formalism cannot express such requirements, although they can be added
in terms of e.g., fairness constraints.

311

process states is given by { A, B, C, CS, A t, B t , C t, CS? }. The states marked with
t correspond to configurations where the value of the shared variable is equal to
the index of that particular process.

A straightforward translation of the description in Figure 1 yields the set of
rules in Figure 2. We use q to denote an arbi trary process state. We use skip to
denote the guarded command 0 < x) skip.

Using the method described in this paper, it is possible to verify tha t there
is never more than one process in its critical section, by checking that the set
of constraints with m = 2 that contain exactly two occurrences of CS or CS t is
unreachable. More details are in the full paper.

References

[ACD90]

[ACHH92]

[AOJYK96]

[AJ96]

[AK95]

[BD91]

[BS95]

[Cer94]

[CES86]

[CGJ95]

[Fin9~

R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-
tems. In Proc. 5 th IEEE Int. Syrup. on Logic in Computer Science, pages
414-425, Philadelphia, 1990.
R. Alur, C. Courcoubetis, T. Henzinger, and P.-H. Ho. Hybrid automata:
An algorithmic approach to the specification and verificationof hybrid sys-
tems. In Grossman, Nerode, Ravn, and Rischel, editors, Hybrid Systems,
number 736 in Lecture Notes in Computer Science, pages 209-229, 1992.
Parosh Aziz Abdulla, Karlis (~erans, Bengt Jonsson, and Tsay Yih-Kuen.

General decidability theorems for infinite-state systems. In Proc. 11 th
IEEE Int. Syrup. on Logic in Computer Science, pages 313-321, 1996.
Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreli-
able channels. Information and Computation, 127(2):91-101, 1996.
Parosh Aziz Abdulla and Mats Kindahl. Decidability of simulation and
bisimulation between lossy channel systems and finite state systems. In Lee
and Smolka, editors, Proc. CONCUR '95, 6 th Int. Conf. on Concurrency
Theory, volume 962 of Lecture Notes in Computer Science, pages 333 -
347. Springer Verlag, 1995.
B. Berthomieu and M. Diaz. Modeling and verification of time dependent
systems using time Petri nets. IEEE Trans. on Software Engineering,
17(3):259-273, 1991.
O. Burkart and B. Steffen. Composition, decomposition, and model check-
ing of pushdown processes. Nordic Journal of Computing, 2(2):89-125,
1995.
K. Cer~ns. Deciding properties of integral relational automata. In Abite-
boul and Shamir, editors, Proc. ICALP '9~, volume 820 of Lecture Notes
in Computer Science, pages 35-46. Springer Verlag, 1994.
E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specification. A CM
Trans. on Programming Languages and Systems, 8(2):244-263, April 1986.
E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks
using abstraction and regular languages. In Lee and Smolka, editors, Proc.
CONCUR '95, 6 th Int. Conf. on Concurrency Theory, volume 962 of Lec-
ture Notes in Computer Science, pages 395-407. Springer Verlag, 1995.
A. Finkel. Reduction and covering of infinite reachability trees. Informa-
tion and Computation, 89:144-179, 1990.

312

[GMMP91]

[God94]

[Gs92]

[Hen95]

[Hig52]

[JM95]

[JP93]

[KLL+97]

[KM89]

[LSW95]

[SBK92]

[vw86]

[Wo186]

[Yi91]

C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezz6. A unified high-level
Petri net formalism for time-critical systems. IEEE Trans. on Software
Engineering, 17(2):160-172, 1991.
J.C. Godskesen. Timed Modal Specifications. PhD thesis, Aalborg Univer-
sity, 1994.
S. M. German and A. P. Sistla. Reasoning about systems with many
processes. Journal of the ACM, 39(3):675-735, 1992.
T.A. Henzinger. Hybrid automata with finite bisimulations. In Proc.
[CALP '95, 1995.
G. Higman. Ordering by divisibility in abstract algebras. Proc. London
Math. Soc., 2:326-336, 1952.
P. Jantar and F. Moller. Checking regular properties of Petri nets. In
Proc. CONCUR '95, 6 th Int. Conf. on Concurrency Theory, pages 348-
362, 1995.
B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of
non-finite-state programs. Information and Computation, 107(2):272-302,
Dec. 1993.
K.J. Kristoffersen, F. Larroussinie, K. G. Larsen, P. Pettersson, and W. Yi.
A compositional proof of a real-time mutual exclusion protocol. In TAP-
SOFT '97 7th International Joint Conference on the Theory and Prac-
tice of Software Development, Lecture Notes in Computer Science, Lille,
France, April 1997. Springer Verlag.
R.P. Kurshan and K. McMillan. A structural induction theorem for
processes. In Proc. 8 th A CM Syrup. on Principles of Distributed Com-
puting, Canada, pages 239-247, Edmonton, Alberta, 1989.
K.G. Larsen, B. Steffen, and C. Weise. Fischer's protocol revisited: a
simples proof using modal constraints. In 4th DIMACS Workshop on Ver-
ification and Control of Hybrid Systems, New Brunswick, New Jersey, Oct.
1995.
F. B. Schneider, Bloom B, and Marzullo K. Putting time into proof out-
lines. In de Bakker, Huizing, de Roever, and Rozenberg, editors, Real-
Time: Theory in Practice, volume 600 of Lecture Notes in Computer Sci-
ence, 1992.
M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. 1 st IEEE Int. Syrup. on Logic in Computer
Science, pages 332-344, June 1986.
Pierre Wolper. Expressing interesting properties of programs in proposi-
tional temporal logic (extended abstract). In Proc. 13 th ACM Syrup. on
Principles of Programming Languages, pages 184-193, Jan. 1986.
Wang Yi. CCS + Time = an interleaving model for real time systems. In
Leach Albert, Monien, and Rodriguez Artalejo, editors, Proc. ICALP '91,
volume 510 of Lecture Notes in Computer Science. Springer Verlag, 1991.

